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KERNEL ESTIMATOR OF QUANTILE

BY P10oTR KULCZYCKI AND ANTONI LEON DAWIDOWICZ

Abstract. The subject of the paper is the issue of quantile estimation. To
solve this problem, the kernel estimators technique has been applied. The
strong consistency of the obtained estimator is shown. The considerations
result in a complete usable algorithm for numerically calculating the value of
the estimator on the basis of a random sample.

1. Introduction. For statistical purposes, distributions of random vari-
ables are most often reported through characteristic parameters describing
their fundamental features. Moments, especially mean value and variance,
constitute well known examples of such parameters. Another group of char-
acteristic quantities consists of the so-called positional parameters, including
quantiles and their functions, which are more directly connected to the distri-
bution function by relating certain points to its assumed values. Frequently,
the median (quantile of order 0,5) is treated like the mean, and the quantile
deviation - i.e., the difference between quantiles of order 0,75 and 0,25 — can
be interpreted similarly to the variance. Special quantiles such as quadriles,
deciles and percentiles also appear often in statistical applications [3].

In this paper, the kernel estimators technique will be used to calculate the
estimator of the quantile. Presently, due to the expansion of numerical meth-
ods, that technique is finding ever wider application. Since kernel estimators
are predominantly used when the sample size is rather large, the property
of (strong) consistency will be proved. The final result of the considerations
presented here will be a complete usable algorithm for specifying the value of
the quantile estimator on the basis of a random sample. Because any sort of
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discretionary statistical research has been eliminated here through the applica-
“ tion of optimizing criteria, the proposed method may be successfully adapted
to numerical procedures.
A review of alternative methods of quantile estimation can be found in
survey papers: [4] for order statistics, and [6] where other kernel concepts are
considered.

2. Kernel estimators.

2.1. Kernel estimator of density function. Let (2, %, P) be a proba-
bility space. Consider a real random variable X : @ — R, whose distribution
has the density function f. In practice, its estimator f is calculated on the
basis of the value of an m-element simple random sample z1, z,, ..., z,, € R.
The fundamental form of the kernel estimator can then be defined by the
formula

) floy = oK (52,
where
(2) h >0,

while the measurable function K : R — [0, 0o) fulfills the condition

3) /R K(z)ds =1
and for every z € R:

(4) K(z) = K(-1),
(5) K(0) > K ().

The function K is called the kernel, whereas the constant A is known as the
smoothing parameter.
If the function K is Borel and fulfills the condition

(6) lim z K(z) =0,

T—+00

while the value of the smoothing parameter A is selected in such a way that

(7 lim h =0,
m—o0
(8) lim mh = oo,

m—00
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then at every point of continuity = of the density function f, the kernel esti-
‘mator is strongly consistent, i.e.,

9) P( lim fla) = f@) =1,

m—»0o0

and therefore also consistent:
(10) li_I)n P <|f(:r) - flz)| > 5) =0 for every ¢ > 0.

Detailed discussions of this subject, especially the procedures for choos-
ing the form of the function K and calculating the value of the smoothing
parameter h, can be found in books [2,5,7].

2.2. Kernel estimator of distribution function. To carry forward
the concept sketched in the previous subsection, the natural estimator of the
distribution function, denoted hereinafter as F', is defined by the formula

) o) = [ Fway

Condition (3) guarantees the existence of the primitive I : R — [0, 1] of the
kernel K, i.e.,

(12) 1) = [ K@y

The kernel estimator of the distribution function can therefore be expressed
as

(13) ﬁ(z)zﬁng(mT").

The property of its (strong) consistency, under very mild assumptions, will
be shown below. First, however, the notion of empirical ergodicity will be
presented.

Consider the sequence of real random variables {X;}52, defined on a com-
mon probability space (£2,X, P), as well as the corresponding sequence of
its realizations {z;}$2,. For an arbitrarily fixed m € N\ {0}, the mapping
P, : B(R) — [0, 1] given by the formula

(14) Pm(B):%#{ie{l,Z,...,m}:mieB},
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where #(A) denotes the power of the set A and B(R) represents the family of

“real Borel sets, is known as the empirical distribution of the sequence {X;}$2;.
Let also 2 : B(R) — [0,1] be the distribution of a probability measure.
The sequence of random variables {X;}°, is called the empirically ergodic
sequence with the limit 72, if the condition

(15) Jim P (E) = P(E)

is fulfilled with probability 1 (with respect to the measure P) for every set E
of the form (—o0, e], where P({e}) = 0.

As results from The Glivenko-Cantelli Theorem [1], this condition is more
general than the assumption frequently formulated in the theory of estimation
concerning the identity of the distributions and the independence of the ran-
dom variables X; that represent the random sample. In the case when such an
assumption is accepted, the measure 2 is nothing other than the distribution
of the variables X;, 1.e.

(16) P(B) = P(z; € B)
for any ¢ = 1,2,... and B € B(R).

LEMMA 1. Let the sequence of real random variables {X;}2,, defined on
a common probability space (2,2, P), be empirically ergodic with the limit P.,
which has the distribution function F. If the kernel estimator of this function
F is given by formula (13), and conditions (2)-(3) with (12) are fulfilled, then
for every x* € R such that
(17) P({z"}) =0,
the equality

(18) lim lim F(z*) = F(z*)

h—0m—o0
is true with probability 1 (with respect to the measure P).

PROOF. From condition (14) it can be directly obtained that
1 m 9
(19) — ZXB(l'i) = / xB(z)dPy (z) for any B € B(R),
mia /R
where xp denotes the characteristic function of the set B. Since linear and

continuous operators equal on dense spaces are identical, for any measurable
function g : R — R the following is true:

(20 —>a(e) = | g(e)dPn(o)
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In particular, the formula
(21) Pl :/ I (I “m) 4P (z)
R h

can be obtained on the basis of definition (13). Therefore, due to the properties
of weak convergence of the distribution functions, condition (15) implies that
with probability 1

-V r—z
(22) Jim P(a*) = [RI ( - ) dP().
The consequences of formulas (3) and (12) are:

(23) lim I(z)=0

T——00
and
(24) lim I(z) =1,

Tr—r00

which, thanks to condition (2), gives

. 1 for x < z*,
(25) lim 1 (x - l) ={ I(0) forz =a"
0 for z > z*.

In turn, the following equality is true:

()] (e
+ I0)R({z*}) +/ I (‘”h‘ ””) dP(z).

(z*,00)
Therefore, it results from The Lebesgue Dominated Convergence Theorem
that

@7 lim /R 1(””* - ‘”) dP(z) = /(._Oo7m*)d72(:r:)+I(O)’P~({$*}),

h—0

(26)

i.e., taking into account assumption (17):

— T

(28) lim Rz(m - )dn(x): /(._oo,mdﬁ(x)'

h—0

Applying equality (22) to the above formula, one ultimately obtains the claim
of Lemma 1. O
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THEOREM 1. Let the sequence of real random variables {X;}52,, defined on

" a common probability space (U, X, P), be empirically ergodic with the limit 2.,

1£hich has the distribution function F. If the kernel estimator of this function
F is given by formula (13), and conditions (2)-(3) with (12), as well as

(29) lim h=0

m—ro0

are fulfilled, then for every ©* € R such that

(30) P({z'}) =0,
the equality

(31) lim F(z*) = F(z*)

m—ro0

is true with probability 1 (with respect to the measure P), which gives the
strong consistency, therefore also the consistency, of the kernel estimator of
the distribution function at the points of its continuity.

PROOF. It suffices to demonstrate that the convergence, when m — oo,
occurring in formula (18) is uniform with respect to the variable A.

Let F,, denote the distribution function of the measure P,,. For an arbi-
trarily fixed m € N \ {0}, it is obvious that

(32) lim T (m - x) (Fo — F) (z) = 0,
(33) zgr_noo1<‘”*‘””> (Fr — F) (z) =0

Applying to the Stielties integral ]é the integration by parts procedure, one

/RI (xh_w) de(a:)—/RIU*}:z) dP(z)

(34) =fRI (xh—x> d(F,, — F)(z)

- _fR(Fm _F)(a)dI (mh'””> .

obtains




331

Since, regardless of the value of the variable A, the saltus of the function I
‘equals 1 (is finite), while from The Glivenko-Cantelli Theorem it results that

(35) sup |(Fn — F)(z)] =22 0,
zeR
formulas (21)-(22) and (34) finally prove Theorem 1. O

2.3. Kernel estimators of quantile. To carry on the considerations
given in the previous subsection: if

(36) K(z) >0 forevery z € R,

then the kernel estimator of the quantile of order r, denoted hereinafter as g,
may be uniquely defined by the equation

~

(37) F@) =r

therefore, given formula (13), one finally obtains

(38) ZI(’%ﬁ) = mr.

1=1

As before, the (strong) consistency of the estimator defined above will be
shown under very mild assumptions.

LEMMA 2. Let the sequence of real random wvariables {X;}$2;, defined on
a common probability space (2, X, P), be empirically ergodic with the limit P..
If the quantile of order r is given uniquely (with respect to the measure B),
while its kernel estimator is defined by formula (38), and conditions (2)—(3)
with (12) are fulfilled, then the equality

(39) lim lim ¢g=gq

h—=0m—o0
is true with probability 1 (with respect to the measure P).
PROOF. In order to show formula (39), it is sufficient to prove that

(40) Ve >0 3h, >0:Vh < h, Im, € N\ {0} : YVm > m, T—q| <e.

Let some € > 0 be fixed. Since the measure P. is finite, the set of real
numbers of positive measure can be at most countable. Thus there exist
7,7 € R of zero measure P and fulfilling the inequalities

(41) q—e<I<qg<I<qg+e.
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The distribution function F is an increasing mapping; therefore, due to the
- assumed uniqueness of the quantile, it can be inferred that there exists § > 0
such that

(42) F(£) +6 < F(q) < F(£) — 6,

where F' denotes the distribution function of the measure 2. Lemma 1 states
that

Ve >0 3h. > 0:Vh < hy, 3m, € N\ {0} : Vm > m,
(43) F(£) < F(z) + 6,
F(£) < F(£) - 6;

therefore, by combining the latest two conditions one obtains

Ve >0 Jh. > 0:Vh < h, 3m, € N\ {0} : Vm > m,
44 ~
(44) F(# < F(q) < F(2).

Thus, due to the monotonicity of the function F and to formula (41), inequality
(44) implies that condition (40) is true, which concludes Lemma 2. O

THEOREM 2. Let the sequence of real random variables {X;}52,, defined
on a common probability space (2, 2, P), be empirically ergodic with the limit
P.. If the quantile of order r is defined uniquely (with respect to the measure
R), while its kernel estimator is given by equation (38), and formulas (2)~(3)
with (12), as well as the condition

(45) lim h=0

m—r 00

are fulfilled, then the equality

(46) lim §=¢

m—o0
is true with probability 1 (with respect to the measure P), which means that
the kernel estimator of the quantile is strongly consistent, therefore, also con-
sistent.

PROOF. As results from the proof of Theorem 1, the value m, introduced
by formula (43) does not depend on the variable h. This implies that, in
Lemma 2, the convergence when m — oo is uniform, which finally proves
Theorem 2. 0
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Note that if the distribution of the measure P has a density function with
" a connected support, then its quantile is uniquely defined.

It should also be emphasized that condition (8), required in the estimation
of the density function in order to assure the consistency property, proves to
be superfluous in the cases of the distribution function and quantile.

3. An algorithm for numerical computations. Below, an algorithm
for numerically calculating the value of the kernel estimator of the quantile
will be presented, as an applicational corollary from the theoretical material
presented in the previous section.

In practice, the form of the kernel K and the value of the smoothing pa-
rameter h can be chosen on the basis of the minimum mean squared error
criterion (see [5,7]). It is then additionally assumed that f € C2, and that
the functions f and f” are bounded. In particular, the approximate value of
the optimal smoothing parameter can be calculated by assuming the normal
distribution; one then obtains

8 _1\°
(47) h= (VK—\/%—) 5,
3 m

while
o0 o 9) -2
(48) Vi = / K(z)?dz - ( / 22K (z) dm) ,
N 1 & 1 & 2

On the other hand, the choice of the type of the kernel K does not have a
great impact on the statistical quality of estimation, and in practice it becomes
possible to take into account primarily the desired properties of the estimator
obtained, e.g. the simplicity of calculation, the finiteness of the support, etc.

In many applications, it proves to be particularly advantageous to introduce
the concept of modification of the smoothing parameter. The estimator can
then be constructed in the following manner:

~

(a) the kernel estimator f is calculated in accordance with basic defini-
tion (1);

(b) the modifying parameters s; > 0 (i = 1,2,...,m) are stated in the
form

TN
(50) 5i = (—Z"—) .
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~

where b denotes the geometric mean of the numbers f (:1:1) (z2),
f (a:m) given in the form of the logarithmic equation

(51) log(b) Zlog(f (z:))

(c) the kernel estimators with the modified smoothing parameter are de-
fined as follows:
— for the density function (the counterpart of formula (1)):

(52) mhgsz ( hsi )’

— for the distribution function (the counterpart of formula (13)):
~ 1 & T — T
93 F(z) = — 1 .
(53) @=m =31
— for the quantile (the counterpart of formula (38)):

(54) i I (‘tg’”) = mr.

The use of the modification procedure improves the quality of the estimation;
however, from the practical point of view another essential feature consists in
its slight sensitivity to the exactness of the choice of the constant h. In practice
this property is exceptionally advantageous, and when such an estimator is
applied, it mostly proves sufficient to accept the approximate value given by
condition (47).

Since, thanks to assumption (5), the mapping I is a Lipschitz function with
the constant

(55) L= K(0),

then the estimator of the quantile g, given by equation (54), may be calculated
recurrently as the limit of the sequence {g*}$2, defined by the formulas

G6) =
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whereas the global convergence of this algorithm is guaranteed by the condition

-1
2h =1

=1

furthermore, in the case when the function I is not linear in any restriction of
the domain, then also

(59) c:%(zgl_) ,

1=1

In practice, value (59) yields the best results in the application of algorithm
(56)—(57). :
For the purposes of the method elaborated here, the kernel

e"'@

(60) K(z) = Atee2

can be proposed. It fulfills all the requirements formulated above, and in
particular its primitive has a form convenient for calculations, namely:

_ 1
T l4e e

(61) I(z)
In this case, the constant (48) amounts to

Vi = —.
(62) K= 94

Finally, algorithm (56)—(57) together with
(a) equality (61) defining the function I,
(b) formulas (47), along with (62) and (49), giving the value of the constant
h,
(c) modification procedure (50)—(51), along with (1) and (60), the result
of which are the parameters s;,
(d) equalities (59), along with (55) and (60) for coefficient c,
provide a complete set of rules defining the practical procedure used to numer-
ically calculate the quantile estimator of order r on the basis of the m-element
random sample z1,Z2,...,Tm.
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