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Abstract This publication deals with the applicational aspects and possibilities of
the Complete Gradient Clustering Algorithm—the classic procedure of Fukunaga
and Hostetler, prepared to a ready-to-use state, by providing a full set of procedures
for defining all functions and the values of parameters. Moreover, it describes how a
possible change in those values influences the number of clusters and the proportion
between their numbers in dense and sparse areas of data elements. The possible
uses of these properties were illustrated in practical tasks from bioinformatics (the
categorization of grains for seed production), management (the design of amarketing
support strategy for a mobile phone operator) and engineering (the synthesis of a
fuzzy controller).

Keywords Exploratory data analysis · Clustering · Nonparametric methods ·
Kernel estimators · Seed production · Mobile phone operator · Fuzzy controller

P. Kulczycki (B) · M. Charytanowicz · P. A. Kowalski · S. Łukasik
Centre of Information Technology for Data Analysis Methods, Systems Research Institute,
Polish Academy of Sciences, Warsaw, Poland
e-mail: Piotr.Kulczycki@ibspan.waw.pl

M. Charytanowicz
e-mail: Malgorzata.Charytanowicz@ibspan.waw.pl

P. A. Kowalski
e-mail: Piotr.A.Kowalski@ibspan.waw.pl

S. Łukasik
e-mail: Szymon.Lukasik@ibspan.waw.pl

P. Kulczycki · P. A. Kowalski · S. Łukasik
Department of Automatic Control and Information Technology, Cracow University
of Technology, Cracow, Poland

M. Charytanowicz
Institute of Mathematics and Computer Science, John Paul II Catholic University of Lublin,
Lublin, Poland

L. T. Kóczy et al. (eds.), Issues and Challenges of Intelligent Systems 119
and Computational Intelligence, Studies in Computational Intelligence 530,
DOI: 10.1007/978-3-319-03206-1_9, © Springer International Publishing Switzerland 2014



120 P. Kulczycki et al.

1 Introduction

Clustering is becoming a fundamental procedure in exploratory data analysis [2, 20].
However it lacks naturalmathematical apparatus, such as—for example—differential
calculus for investigating the extremes of a function. In this situation the ambiguity
of an interpretation (important mainly in practical applications) as well as particular
factors of the definition itself (e.g. the meaning of “similarity” and consequently
“dissimilarity” of elements) imply a huge variety of concepts and thus of clustering
procedures. On one hand this significantly hinders the research, but on the other
it allows to better suit the applied method to the specifics and requirements of an
investigated task.

This publication aims to present the applicational properties of the so-called
Complete Gradient Clustering Algorithm—abbreviated to CGCA in the following—
illustrated in examples of practical problems of bioinformatics, management and
engineering, concerning the categorization of grains for seed production, the design
of a marketing support strategy for a mobile phone operator and the synthesis of a
fuzzy controller for the reduction of a rule set, respectively.

Consider the m-elements data set comprised of n-dimensional vectors

x1, x2, . . . , xm ∈ R
n, (1)

treated here as a sample obtained from an n-dimensional real random variable.
In their now seminal paper [4], Fukunaga and Hostetler formulated a natural and
effective concept of clustering, making use of the significant possibilities of statisti-
cal kernel estimators [8, 21, 23], which were becoming more widely applied at that
time. The basis for this concept is accepting data set (1) as a random sample obtained
from a certain n-dimensional random variable, calculating a kernel estimator for its
distribution density and making a natural assumption that particular clusters are re-
lated to modes (local maxima) of the resulting estimator (in consequence “valleys”
of the density function become borders for such-formed clusters). The method pre-
sented then was formulated as a general idea only, leaving detailed analysis to the
user. In the paper [11], the Fukunaga and Hostetler algorithm was supplemented
and finally given in its complete form, useful for application without the necessity
of deeper statistical knowledge or laborious calculations and investigations. This is
characterized by the following features:

1. all parameters can be effectively calculated using numerical procedures based on
optimizing criteria;

2. the algorithm does not demand strict assumptions regarding the desired number
of clusters, which allows the number obtained to be better-suited to a real data
structure;

3. the parameter directly responsible for the number of clusters is indicated; it
will also be shown how possible changes—e.g. with regard to values calculated
using optimizing criteria (see point 1 stated above)—to this value, influence the
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increase or decrease in the number of clusters without, however, defining their
exact number;

4. moreover, the next parameter can be easily indicated, the value of which will
influence the proportion between the number of clusters in dense and sparse
areas of elements of data set (1); here also the value of this parameter can be
assumed based on optimizing criteria (see again point 1); it will also be shown
here that potential lowering of the value of this parameter results in a decrease
in the number of clusters in dense regions of data as the number of clusters in
sparse areas increases, while a potential raise in its value has the opposite effect—
increasing the number of clusters in dense areas while simultaneously reducing
or even eliminating them from sparse regions of data set (1);

5. the appropriate relation between the two above-mentioned parameters allows for
a reduction, or even elimination of clusters in sparse areas, practically without
influencing the number of clusters in dense areas of data set elements;

6. the algorithm also creates small, even single-element clusters, which can be
treated as atypical elements (outliers) in a given configuration of clusters, which
makes possible their elimination or assignation to the closest cluster by a change—
described in points 3 and particularly 4 or 5—in the values of the appropriate
parameters.

The features in point 4, and in consequence 5, are particularly worth underlining
as practically non-existent in other clustering procedures. In practical applications
it is also worth highlighting the implications of points 1 and 2, and potentially 3.
Unusual possibilities are offered by the property expressed in point 6.

More details of the material presented in this publication is available in the paper
[13].

2 Statistical Kernel Estimators

Let the n-dimensional random variable X : � → R
n , with a distribution having the

density f , be given. Its kernel estimator f̂ : Rn → [0,∞) is calculated on the basis
of the m-elements random sample (1) experimentally obtained from the variable X,
and is defined in its basic form by

f̂ (x) = 1

mhn

m∑

i=1

K

(
x − xi

h

)
, (2)

where the measurable function K : R
n → [0,∞), symmetrical with respect

to zero and having a weak global maximum in this point, fulfils the condition∫
Rn K (x) dx = 1 and is called a kernel, whereas the positive coefficient h is

referred to as a smoothing parameter. Broader discussion and practical algorithms
are found in the books [8, 21, 23]. Setting the quantities introduced in definition (1),
i.e. choice of the form of the kernel K as well as calculation of the value for the
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smoothing parameter h, is most often carried out according to the criterion of min-
imum of an integrated mean-square error. In particular, the choice of the kernel K
form has no practical meaning and thanks to this it is possible to first take into
account properties of the estimator obtained (e.g. its class of regularity, boundary of
a support, etc.) or aspects of calculations, advantageous from the point of view of the
applicational problem under consideration. On the contrary, the value of the smooth-
ing parameter h has significant meaning for quality of estimation. Too small a value
causes a large number of local extremes of the estimator f̂ to appear; on the other
hand, too big values of the parameter h result in overflattening of this estimator—this
property will be successfully used here later.

Practical applications of kernel estimators may also use additional procedures,
some generally improving the quality of the estimator, and others—optional—
possibly fitting the model to an existing reality. For the first group one should recom-
mend themodification of the smoothing parameter and a linear transformation, while
for the second e.g. the boundaries of a support. The procedure of the modification of
the smoothing parameter is outlined below, as it will be heavily used in the following.

Thus, in the case of the basic definition of kernel estimator (2), the influence of
the smoothing parameter on particular kernels is the same. Advantageous results are
obtained thanks to the individualization of this effect, achieved by introducing the
positive modifying parameters s1, s2, . . . , sm mapped to particular kernels, which
value is given as

si =
(

f̂ ∗ (xi )

s̄

)−c

, (3)

where c ∈ [0, ∞), f̂ ∗ denotes the kernel estimator without modification, s̄ is the
geometricalmean of the numbers f̂ ∗(x1), f̂ ∗(x2), . . . , f̂ ∗(xm), and finally, defining
the kernel estimator with modification of the smoothing parameter in the following
form:

f̂ (x) = 1

mhn

m∑

i=1

1

sn
i

K

(
x − xi

hsi

)
. (4)

Thanks to the above procedure, the areas in which the kernel estimator assumes
small values are flattened and the areas connected with large values—peaked. The
parameter c stands for the intensity of the modification procedure—the greater its
value, the stronger (more distinct) the above procedure. Based on indications for the
criterion of the integrated mean square error, the value

c = 0.5 (5)

can be tentatively suggested.
Detailed information regarding kernel estimators can be found in the publications

[8–10, 21, 23].
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3 Complete Gradient Clustering Algorithm (CGCA)

Consider—as in the Sect. 1—the m-elements set of n-dimensional vectors (1). This
will be treated as a random sample obtained from the n-dimensional random vari-
able X, with distribution having the density f. Using the methodology described in
Sect. 2, the kernel estimator f̂ can be created. Take the natural assumption that par-
ticular clusters are related to its modes (i.e. the local maxima of the function f̂ ),
and elements of set (1) are mapped onto them by shifting in the gradient ∇ f̂ direc-
tion, with the appropriate fixed step.

The above is carried out iteratively with the Gradient Clustering Algorithm [4],
based on the classic Newtonian procedure ([6]—Sect. 3.2), defined as

x0j = x j for j = 1, 2, . . . , m (6)

xk+1
j = xk

j + b
∇ f̂ (xk

j )

f̂ (xk
j )

for j = 1, 2, . . . , m and k = 0, 1, . . . , k∗, (7)

where b > 0 and k∗ ∈ N\{0}; in practice the value b = h2/(n + 2) can be recom-
mended.

In order to refine the above concept to the state of a complete algorithm, the
following aspects need to be formulated and analyzed in detail:

• formula of the kernel estimator f̂ ;
• setting a stop condition (and consequently the number of steps k∗);
• definition of a procedure for creating clusters and assigning to them particular
elements of set (1), after the last, k∗-th step;

• analysis of influence of the values of parameters on results obtained.

Respective procedures for each of the above aspects were given—following com-
prehensive research—in the form of the Complete Gradient Clustering Algorithm
(CGCA) in the publications [11, 12]. Thanks to the appropriate utilization of specific
features of kernel estimators, the properties 1–6 outlined in Sect. 1 are obtained.

4 Influence of the Values of Parameters on Results Obtained

It is worth summarizing that the CGCA does not require a preliminary, in practice
often arbitrary, assumption concerning number of clusters—their size depends solely
on the internal structure of data, given as set (1). When using its basic form, the
values of the parameters used are effectively calculated taking optimizing reasons
into account. However, optionally—if the researcher makes the decision—by an
appropriate change in values of kernel estimator parameters it is possible to influence
the size of number of clusters (still without defining their exact number), and also the

http://dx.doi.org/10.1007/978-3-319-03206-1_3
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proportion of their appearance in dense areas in relation to sparse regions of elements
in this set.

As mentioned in Sect. 2, too small a value of the smoothing parameter h results
in the appearance of too many local extremes of the kernel estimator, while too great
a value causes its excessive smoothing. In this situation lowering the value of the
parameter h in respect to that obtained by procedures based on the criterion of the
mean integrated square error creates as a consequence an increase in the number of
clusters. At the same time, an increase in the smoothing parameter value results in
fewer clusters. It should be underlined that in both cases, despite having an influence
on the size of the cluster number, their exact number will still depend solely on the
internal structure of data.

Next, as mentioned in Sect. 2, the intensity of modification of the smoothing
parameter is implied by the value of the parameter c, given as standard by formula (5).
Its increase smoothes the kernel estimator in areas where elements of set (1) are
sparse, and also sharpens it in dense areas—in consequence, if the value of the
parameter c is raised, then the number of clusters in sparse areas of data decreases,
while at the same time increasing in dense regions. Inverse effects can be seen in the
case of lowering this parameter value.

Practice, however, often prevents changes to the clusters in dense areas of data—
the most important from an applicational point of view—while at the same time
requiring a reduction or even elimination of clusters in sparse regions, as they fre-
quently pertain to atypical elements commonly arising due to various errors. Putting
the above considerations together, one can propose an increase of both the standard
scale of the smoothing parameter modification (5) as well as the value of the smooth-
ing parameter h calculated on the criterion of the mean integrated square error, to the
value h∗ = (3/2)c−0.5h. The joint action of both these factors results in a twofold
smoothing of the function f̂ in the regions where the elements of set (1) are sparse.
Meanwhile these factors more or less compensate for each other in dense areas,
thereby having practically no influence on the detection of these clusters.

More details with illustrative examples can be found in the paper [11].

5 Applicational Examples

The CGCA was comprehensively tested both for random statistical data as well as
generally available benchmarks. In comparison with other well-known clustering
methods it is worth underlining that the CGCA allowed for greater possibilities
of adjustment to the real structure of data, and consequently the obtained results
were more justifiable to a natural human point of view. A very important feature
for practitioners was the possibility of firstly using standard parameters values, and
the option of changing them afterwards—according to individual needs—by the
modification of two of them according to the suggestions made in Sect. 4. These
properties were actively used in three projects from the domains of bioinformatics,
management and engineering, which will be presented in detail in the following
subsections.
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5.1 Categorization of Grains for Seed Production

Bioinformatics—a discipline concerning the application of mathematical and IT
tools to solve problems of biological science—is now growing on an exceptionally
dynamic and diverse scale. Opportunities arising thanks to the development and
prevalence of computer technology have resulted in a sudden increase in mutual
understanding and cooperation in the frameworks of previously different research
methods of hard and natural sciences. Below will be presented the results of investi-
gations carried out as part of a larger project on the categorization of grains according
to the geometric features of seeds, taken fromX-ray images, for production purposes.

For an illustrative and comparative presentation of aspects of research using the
CGCA, an analysis will be made of a sample of harvested wheat grain originating
from experimental fields explored at the Institute of Agrophysics of the Polish Acad-
emy of Sciences in Lublin. The examined group consisted of grains of three strains
of wheat—Kama, Rosa and Canadian—with 70 of each type selected randomly for
testing. A high quality visualization of their internal structures was achieved using
a soft X-ray technique, without destroying the subject material. After scanning the
resulting pictures, the following seven geometric parameters of wheat kernels were
obtained using the programGRAINS, specially created to this aim: area A, perimeter
P , compactness C = 4π A/P2, length, width, asymmetry coefficient, and length of
kernel groove. Each was thus represented by a 7-dimensional vector (n = 7), while
their set comprised a 210-elements sample (1). In the preliminary phase, the data
dimensionality was reduced to two using Principal Components Analysis.

As a result of using theCGCAwith the standard values of the smoothing parameter
h and the intensity of its modification c, obtained by the mean-square criterion, seven
clusters were found, of 76, 64, 57, 7, 3, 2, 1 elements each. It can be deduced that
the first three represent the three used for the analysis investigated here, while the
remaining four small clusters contain atypical elements,without excluding physically
damaged. If one disregards the 13 units contained in these four small clusters (6%
of the entire population), the number of correctly classified grains was, in order 91,
97, 88% for Kama, Rosa and Canadian, respectively. It is worth pointing out that
the above results were obtained without the need for any a priori assumption as to
required number of clusters, information which may be difficult or even impossible
to obtain in practical problems in biology.

If, however, a necessity is assumed to map every element to one of the larger clus-
ters, then this can be achieved by appropriately changing the values of the parameters
h and c to those obtained with optimization criterions. Thus, in successively increas-
ing the value of the former, the number of local extremes of the kernel estimator falls,
while decreasing the latter makes it impossible to divide the large clusters created in
this way. In doing so, three large clusters are obtained for h increased by 75% and c
decreased to the value 0.1. The number of correct classifications was for one strain
slightly lower than that obtained earlier, and was 91, 96, 88% for particular strains,
respectively, and was still reached without any arbitrary assumptions as to number
of clusters required.
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In summary, use of the CGCA allowed the correct classification of the grains of
three strains of wheat without a priori information about their number. What is more,
with standard parameters values, the above algorithm also enabled the identification
of atypical elements, e.g. physically damaged and—following their elimination from
the sample—a slight reduction in the number of misclassifications in the remaining
part.

The above illustratory example, concerning three strains of wheat, can be gener-
alized for other categorization tasks of seed produce of similar conditioning. This
research was carried out in cooperation with Jerzy Niewczas and Slawomir Zak.
Detailed information is found in the publication [1].

5.2 Marketing Support Strategy for Mobile Phone Operator

The highly dynamic growth prevalent on the mobile phone network market naturally
necessitates a company to permanently direct its strategy towards satisfying the
differing needs of its clients, while at the same time maximizing its income. The
uncontrollable nature of this kind of activity, however, can lead to a loss of coherence
in treating particular clients, and their subsequent defection to competitors. To avoid
this a formal solution of global nature must be found. Below are presented the results
of research prepared for a Polish mobile phone network operator, concerning long
term business clients, i.e. those with more than 30 SIM cards and an account history
of at least 2years.

In practice there is a vast spectrum of quantities characterizing particular sub-
scribers. Following detailed analysis of the economic aspects of the task under
investigation here, it was taken that basic traits of business clients would be shown by
three quantities: average monthly income per SIM card, length of subscription and
number of active SIM cards. Thus each of m-elements of a database x1, x2, . . . , xm

is characterized by the following 3-dimensional vector:

xi =
⎡

⎣
xi,1
xi,2
xi,3

⎤

⎦ for i = 1, 2, . . . , m, (8)

where xi,1 denotes the average monthly income per SIM card of the ith client, xi,2—
its length of subscription, and xi,3—the number of active SIM cards.

In the initial phase, atypical elements of the set x1, x2, . . . , xm (outliers) are
eliminated, according to the procedure presented in the publication [17], based on
kernel estimators methodology. The uniformity of the data structure is so increased,
and it is worth underlining that the effect is obtained by canceling only those elements
which would not be of importance further in the investigated procedure.

Next a grouping of the data set is performed using the CGCA. This results in a
division of the data set representing specific clients, into groups of similar nature.
The results obtained for typical intensity of smoothing parameter modification (5)
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indicated that an excessive number of clusters of small sizes, located in areas of
low density of sample elements, most often contain insignificant specific clients, and
that an overly-numerous main cluster contains over half the elements. In accordance
with the properties of the algorithm used, this value was increased to c = 1. This
gave the desired effect: the number of “peripheral” clusters lowered significantly, and
the main cluster was split. The obtained number of clusters was satisfying, which
led to any possible change in the value of the smoothing parameter h becoming
redundant. Finally the sample, considered at this stage, containing 1,639 elements
was divided into 26 clusters of the following sizes: 488, 413, 247, 128, 54, 41, 34,
34, 33, 28, 26, 21, 20, 14, 13, 12, 10, two 4-elements clusters, three of 3-elements,
two of 2-elements and two of 1-element. It is worth noting the four clearly drawn
groups: the first of these comprises two numerous clusters of 488 and 413-elements,
next two medium-sized 247- and 128-elements, followed by small—nine clusters
containing from 20 to 54 and lastly 13 clusters of less than 20 elements. Next began
the elimination of these last clusters, with the exception however of those containing
key clients (clusters of 14, 13 and 10-elements) as well as one where at least half
of its elements were prestige clients (12-elements cluster). In the end, 17 clusters
remained for further analysis.

Next for each of the above defined clusters, an optimal—from the point of view of
expected profit of the operator—strategy is created for treating subscribers belonging
to it. With regard to the imprecise evaluation of experts used here, elements of fuzzy
logic [5] and preference theory [3] have been used—details are however beyond the
scope of this publication.

It is worth pointing out that none of the above calculations must be carried out
at the same time as negotiating with the client, but merely updated (in practice once
every 1–6months).

The client being negotiatedwith is describedwith the aid—in reference to formula
(8)—of a 3-dimensional vector with respective particular coordinates. This data can
relate to the subscriber history to date in a given network, when renegotiating contract
terms, or in a rival network if attempting to take them over. Mapping of the client
being negotiated to the proper subscriber group, from those obtained as a result of
earlier-performed clustering, was carried out usingBayes classification also applying
kernel estimators methodology (for subject bibliography see [15]). Due to the fact
that the marketing strategies for particular clusters have already been defined, this
finally completes the procedure for the algorithm to support the marketing strategy
for a business client, investigated here.

The abovemethod, researchedwith the cooperation ofKarinaDaniel,was success-
fully implemented for the needs of a Polish network operator. Detailed information
is found in the paper [14].
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5.3 Synthesis of Fuzzy PID Controller

Fuzzy PID controllers are a valuable—from an applicational point of view—
generalization of commonly used, precisely examined and familiarized by practi-
tioners classical PID feedback-controllers. The fuzzy version is particularly useful
for challenging systems, e.g. containing strong nonlinearities and uncertainties, since
thanks to the greater degree of freedom, such controllers can better fit the specifics
of an object. On the other hand, however, too great a degree of freedom may cause
difficulties in appropriately fixing their functions and parameters, implying an incor-
rectly working system, and in the extreme case impossible excessive expansion of its
structure making it impossible to realize in practice. The problem of a suitably large,
but not lower quality, simplification of fuzzy PID controllers structures is therefore
fundamentally significant in applicational engineering.

Investigated below are the fuzzy PID controllers in Takagi-Sugeno sense [24].
Their concept is built on the set (base) of k fuzzy rules of the form

IF (x is A j ) THEN (y = f j (x)) for j = 1, 2, . . . , k. (9)

If—according to the character of the fuzzy approach—the element x belongs tomany
sets to a degree defined by values of their membership functions, i.e. with μA j (x),
then finally y takes the form of the normalized mean

y =

k∑
j=1

μA j (x) f j (x)

k∑
j=1

μA j (x)

. (10)

In the case of fuzzy PID controllers, the coordinates of the vector x are connected
with an error and its integral and derivative, while the variable y constitutes a gen-
erated control. Even if one assumes the simple triangular or trapezoid membership
functions μA j , and that the functions f j are linear, then the large number of parame-
ters appearing in such a task may pose the threat of losing the possibility of correct
effective fixing of their values. The appropriate reduction in the size of the fuzzy
rules set (9) becomes therefore a fundamental problem, in particular for the complex
applicational cases. To solve the task of reducing fuzzy rules, many contemporary
IT methods are used, above all evolutionary algorithms, neuro-fuzzy systems or sta-
tistical approaches also, among which dominate concepts based on the clustering
technique. The CGCA was applied successfully to this aim.

Let then be given the vector

[
x
y

]
and m measurements of values obtained during

operation of the systemwith the fuzzy PID controller in its primary form, i.e. without
reducing the rules set:
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[
x1
y1

]
,

[
x2
y2

]
, . . . ,

[
xm

ym

]
. (11)

Treating the above set as random sample (1) one can perform clustering with the use
of the CGCA. Let [

x̃1
ỹ1

]
,

[
x̃2
ỹ2

]
, . . . ,

[
x̃m̃
ỹm̃

]
(12)

represent centers of m̃ clusters obtained in this way. Each of the element x̃i for
i = 1, 2, . . . , m̃ may be the basis of i-th fuzzy rule with the respective membership
function

μi (x) = exp

(
−

∥∥∥∥
x − x̃i

d

∥∥∥∥
2
)

, (13)

where the “scaling” parameterd > 0 characterizes the generalization ability resulting
from the fuzzy inference concerning the control system under design. The experi-
mental research carried out indicates that the value d = m̃/2 can be successfully
used. In consequence formula (10) takes the form

y =

m̃∑
i=1

μi (x) fi (x)

m̃∑
i=1

μi (x)

, (14)

while fi are linear functions whose parameters may be calculated based on the
classical least-squares estimation task.

This method was positively verified in numerous practical problems. Presented
below are comparative results obtained for the control system of a hard-drive servo
motor, presented in the paper [22]. Its following model was used:

[
ṡ(t)
v̇(t)

]
=

[
1 1.664
0 1

] [
s(t)
v(t)

]
+

[
1.384
1.664

]
u(t) , (15)

where u constitutes actuator input (in volts), s and v are the position (in tracks) and
velocity of the disk drive’s head. The problem of accurate positioning was analyzed
with s(t) as an output. Typically for such applications, a controller of PD type was
considered [19].

First the standard PD fuzzy controller with 49-rules was tuned for quick response
with the step reference signal. The 121-elements set (11) obtained in this way:

⎡

⎣
e1
ė1
u1

⎤

⎦ ,

⎡

⎣
e2
ė2
u2

⎤

⎦ , . . . ,

⎡

⎣
e121
ė121
u121

⎤

⎦ , (16)
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where e represents error, was treated as random sample (1) and subjected to the
CGCA. As a result the PD fuzzy controller with the base reduced to 38 rules was
obtained.

To compare the results acquired using a classical PD feedback-controller, a fuzzy
PD controller with full (unreduced) 49-elements rule base [19], and the above inves-
tigated fuzzy controller with base reduced to 38 rules, for each of them the values
were obtained for the root-mean-square-error index and the percentage overshoot for
a response with the step reference signal. For the first value the results were 0.291,
0.198, 0.111, respectively, for the second 78, 92, 15%. For both, the best results were
provided by the use of the fuzzy PD controller with the rule set reduced using the
CGCA. Similar results were achieved for other conditions and performance indexes.

Further testing was carried out for the system with the fuzzy controller with the
rule set reduced by the CGCA, for various—different from those obtained with the
integrated mean-square error criterion—values of the smoothing parameter h and
the intensity of modification c. The most advantageous results were achieved for
the value of the latter, slightly lowered—with respect to optimal (5)—to c = 0.25.
This effect can be interpreted by an increase in the number of peripheral clusters
characterizing atypical states, “dangerous” from the point of view of correct behavior
of the system. Moreover, the main cluster generally contained even 80% elements
of set (16), representing “safe” states, and its potential division did not bring any
positive changes. As before it was not necessary to alter—with respect to optimal—
the value of the smoothing parameter h. It proves once again that the CGCA adapts
well to real data structures.

The presented concept was successfully implemented for the control of a robot
under the authority of the Department of Automatic Control and Information Tech-
nology of the Cracow University of Technology. Detailed information is found in
the publications [7, 18].

6 Summary

The results presented in this chapter, achieved by using the Complete Gradient Clus-
tering Algorithm (CGCA), in particular the one investigated in the paper [11], con-
firmed its practical use, especially the six basic features dealt with in the Introduction.
Noteworthy is the lack of necessity to significantly change the value of the parameter
h, directly implying a number of obtained clusters, which points to the procedure
being correctly adapted to the structure of real data. Particularly valuable in practice
was the possibility to change the value of the parameter c, influencing the relation of
the number of clusters in dense and sparse areas of random sample elements. In all
three investigated problems this change enabled the creation of significantly better—
from an applicational point of view—results. This is particularly worth underlining
as the possibility of forming the above relation does not appear in other known
clustering algorithms.
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More details of the material presented in this publication is available in the
paper [13]. It is also worth mentioning the procedure for reducing the dimension
n and simple size m used to calculate the estimator, and based on the metaheuris-
tics of simulated annealing, dedicated to the tasks applying kernel estimators, to be
published in the work [16]. It can be very useful for practical problems of large
magnitude, both in the sense of dimensionality and sample size.
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