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Abstract. This paper presents a ready-to-use procedure for detecting atypical
(rarely occurring) elements, in one- and multidimensional spaces. The issue is
considered through a conditional approach. The application of nonparametric
concepts frees the investigated procedure from distributions of describing and
conditioning variables. Ease of interpretation and completeness of the presented
material lend themselves to the use of the worked out method in a wide range of
tasks in various applications of data analysis in science and practice, engi-
neering, economy and management, environmental and social issues, biome-
dicine, and related fields.
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1 Introduction

Atypical elements (often casually referred to as outliers) can intuitively be considered
as significantly differing from the general population [1, 3, 5, 6]. Their occurrence most
commonly results from considerable (“gross”) errors arising during the measurement,
collection, storage, and processing of data [17]. In practice they hinder the correct
utilization of knowledge available and their elimination or correction enables the use of
more convenient and more effective methods at later stages of analysis and exploration
[2]. What is more, in marketing, atypical elements may represent cases so different
from the majority of the population, that any individual decision based on such a group
– so different and insignificant – often turns out to be economically unviable. In
engineering, the presence of atypical states in dynamic systems may be an evidence of
malfunction of a component or the entire device, and proper reaction usually enables
any serious consequences to be avoided. The detection of an atypical element may also
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signify an attempt to hack into a computer system. On the other hand, in many social
and economic problems the appearance of this element could be a positive trait, as it
may characterize completely new trends or uncommon phenomena, and their quick
discovery allows the appropriate specific action to be taken in anticipation. Therefore,
the detection of atypical elements constitutes a natural cognitive challenge of great
scientific and practical meaning.

The task of detecting atypical elements is one of very difficult conditioning. Above
all most often there is no definition or even criterion indicating which elements should
be considered atypical. What is more, we do not have a pattern of atypical elements,
and even if we do, it would be – by its nature – small in number, strongly unbalanced
with respect to the typical set of elements. For an illustrative example, in the simplest
one-dimensional case, where data distribution is unimodal, atypical elements can be
considered to be elements distant (according to the basic meaning of the term “outlier”)
from a median – defining the “center” of a data set – of more than 3/2 of the
interquartile range; see [20; Sect. 2.7]. However, a similar approach cannot be taken
concerning complex multimodal distributions. In particular, when specific modes are
significantly distanced from each other, elements lying in the center between them
should be considered as atypical, although they may be located very near to the median,
definitely closer than 3/2 of the interquartile range.

This paper assumes as atypical those elements occurring rarely in the population.
Thus, having a representative set of data, we highlight regions of lowest distribution
density, such that the common probabilities of the elements appearing in those regions
are equal to the assumed value, e.g. 0.01, 0.05, 0.1. Such locations can be of any shape,
location and number.

In many practical tasks, the data possessed can be significantly refined through the
measurement and introduction to a model of the current value of quantity considerably
influencing the subject of investigation. In engineering practice, such a factor may often
be the current temperature. From a formal point of view, the above aim can be realized
by using a conditional probabilistic approach [4]. In this case, the basic attributes,
called describing, become dependent on the conditioning attributes, the measured and
introduced specific values of which can make substantially more precise the infor-
mation related to the object under research. This approach is the subject of the present
paper.

For defining data characteristics, the nonparametric methodology of kernel esti-
mators is used, which frees the investigated procedures from forms of distributions
characterizing both the describing and conditioning quantities. The presented material
is complete and ready-to-use without laborious investigations. Particularly valuable is
its easy, illustrative interpretation. A broader description of the material investigated
here is presented in the paper [15], currently in press.

2 Mathematical Preliminaries: Kernel Estimators

Let the n-dimensional continuous random variable X be given, with a distribution
characterized by the density f. Its kernel estimator f̂ : Rn ! ½0;1Þ, calculated using
experimentally obtained values for the m-element random sample
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x1; x2; . . .; xm; ð1Þ

in its basic form is defined as

f̂ ðxÞ ¼ 1
mhn

Xm
i¼1

K
x� xi
h

� �
; ð2Þ

where m 2 Nnf0g, the coefficient h[ 0 is called a smoothing parameter, while the
measurable function K : Rn ! ½0;1Þ of unit integral

R
Rn KðxÞdx ¼ 1, symmetrical

with respect to zero and having a weak global maximum in this place, takes the name
of a kernel. The choice of form of the kernel K and the calculation of the smoothing
parameter h is made most often with the criterion of the mean integrated square error
[10, 21, 22].

Thus, the choice of the kernel form has – from a statistical point of view – no
practical meaning and thanks to this, it becomes possible to take primarily into account
properties of the estimator obtained or calculational aspects advantageous from the
point of view of the applicational problem under investigation; for broader discussion
see the books [10 – Sect. 3.1.3; 22 – Sects. 2.7 and 4.5]. In practice, for the
one-dimensional case (i.e., when n ¼ 1), the function K is assumed most often to be the
density of a common probability distribution. In the multidimensional case, two natural
generalizations of the above concept are used: radial and product kernels. However, the
former is somewhat more effective, although from an applicational point of view, the
difference is insignificant, and the product kernel – significantly more convenient for
analysis – is often favored for practical problems. The n-dimensional product kernel
K can be expressed as

KðxÞ ¼ K

x1
x2
..
.

xn

2
6664

3
7775

0
BBB@

1
CCCA ¼ K1ðx1Þ K2ðx2Þ. . .KnðxnÞ; ð3Þ

where Ki denotes the previously-mentioned one-dimensional kernels, while the
expression hn appearing in the basic formula (2) should be replaced by the product of
the smoothing parameters for particular coordinates h1 � h2 � . . . � hn. For further
investigations, the (one-dimensional) Cauchy kernel

KðxÞ ¼ 2
p

1

ð1þ x2Þ2 ð4Þ

is applied.
The fixing of the smoothing parameter h has significant meaning for quality of

estimation. Fortunately many suitable procedures for calculating the value of the
parameter h on the basis of random sample (1) have been worked out. For broader
discussion of this task see the books [10, 21, 22]. In particular, for the one-dimensional
case, the effective plug-in method [10 – Sect. 3.1.5; 22 – Sect. 3.6.1] is especially
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recommended. Of course this method can also be applied in the n-dimensional case
when product kernel (3) is used, sequentially n times for each coordinate. One can also
apply the simplified method [10 – Sect. 3.1.5; 21 – Sect. 3.4.1; 22 – Sect. 3.2.1], which
for Cauchy kernel (4) takes the plain form

h ¼ 10
3
ffiffiffi
p

p
m

� �1=5

r̂; ð5Þ

where r̂ denotes the estimator of a standard deviation for a given coordinate. The above
value may be sufficiently precise for many practical applications, whereas – thanks to
its simplicity – this method significantly increases the calculation velocity.

The above concept will now be generalized for the conditional case. Here, besides
the basic (sometimes termed the describing) nY -dimensional random variable Y, let also
be given the nW -dimensional random variable W, called hereinafter the conditioning

random variable. Their composition X ¼ Y
W

� �
is a random variable of the dimension

nY þ nW . Assume that distributions of the variables X and, in consequence, W have
densities, denoted below as fX : RnY þ nW ! ½0;1Þ and fW : RnW ! ½0;1Þ, respec-
tively. Let also be given the so-called conditioning value, i.e., the fixed value of
conditioning random variable w� 2 RnW , such that

fW ðw�Þ[ 0: ð6Þ

Then the function fY jW¼w� : RnY ! ½0;1Þ given by

fY jW¼w� ðyÞ ¼ fXðy;w�Þ
fW ðw�Þ for every y 2 RnY ð7Þ

constitutes a conditional density of probability distribution of the random variable Y for
the conditioning value w�. The conditional density fY jW¼w� can, therefore, be treated as
a “classic” density, whose form has been made more accurate in practical applications
with w� – a concrete value taken by the conditioning variable W in a given situation.

Let, therefore, the random sample

y1
w1

� �
;

y2
w2

� �
; . . .;

ym
wm

� �
; ð8Þ

obtained from the variable X ¼ Y
W

� �
, be given. The particular elements of this sample

are interpreted as the values yi taken in measurements from the random variable Y,
when the conditioning variable W assumes the respective values wi. On the basis of
sample (6) one can calculate f̂X , i.e. the kernel estimator of density of the random
variable X probability distribution, while the sample
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w1; w2; . . .; wm ð9Þ

gives f̂W – the kernel density estimator for the conditioning variable W. The kernel
estimator of conditional density of the random variable Y distribution for the condi-
tioning value w�, is defined then – in natural consequence of formula (5) – as the
function f̂Y jW¼w� : RnY ! ½0;1Þ given by

f̂Y jW¼w� ðyÞ ¼ f̂Xðy;w�Þ
f̂Wðw�Þ : ð10Þ

If for the estimator f̂W one uses a kernel with positive values, then the inequality
f̂Wðw�Þ[ 0 implied by condition (4) is fulfilled for any w� 2 RnW .

In the case when for the estimators f̂X and f̂W the product kernel (3) is used,
applying in pairs the same kernels to the estimator f̂X for coordinates which correspond
to the vector W and to the estimator f̂W , then the expression for the kernel estimator of
conditional density becomes particularly helpful for practical applications. Formula (8)
can then be specified to the form

f̂Y jW¼w� ðyÞ ¼ f̂Y jW¼w�

y1
y2
..
.

ynY

2
6664

3
7775

0
BBB@

1
CCCA

¼
1

h1 h2 ...hnY

Pm
i¼1

K1
y1�yi;1

h1

� �
K2

y2�yi;2
h2

� �
...KnY

ynY �yi;nY
hnY

� �
KnY þ 1

w�
1
�wi;1

hnY þ 1

� �
KnY þ 2

w�
2
�wi;2

hnY þ 2

� �
...KnY þ nW

w�nW �wi;nW
hnY þ nW

� �
Pm
i¼1

KnY þ 1
w�
1
�wi;1

hnY þ 1

� �
KnY þ 2

w�
2
�wi;2

hnY þ 2

� �
...KnY þ nW

w�nW �wi;nW
hnY þ nW

� � ;

ð11Þ

where h1; h2; . . .; hnY þ nW represent – respectively – smoothing parameters mapped to
particular coordinates of the random variable X, while the coordinates of the vectors w�,
yi and wi are denoted as

w� ¼

w�
1

w�
2

..

.

w�
nW

2
6664

3
7775 and yi ¼

yi;1
yi;2
..
.

yi;nY

2
6664

3
7775; wi ¼

wi;1

wi;2

..

.

wi;nW

2
6664

3
7775 for i ¼ 1; 2; . . .;m: ð12Þ

Define the so-called conditioning parameters di for i ¼ 1; 2; . . .;m by the following
formula:

di ¼ KnY þ 1
w�
1 � wi;1

hnY þ 1

� �
KnY þ 2

w�
2 � wi;2

hnY þ 2

� �
. . . KnY þ nW

w�
nW � wi;nW

hnY þ nW

� �
: ð13Þ
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If the values of the kernels KnY þ 1, KnY þ 2; . . .;KnY þ nW are positive, then these
parameters are also positive. So the kernel estimator of conditional density (9) can be
finally presented in the form

f̂Y jW¼w� ðyÞ ¼ f̂Y jW¼w�

y1
y2
..
.

ynY

2
6664

3
7775

0
BBB@

1
CCCA

¼ 1

h1 h2...hnY
Pm
i¼1

di

Pm
i¼1

diK1
y1�yi;1
h1

� �
K2

y2�yi;2
h2

� �
. . .KnY

ynY �yi;nY
hnY

� �
:

ð14Þ

The value of the parameter di – the “distance” of the given conditioning value w� from
wi – that of the conditioning variable for which the i-th element of the random sample
was obtained. Then estimator (12) can be interpreted as the linear combination of
kernels mapped to particular elements of a random sample obtained for the variable Y,
when the coefficients of this combination characterize how representative these ele-
ments are for the given value w�.

More details concerning kernel estimators can be found in the classic monographs
[10, 21, 22]. Sample applications for data analysis tasks are described in the publica-
tions [11–13, 16, 18]. See also [19].

3 Conditional Atypical Elements Detection

Consider – in relation to notations introduced in the previous section – the data-set
comprised of elements representative for a population y1; y2; . . .; ym, obtained for the
conditioning values w1;w2; . . .;wm, respectively. The aim of the developed procedure
is the isolation from the set y1; y2; . . .; ym of elements which are atypical in the sense
that they occur most rarely, in conditions when the specific conditioning value w�

appears.
First, fix the number

r 2 ð0; 1Þ ð15Þ

defining a desired proportion of atypical to typical elements, more accurately the share
of atypical elements in a population. In practice, the values r ¼ 0:01; 0:05; 0:1 are
commonly used. In reference to the notations in the previous section, let us treat the set
y1; y2; . . .; ym as the realization of the nY -dimensional continuous random variable Y,
and the set w1, w2; . . .;wm as their respective set of realizations of the conditioning
random variable W, and then calculate the conditional density f̂Y jW¼w� . Next, let us
consider the set of its values for the elements of the set y1; y2; . . .; ym, therefore

f̂Y jW¼w� ðy1Þ; f̂Y jW¼w� ðy2Þ; . . .; f̂Y jW¼w� ðymÞ 2 R: ð16Þ
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The value f̂Y jW¼w� ðyiÞ refers to the probability of occurrence of the element yi with the
assumption that the value of the conditioning variable is w�. So, the greater the value
f̂Y jW¼w� ðyiÞ, the more typical element yi can be interpreted to be for the given w�. Let’s
treat as typical these elements yi for which f̂Y jW¼w� ðyiÞ is bigger than a given limit

value, while atypical – those yi for which f̂Y jW¼w� ðyiÞ is smaller. In accordance with the
assumptions made, a quantile of the order r for the condition w� should be accepted as
the above limit value. Thus, the set of elements yi was hereby divided into [100 � r]-
percent of elements of lower probability and [100 � ð1� rÞ]-percent of those of higher
probability.

There remains, however, to calculate the above mentioned value of the quantile. To
this end, the kernel estimator scheme presented in the paper [14], fitted to the task
investigated here, will be applied. The values (14) will be treated as realizations of the
one-dimensional describing random variable Z, obtained, as before, for the realizations
w1;w2; . . .;wm of the nW -dimensional conditioning random variable W. The kernel
estimator of a quantile of the order r for the condition w� can be effectively calculated
on the basis of Newton’s algorithm [7] as the limit of the sequence fq̂rjw�;jg1j¼0 defined
by

q̂rjw�;0 ¼
Pm
i¼1

di f̂Y jW¼w� ðyiÞ
Pm
i¼1

di
ð17Þ

q̂rjw�;jþ 1 ¼ q̂rjw�;j �
Lðq̂rjw�;jÞ
L0ðq̂rjw�;jÞ

for j ¼ 0; 1; . . . ; ð18Þ

with the functions L and L0 being given by dependencies

Lðq̂rjw� Þ ¼
Xm
i¼1

di I
q̂rjw� � f̂Y jW¼w� ðyiÞ

h

 !
� r

Xm
i¼1

di ð19Þ

L0ðq̂rjw� Þ ¼ 1
h

Xm
i¼1

diK
q̂rjw� � f̂Y jW¼w� ðyiÞ

h

 !
; ð20Þ

where I : R ! ½0; 1� means a primitive of the kernel K, i.e., IðxÞ ¼ R x�1 KðyÞ dy,
whereas a stop criterion takes on the form

jq̂rjw�;j � q̂rjw�;j�1j � 0:01 r̂Z ; ð21Þ

while r̂Z denotes the estimator of the standard deviation of the random variable Z,
found on the basis of set (16). For Cauchy kernel (4), its primitive is given as
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IðxÞ ¼ 1
p

arctgðxÞþ x
ð1þ x2Þ

� �
þ 1

2
: ð22Þ

In formulas (19)–(20), the smoothing parameter h should be calculated for set (16).
Thanks to the use of kernel estimators with strong averaging properties, inference

takes place not only for data obtained exactly for w� (among the values wi there may be
some too small for reliable consideration or even not at all), but also for neighboring
values proportional to their “closeness” with respect to w�.

4 Final Remarks and Conclusion

The procedure presented in this paper has been numerically verified in detail. The
obtained results confirmed its correct functioning and full completion of the objectives
and goals set out in the Introduction. Particularly, in the case of a positive correlation
between the describing and conditioning factors, the greater (or smaller) the value of
the conditioning attributes, the greater (or smaller) the values of the describing ele-
ments detected to be atypical. For the negative correlation, the above relation is inverse.

The procedure also successfully underwent verification in solving a practical
problem in control engineering. Based on the current state of the system, the atypical
elements discovered, provided evidence of arising failures of an observed device [8, 9].
The conditioning factors allowed the model used to be significantly refined.

A detailed description of the numerical and empirical verifications can be found in
the article [15], currently in press.

Finally, this paper presents the algorithm for atypical (rare) elements also for a
multivalued case, with continuous coordinates of describing and conditioning vari-
ables. The conditional approach allows in practice for refinement of the model by
including the current value of the conditioning factors. Use of the nonparametric
concepts frees the worked out procedure from distributions of describing and condi-
tioning attributes. The investigated algorithm is ready for direct use without any
additional laborious research or calculations. A full version of the material described
here is presented in the paper [15].
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