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ABSTRACT

This paper discusses the problem of a time-optimal positional control with the use of a random,
discontinuous and multivalued (set-valued) model of motion resistances. The control structure, defined
as a closed-loop system with a deterministic feedback controller function, is investigated on the basis
of statistical decision theory. Empirical examinations have confirmed the correct operation of the control
system, and have demonstrated its numerous advantages, especially in the area of robustness. In order
to verify the formal correctness of the control design, the existence and some features of a solution of
a random discontinuous differential inclusion describing the dynamics of the obtained system are shown.
The presented paper also contains many suggestions for practical applications.

Key Words: time-optimal control, positional control, random object, discontinuous differential inclusion,

robustness, decision theory
I. Introduction

The dynamics of a broad class of time-optimal
controlled objects is described by the following dif-
ferential inclusion, given below in the operator form:

yeH+u, 48]

where u is a bounded control function, y denotes the
position of the object, and the function H represents
a model of motion resistances. If one omits this factor,
i.e. when H=0, formula (1) expresses the second law
of Newtonian mechanics for straight-line or rotary mo-
tion:.

The most representative example of such systems
is a great number of industrial plants, called positional,
which operate by changing the positions of particular
mechanisms, e.g. machine attachments, reversing mills,
and especially automata and robots (Tourassis, 1988).
Control that yields the minimum of time for these
changes becomes, obviously, a very important eco-
nomic aim.

The essential element of model (1) constitutes a
bounded multivalued (set-valued) function H describ-
ing the dependence of motion resistances on many
factors, such as the position and velocity of the object,
temperature, etc. The form of that function is of primary
influence on the complexity of the time-optimal control

problem. Thus, this complexity makes deterministic
analysis impossible without significant simplification
concerning the function H, which in turn limits the
feasibility of application.

In this paper a probabilistic concept is proposed.
The following random model of motion resistances,
inspired by their physical properties, will be applied
here:

H(y@,®)=v(D)F(3®), 2

where v denotes a real random variable, and F is a
piecewise continuous function additionally multivalued
at the points of discontinuity. The function F describes
the complicated dependence of friction phenomena on
velocity, which by nature is discontinuous and
multivalued. (For example, let this function, for the
sake of illustration, be expressed in the simplest form:

1 if §(6)>0
F(y@®)=SGN(y®)=<[-s,5] if y(=0,
-1 if y(0)<0

3)

where parameter s>1 is connected with static friction.)
However, the random variable v regards as a proba-
bilistic uncertainty the dependence of motion resis-
tances on a number of other factors, e.g. position or
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temperature, which are usually omitted in the determin-
istic approach due to the necessity of simplifying the
model. Moreover, such a concept also considers the
perturbations occurring in the system.

Because this random variable can also have a
one-point distribution, such a probabilistic problem
represents a generalization of the basic task of a time-
optimal positional control with a discontinuous model
of motion resistances (Hejmo, 1987). In the special
case, where H=0, this deterministic task is reduced to
the classical case of the time-optimal transfer of a mass
(Athans and Falb, 1966).

This paper presents an applicational conclusion
for the concept described in Kulczycki (1993).

Finally, the following task will be considered
Let:

(1) tpelR, T=[ty, =);

(2) xo=[x01, Xo2)"€ R? and x7=[x7y, x12]7€ IR? represent
initial and target states, respectively;

(3) £ IR —=[~1, 1] denote a piecewise continuous func-
tion with discontinuity points z{, Z3, ..., 2 and
F: R »2([-1, 1]) be such that

f@ ifz#z

F(Z)={Fl. if 7=z 4

where P(A) means the set of subsets of the set A,
and i=1, 2, ..., k;

(4) (Q, X, P) be a complete probability space;
(From a practical point of view, the assumption
of the completeness does not reduce the genera-
lity of the following considerations (Rudin,
1974a).)

(5) vdenote areal random variable defined on the space
(Q, Z, P), such that P({we Q: v(@)e (-1, 1)}P=1;

(6) a random differential inclusion

X, (@, =Xx(a, t) (5)
X, (0, e U(o, -w(0)F(X(®, 1) (6)

with an initial condition

Xl(wst()) _
[Xz(w,to)]“xo for almost every we Q  (7)

describe the dynamics of the positional system
submitted to a control U. :
For the above random system, the problem of a
time-optimal feedback controller is considered, where
a function Ug: R25[-1, 1] such that

U, )=UrX\(o, 1), Xy(o, 1)), (8)

due to practical demands does not directly depend on
the random factor.

Because of the discontinuity of the function F,
the theory of generalized solutions of differential equa-
tions (Hajek, 1979) will be used. This theory is ex-
tended over differential inclusions and the random case
in the following. Mathematical background and no-
tions will be used in accordance with Rudin (1974a,
1974b) and Wong (1971).

First, a deterministic differential inclusion

x(Negx(t), 1) 9
with an initial condition

x(t0)=xq, (10)
where g: R"xT—®?(IR"), T denotes an interval with
nonempty interior and 7ge T, xo€ IR", will be consid-
ered.

A function x: T—IR", absolutely continuous on
every compact subinterval of the set T and fulfilling
condition (10), is a solution of differential inclusion
(9)-(10):

- in the Caratheodory sense (C-solution), if it fulfills
inclusion (9) almost everywhere in T,
- in the Filippov sense (F-solution), if:

x(He Flgl(x(2), 1) almost everywhere in T, (11)

where

Flgl(x(®), ©)

o conv[g((x(r)+eB)\Z, 1)], (12)

=eC\0 Zc]R"(:)n @)=
B denotes the open unit ball in the space R", m is the
Lebesgue measure, and conv[L] means the convex closed
hull of the set L.

A C- or F-solution of the deterministic differential
inclusion (9)-(10) is unique, if all C- or F-solutions,
respectively, are identically equal functions.

In general, a C-solution does not have to be an
F-solution and vice versa. Nevertheless, most fre-
quently, an F-solution constitutes a considerable gen-
eralization of a C-solution (Hajek, 1979).

The idea of a C-solution represents in practice a
mathematical formalization of “joining” classical so-
lutions (Hubbard and West, 1991), applied in the case
of function g discontinuities with respect to . If this
function is discontinuous also with respect tox(z), then
a C-solution often does not exist, which implies the
necessity of considering an F-solution. In particular,
an F-solution properly describes the so-called sliding
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trajectory (Slotine and Li, 1991), well known from
engineering practice.
The above concepts of solutions will be extended

in what follows to cover the random case. Thus, a
random differential inclusion
X (0, He Glw, X(w, 1), 1) (13)
with an initial condition
X(w, t))=Xo(w) for almost all weQ, (14)

where G: QxIR"xT—P(IR") and X is an n-dimensional
random variable defined on (2, X, P), will be consid-
ered now.

An n-dimensional stochastic process X defined
on (Q, X, P) and T, is an almost certain C- or F-solution
of the random differential inclusion (13)-(14), if almost
all its realizations aré C- or F-solutions, respectively,
of the proper deterministic differential inclusions re-
ceived at a fixed we Q. :

An almost certain C- or F-solution of the random
differential inclusion (13)-(14) is unique, if all almost
certain C- or F-solutions, respectively, are equivalent
stochastic processes,i.e. P({we Q: X (@, )=X"(w, H })=1
for every teT.

Il. Feedback Controller for a
Deterministic Task

In the following section, an auxiliary determin-
istic task will be considered. Let the random factor
o, therefore, the value of the random variable v, be
fixed. This value will hereafter be denoted by w, i.e.
v(@)=w.

Suppose that x, and x_ are unique C-solutions of
the system with the condition x(0)=xy, defined on the
interval (—e, 0], and generated by the control u=+1 or
u=—1, respectively. Also, let:

K,={x.(t) for t<0} (15)

K ={x_(#) for 1<0} (16)
X x;

R+={[xﬂ €IR’ such that there exists LL € K, with
2

x;>% and x;=x } a7
*

RF{B;]E IR? such that there exists [xi € K , with
X

x;>x and x,=x; }, (18)

where K=K_U{x7}UK,. The time-optimal control is
expressed by the following formula (Hejmo, 1987):

u(t)=u,(x1(2), x2(2))

~1 i (%@, 50T (RUK)
={ 0 f[x@®.5OF=x
+1 i [5@,n®Y e (R, UK,)

(19)

and the set K constitutes a switching curve (Fig. 1, 2).

In the time-optimal feedback controller equations,
i.e. formulas (15)-(19), parameterw intervenes because
it influences the form of the trajectories x,, x_ and,
therefore, the shape of the switching curve K. How-
ever, in the random system, this value will be unknown
a priori. The analysis of the system sensitivity to the
value of parameter w, which is presented in the fol-
lowing, will then be of great importance. Thus, the
value of parameter w occurring in the object is still
denoted as w; however, the value assumed in feedback
controller equations will be marked by W.

The case where the second coordinate of the target
state is equal to zero, i.e. withx;»=0, will be presented
first. ‘

If W=w, the control is time-optimal (Fig. 1). The
state of the system is brought to the switching curve
by a C-solution, and, being permanently included in
this curve hereafter, it also reaches the target along a
C-solution.

Fig. 1. Deterministic fee@ controller and representative trajec-
tories in the case xp=0.

Fig. 2. Deterministic feedback controller and representative trajec-
tories in the case x1#0.
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The trajectory representative for the case W>w is
shown in Fig. 3. As a result of the fact that it has
oscillations around the target, over-regulations occur
in the system. The state reaches the target in a finite
time along a C-solution.

Figure 4 shows trajectories representative for the
case W<w. Until the switching curve is crossed,
C-solutions occur, followed only by F-solutions: slid-
ing trajectories -appear in the system. The target is
reached in a finite time.

In both of the last two cases, i.e. with W#w, the
time needed to reach the target increases from the
optimal one approximately proportionally to the dif-
ference between the values W and w.

The remaining case, x»#0, will be presented now.
Let in particular x»>0; investigations forxT2<O can be
made analogically.

If W=w (Fig. 2), the considerations are identical
to those before for xp»=0.

In the case W>w (Fig. 5), C-solutions occurring
in the system create a limit cycle: the target is not
reached.

Finally, in the case W<w (Fig. 6), only a part of
the trajectories (marked on Fig. 6 with arrows) reach
the target in a finite time; until the switching curve is
crossed, C-solutions occur, followed only by F-solu-
tions (sliding trajectories appear). Other trajectories
reach only the end point x, placed at the crossing of

Fig. 4. Trajectories representative for W<w in the case xp=0.

Fig. 5. Trajectories representative for W>w in the case xpp#0.

<

Fig. 6.

Trajectories representative for W<w in the case xpp#0.

the axis x; and the switching curve-the state does not
reach the target then; until the switching curve is crossed
by atrajectory in the lower half-plane of the state space,
C-solutions occur, followed only by F-solutions (slid-

‘ing trajectories).

All the phenomena above were shown by Hejmo
(1987). The fact that C-solutions are also F-solutions
results from Hajek (1979) with the additional definition
F(z)= 11m L f(z) fori=1,2, ..., k. This artificial condition
is acceptable for the control system described above
because before the target is reached, the condition
x(H)e {z1, 22, ---, 2x} 1s fulfilled only on a zero-measure
subset of the set 7.

If x1»#0 and W2w, nonunique solutions alsc exist
in the system. Then, as the time needed to reach the
target, the following values, =infs, , isassumed, where
t,» denotes the time for reach the target by a solution
x generated by a control u. The trajectories selected
in such a way have the proper technical interpretation
in the problem considered.

Ill. Feedback Controller for a
Random Problem

In this section, the random positional system (5)-
(7), which is the subject of the present paper, will be
investigated. The value of parameter w which
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appears in the deterministic feedback controller equa-
tions (15)-(19) happens to be a random variable in the
random system considered here. The value of the
gloove variable is naturally unknown a priori with
probability 1. It should, therefore, due to formula (8),
be determined in a statistical way. With this aim, some
elements of statistical decision theory (Berger, 1980)
will be used. : ‘

The basic task of this theory is the optimal se-
lection of one element from all possible decisions only
on the basis of probabilistic information about the state
of nature, especially without knowledge of its real
state.

Let the following be given: a non-empty set N
of possible states of nature, a non-empty set D of
possible decisions, and a function

I: DXN->IR U{tec} (20)
representing losses. Denote by [,,; DIR U{teo} the
minimax loss function

L,(d=supli(d,n). 21

ne N
If, additionally, on the set N, a probability space
(N, S, P) is defined, and for every de D the integral

fl(d, n) dP(n) exists, suppose that [,: D>IR U {Zeo} is

the Bayes loss- function defined as

I, ()= f 1(d, n) dP(n). (22)
N
Every element d,,€ D such that
bn (@) = JOf 1, (@) (23)

is called a minimax decision, and analogically, every
element dye D such that
b (@)= jof I, @ 24)
is called a Bayes decision. The above procedures for
obtaining these elements are said to be minimax and
Bayes rules, respectively. ,
The main difference between those decision reles
is their interpretation. This results directly from the
form of the loss functions /,, and I,: the “pessimistic”
minimax rule assumes the occurrence of the most un-
favorable state of nature and opposes it while the

“realistic” Bayes rule allows the action to be taken

which is best in the sense of expectation.
In the problem of a time-optimal control inves-
tigated in this paper, the value We Dc(-1, 1) assumed

in the feedback controller equations will be treated as
a decision while the value v(@w)=we Nc(-1, 1) of the
random variable occurring in the system will be con-
sidered as the unknown state of nature. The loss function
is defined for (W, w)e DXN, and its values are related
to the time needed to reach the target, if in the feedback
controller equations the value W was assumed, but in
the object the value w occurs.

Again, the case xp»=0 will be investiqated first.
The following suggestions for the determination of the
value of parameter W result from analysis of the de-
terministic system presented in the previous section.

If over-regulations can be allowed, it is worth-
while to use the Bayes rule with real values of the loss
function. Such a choice is possible because the de-
termination of the value of parameter W such that it
is either smaller, equal, or greater than w allows the
system state to be brought to the target in a finite time.
(However, this time increases approximately propor-
tionally to the difference between the values Wand w.)

If over-regulations are not allowed, this determi-
nation should be carried out on the basis of the minimax
rule, assuming infinite values of the loss function for
W>w. This makes it possible to avoid over-regulations
because they occur only if W>w.

Now letx7,#0. The case x, >0 will be considered;
investigations for xp»<0 are analogical.

The case W=w is impossible to obtain in practice.
However, the determination of the value of parameter
W that is either greater or smaller than w precludes
reaching the target from any initial state because of the
occurrence of the cycle (Fig. 5) or existence of the end
point (Fig. 6). In the proposed feedback controller, the
switching curve K will-be divided into three parts. The
division points will be the target and the crossing point
with the axisx;. For every part, there will be differently
determined values of parameter W, which for particular
parts are defined in the following as Wy, W, and W;.

The value of parameter W;defining the part of
the switching curve K_, or K for x,€ [x, o) (see also
Fig. 8), should be determined using the minimax rule
with infinite values of the loss function for W>w. This
choice is made in order to avoid generation of a limit
cycle, which appears when the value of parameter Wy
is greater than w. If, however, this value is smaller
than w, the state of the system is brought to the target
in a finite time.

For the determination of the value of parameter
W, defining the part K, for x,e [0, xp»], it is necessary
to apply the minimax rule with infinite values of the
loss function for W<w. This is because an overly large
value of parameter W, allows the state to be brought
to the part defined by parameter W;, which, as was
demonstrated above, can be successfully determined.
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K_(w)

K, (W)

Fig. 7. Random feedback controller obtained in Example I1I.2, and
representative trajectories for the case xpp=0.

i

K, ()

X \K_(Nl)

.

o K, 0)

4

Fig. 8. Random feedback controller obtained in Example 1I1.2, and
representative trajectories for the case xp#0.

A overly small one, however, causes the occurrence
of the end point, whose existence is not admissible from
the point of view of utility.

Finally, the value of parameter W5 defining the
part K, for x;€ (—oo, 0] can be obtained using the Bayes
rule with real values of the loss function. Both overly
small and large values of this parameter are acceptable
because this makes it possible for the state to be brought
to the parts defined by parameters W; and W,, which
can be successfully determined as shown above.

To summarize, if the switching curve is con-
structed according to the above principles, then the
control defined by the formula

U(CO, t)=UR(X1(w7 t)a XZ((D7 t))

-1 if [X@,),%@,H) e (R_.UK)

={ 0 f[X@,0,.%@,0 =x
+1 if [X(@,0,%@,)] € (R, UK,)
(25)

brings the state of the system to the target along an
F-solution, with probability 1.

A vital problem concerning differential equations
and inclusjons with a discontinuous right-hand side is

the existence of their solutions. The theorem stated
below solves this task.

Theorem IIL.1. Yet ¢y, T, xy, x7, f, F, (Q, Z, P) and
v fulfill assumptions (1)-(5) formulated in the Intro-
duction.

If the sets K_, K,, R_and R, are obtained according
to the principles formulated in Section III, then the
control defined by formula (25) generates an almost
certain F-solution of the random differential inclusion
(5)-(6) with initial condition (7).

The lemmas used to prove this theorem are in-
cluded in Appendix 1 whereas the theorem itself is
shown in Appendix 2.

It is worthwhile to notice that, except in specific
cases, an almost certain C-solution does not exist while
the above almost certain F-solution is not unique.
Example III.2. Suppose that v is a random variable
whose distribution has a density function A, with
support of the form [w,, w¥]lc(-1, 1); moreover, let
this function be continuous and positive in w,, w*).
The loss function will be described by the following
formula:

if W-w<0
if W—w20"

-p(W-w)

g (W —w) (26)

l(W,w)={

where p, geIRuU{e}, with only one of them being
infinite. In the case of an infinite value, let cce(Q=0.

According to the above assumptions, it is ac-
cepted that N=D=[w,, w*].

With the fixed value of parameter W, from the
definitions of the minimax and Bayes loss functions
(21) and (22), the following are the results, respec-
tively:

Ly(W)=max({-p(W=w*), g(W-w,)}) (27

&

w W,
l,,(W):fq(W—w)h(w)dw—jp(W-w)h(w)dw.

Wi w (28)
If p=oo, then from dependence (27) it can be

obtained that the infimum of the function /,, on the set
D is realized by

W=w*, 29)
and if g=eo, then this infimum is assumed for
W=w,. (30)

The values indicated by formulas (29) and (30) con-
stitute the desired minimax decision with infinite values
of the loss function for W<w and W>w, respectivély.
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However, with real positive values p and g, the
function [, is differentiable in the interval(w,, w*);
therefore, one obtains:

w w
z,’,(W)=pfh(w)dw+qfh(w)dw (1)
and analogously
I, W)=+ hw). 32)

Using formula (31), the equivalence of the following
conditions can be proved by elementary transforma-
tions:

I, (W)=0 (33)
w
f b (w) dw

R (34)
f h(w) dw
w

T p

J-h(w)d S 35)

Formula (32) implies that the function lb' is positive
in the set (w,, w*); therefore the function [, here is

strictly convex. Because O<37— <1, dependence (35),

14 + q
equivalent to condition (33), is fulfilled only in one
point, so in this point the function [, assumes its
minimum, which is global in the set D=[w, , w*] thanks
to the continuity of this function in the points w, and
w¥*,

The value Wfulfilling conditions (34) and equiva-
lently (35) constitutes the desired Bayes decision with
real values of the loss function. It ex presses a so-called

quantile of order p—ﬁ—q (Fisz, 1963). Condition (34)

is easily interpreted. Namely, the value of parameter
W is chosen in such a way that the quotient of the
probabillities that the random variable v will take on

values smaller and greater than it, equals% , which is

compatible with intuition considering the form of loss
function (26). Moreover, this value does not depend
straightforwardly on parameters p and g, but only on
their ratio. However, condition (35) is more useful for
calculation.

The assumptions concerning the random variable

v formulated in this example are fulfilled by all prac-
tically applied types of nondiscrete distributions with
a bounded support, including uniform, triangular and
beta (Fisz, 1963). The beta distribution approximates
reality in the best way, but the uniform one is the easiest
to use. In particular, for the uniform distribution,
criterion (35) takes on the form of a simple algebraic
equation while in the case of the triangular distribution,
it proves to be a conditional algebraic equation. For
the beta distribution, an integrand function occurring
in formula (35) has the form of a so-called binomial
differential, which does not have a primitive function
except in special cases (Fichtenholz, 1979); thus, the
use of this criterion here requires numerical proce-
dures. In practice, those distributions can be consid-
ered complementary and should be applied according
to the amount of reliable data possessed and the time
available for calculation. Another method of solving
criterion (35) based on the artificial neural networks
technique has been investigated by Kulczycki and
Schioler (1994).

To summarize, in accordance with the consider-
ations stated before, if the values of parameters W or
W1, W,, W; should be determined due to the minimax
rule with infinite values of the loss function for W<w
or W>w, or the Bayes rule with real values of this
function, then they can be obtained from formulas (29),
(30) and (35), respectively. In all three cases, those
values are determined uniquely.

If one possesses the obtained values W or Wy, W5,
Ws, the feedback controller equations can be calcu-
lated. Thus, for the exemplary function F described
by formula (3), the equations of the switching curve
K take on the form
2

X2~ xrz

Tl—W—) + Xy for Xo€ [xTz, °°) (36)
G =xfy
=210 %) +xpr  for x,€[0, xp) (37)

x2

x2
xl=2(1fwg)‘2(1£2wg)”ﬂ

for x,e (-o0, 0]
(38)

in the case x»>0. (Formula (36) defines the set K_
while formulas (37) and (38) point out the set K,.)
For x7,<0, the equations are analogical. Ifxp»=0, one
should substitute into dependences (36) and (38):
W=W,=W; (formula Eq. (37) has no meaning here). The
sets R_ and R, constitute adequate areas resulting from
division of the plane IR? by the curve K according to
formulas (17) and (18)." For the sets K_, K., R, R,
obtained above, the value of the control is defined by
dependence(25). Figures 7 and 8 provide an illustration
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of the above results.

IV. Conclusions

In this paper a probabilistic way of solving the
problem of a time-optimal positional control has been
presented. Theoretical considerations have led to the
design of a closed-loop control system, according to
practical requirements, with a deterministic feedback
controller function. A large number of completed
empirical examinations (Kulczycki, 1992) have con-
firmed the theoretical considerations and proved the
correct operation of the system. The target state was
reached in every case with the assumed precision of
the scale 0.1-0.5% of the initial state norm. If it was
assumed that over-regulations were unacceptable, they
did not occur during the control process. Only a slight
dependence of feedback controller parameters on the
initial and final conditions in previous recourses, which
affected the data received, was recorded. However,
with different characteristics (e.g. changes in time) of
motion resistances, the differences could be consider-
able. In practice, it is thus necessary to revise the data;
therefore, an adaptive structure is suggested. The
constructed control system turns out to be slightly
sensitive to the inaccuracy resulting from identification
and to perturbations; this is a very valuable property
of random control systems.

Appendix 1. (lemmas)

Lemma 1.1. Let /cIR be a non-empty, measurable and bounded
set. Then, the space L™(I,IR") is a Borel subset of the space
L'a, R".

Proof. Because for heLl(I,]R") and any fixed a<be@nI, the

b

mapping h|—>f 12O dy ‘is clearly continuous, then for every
a

keIN, the set

b
Da,b,k={heLI(I,R")ifllh(y)lldyﬁk(b~a)} (39

is closed in the space L'(ILIR™). Therefore, directly from the defi-
nition of a Borel set, it is enough to prove:

L“(I.R")= y N

kema<beQr~1D‘1v”"" (40)

The inclusion “c” is obvious.

The proof of the inclusion “>” will be carried out by con-
tradiction. Assume the existence of the function he LY, R™\
L™(I, R") and k*€IN such that he D, ;- for all a<be QNI

Because hg L”(I,R"), then especially for k*, there exists a
positive Lebesgue measure set Zc/ such that la(y)li>k* if yeZ, or

[1hOld>km@. @1)
VA

From the characteristics of the sets measurable in the Lebesgue sense,

the result is that a set S of the type Fg satisfying ScZ and m(Z\S)=0
exists; therefore

[1rola>kmes. @2)
S

The set S is of the type Fg; thus denoting its components as
A;, and defining A7 =A;UAU...UA; (i=1, 2, ...) one obtains the
increasing family of the sets A7, where

S= iL:Jl A (43)

Thanks to inequality (42) and the fact that ke L'(I,IR"), due to the
Lebesgue Dominated Convergence Theorem, a number i*eIN\{0}
exists such that

[1hold>rme); @4)
e
therefore,

12 O)fdy>k*m (S).

int(45)

(45)

Moreover, the setint(4x) is open; thus there exists an increas-
ing family B; (j=1, 2, ...) of closed intervals with rational ends (and
their finite unions, in the case where int (Ax) is disconnected), such
that the set int(4;=) is their union. As before, there exists a number
Jj*€IN\{0} such that

[1roNa>eme. 46)
Bj*

Because m(Bj)<m(S), formula (46) contradicts heD,; + for all
a<be QM. Equality (40) is, therefore, shown, which ends the proof
of Lemma 1.1. |
Lemma 1.2. Let IcIR be a non-empty and measurable set. Then,
the space Li;(I,R") is a Borel subset of the space L}, (I,IR").
Proof. Let any ye I be fixed, and denote I,=IN[y-m, y+m] for every
meIN\{0}. From the properties of the topology of the space
L},,C (I,IR"),itdirectly results that for any me IN\{0}, the restriction
mapping rp: LY. (I, R™) 5LY(I,,IR"™) is continuous. Therefore,
it is Borel. Because Lemma 1.1 yields that L™(I,,R") is a Borel
subset of the space LY(I,,IR"), the inverse image r; {( L(L,,R"))
is a Borel subset of Ly, (I,IR™),

L. (I,IR™) is clearly a subset of the space LL.(I,IR"), so
the following is obviously true:

Ly (I, R")={he Lo (I, R"): kl; € L7(I,,R")}
= A R, RY). 7

This implies that the space Ly, (I, IR") , as the countable intersection
of Borel sets, is a Borel subset of the space L,loc(I ,IR"), which ends
the proof of Lemma 1.2. u

Appendix 2. (proof of Theorem III.1)

Let the set Q be restricted to those @ which satisfy the con-
dition v(w)e (-1, 1). The remaining subset of £ has zero measure
and can thus be omitted. due to the assumed completeness of the
probability space and the definition of an almost certain F-solution.

This proof will consist of seven steps leading to the construc-
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tion of the almost certain F-solution sought.
(1) First considered will be the set
My={[x1, %2, y1. Y2I"€R": [y1, y21"e Flgl([x1, %217, 1)},(48)

where 7 is given by formula (12), and g denotes the right-hand side
of the random differential inclusion (5)-(6), (25), parameterized by
the random variable value v(w)=w.

Equation (5) yields y;=x,; therefore, according to formulas (6)
and (25), this set takes on the following form:

2% +1
M, = ng ({[x1, X2, %2, ¥2)": ;€ Hy, [x1, x2)7€ R,

y2€ +1=WF(x) W{[x1, X9, X, y2lT:xo€ Hy, [x1, x0]7€ K,

y2€ [-1, +11-wF () }o{lx1, X2, X3, ¥2l": 20 Hj,

[x1,%20"€ R_, y2e~1-wF(x2}), (49)
where, for z; being the points of discontinuities of the function F,
the sets H; are of the form (~e, z1), {21}, (21, 22), {22}, s (2 ).
The set M, constitutes, therefore, the union of a finite number of

submanifolds, the parameterization of which depends continuously
on w, that is, the function ¢z (-1, 1)><1R4~—91R defined by

caw, [x1, X2, y1. y21D)=dist(My, [x1, x2, y1, ¥217), (50)
where dist denotes the distance of a set from a point, is continuous.
(2)Consider for every fixed teT a mapping ¢, (-1, 1)x

L;:rc( T, IRZ)_)R such that

t I
cr(w,y)=cd(w,xO1+fyl (z)dz,xoz+fyz(z)dz,
% %o

s—0F

limsupm l y (¢+2)dz,
t,s

s—0%

hmsupw%;:—)l’ »E+2)dz), (51)
1,5

where y=[y;, y21°, T,;=T[t-s, t+s], and m denotes the Lebesgue
measure.

From the properties of the topology of the space Ly (T .IR),
the continuity of the mappings

L
b xo1 + f N @) dz (52)
20 ‘
t
ol= xgp + f »@dz (53)
L)
mowp— L [ wraa
hlﬁlﬁs;pm(z,x) y+2)dz (54)
%.s
. 1
”I—’lfﬂsolipm(ift,s)i »(+2)dz (55)
t,$

clearly results. Therefore, the mapping ¢, which is the com-

position of the continuous mappings (52)-(55) and cg, is also con-
tinuous.

(3)Now, define a mapping ¢y (=1, 1)xLie (T, R*) >R U{eo}
by

W,y = SUp ¢ W, (56)

As an upper envelope of the continuous mappings c;, the
mapping ¢, is lower semicontinuous; therefore, it is Borel.

(4) Finally, suppose a mapping c: QxLj (T ,IR?) >R U{s} such
that

c(@, y)=cs(v(®), ). (57

Being is the composition of the measurable mapping v with
the Borel mapping c;, it is measurable. Therefore, the set ¢ }0) is
measurable in QxL;;C(T,IRZ) . Moreover, thanks to Lemma 1.2
proved in Appendix I, the inclusion mapping Lj(7,IR?) into
L}OC(T,]RZ) “is Borel, so ¢(0) is measurable also as a subset of
OxLL (T, R?) .

(5) Following the definitions of the succeeding mappings introduced
in points (1)-(4), it is readily shown that the set ¢ 1(0) constitutes
also a graph of the multivalued mapping E: Q—)?(L}OC(T ,IR? ))
as E(@) is a set of the elements ye Llloc (T, IRZ) such that a
function x: T->IR? defined by the formula

*xO=Lp+ [ 5 @z, mp+ [ @l (8)
[] 4]

is an F-solution of the random differential inclusion (5)-(7),
(25), parameterized by the value of the random variable v on
we Q.

The facts described in Section III imply that such a solution
exists for every we Q; therefore, as a continuous function, it belongs
to the space L}OC (T,R?);thus E(w)y#¢forevery we Q. From (Sainte-
Beuve, 1974), the existence of a measurable selector of the mapping
E, or the measurable mapping ¢: Q— L (T, R*) such that
e(w)e E(w), tesults directly. (The assumptions of the Sqinte-Beure
theorem are clearly fulfilled because the space L}ac (T, IRZ) is
separable and complete metric.)

(6) Consider a function X: QOxT—IR? defined as
X(w, D)=x4,.(2) for weQ, 1T, (59)

where x4, denotes the function x expressed by formula (58) for @
and chosen by the selector e. Now, it will be shown that X is a
stochastic process. :

Let t€ T and me IN\{0} fulfilling z<m be fixed. The functio:
X(=, 1) is a composition of the following mappings:

e: QL1 (T, R?) e(w)=y (60)
e1:Lipe (T, R*) > L' (T, ,R?) &, G)=lg, (61)
o LML, R) - C(L,,R?) & (¥l )=xl, (62)

e:C(T,,R*) > R? e3(xlp )=xlr @,  (63)

where e, x, y are defined in point (5) of this proof, and
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Tp= T [-m, m]. The mapping e is measurable according to its
definition. The properties of the topology of the space L}oc( T,RR?)
imply straightforwardly the continuity of the mapping e;. From the
inequality

1207 10-a [ 161=1 | (7@ -y @)dl
)

< [1r@-r @k [ 1y @-r @z, (64)
o In

true for every se T, and y~, y~€ L' (T,,IR*) , the continuity of the
mapping e, results. The continuity of the mapping ez is obvious.

The above properties imply the measurability of the function
X(s, 7) for any te T; therefore, the function X is a stochastic process.

(7) Finally, it can be concluded that the function X defined by formula
(59) and considered in point (6) constitutes the desired almost
certain F-solution of the random differential inclusion (5)-(6)
with initial condition (7), generated by control (25), which ends

the proof of Theorem III.1.
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