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Identification

This paper deals with the task of parameter identification using the Bayes estimation
method, which makes it possible to take into account the differing consequences of posi-
tive and negative estimation ervors. The calculation procedures are based on the kernel
estimators technique. The final result constitutes a complete algorithm usable for obtain-

ing the value of the Bayes estimator on the basis of an experimentally obtained random
sample. An elaborated method is provided for numerical computations.
[DOI: 10.1115/1.1409552]

1 Introduction

One of the elementary issues of contemporary engineering is
parameter identification, i.e., the specification of the value of a
parameter. In the case typical for engineering applications, its re-
alizations are directly measurable (observable). In that situation,
one has-not knowing the “‘true” value of the parameter x-its m
measurements x , X,, .. .,X,, , obtained by using independent ex-
periments, and in practice burdened with errors of varying origin.
On the basis of these measurements, that number £, which would
most nearly approximate the true (but unknown) value of the pa-
rameter x must be determined. If such measurements can be
treated as the sum of the true value and the random disturbances,
then the task from the mathematical point of view becomes a
typical problem for point estimation, while £ is called the estima-
tor of the parameter x [1].

The procedures generally used for specifying the estimator,
such as the least squares or maximum likelihood methods, are
noted for their great simplicity and general availability in the lit-
erature. However, they do not make it possible to take into ac-
count the differing consequences of positive and negative estima-
tion errors. Yet, in engineering practice, it often turns out that one
of the two has only a minor impact on the quality of work of the
device, while the other has a far more profound influence, not
excluding system failure.

The Bayes estimation method [ 1; Section 4.1] used in this paper
to solve the problem of parameter identification has no such short-
comings. The calculational procedures worked out below will be
based on the kernel estimators technique [2]. The final result is a
complete usable algorithm for specifying the value of the param-
eter estimator, which in a natural way makes it possible to take
into account the consequences of estimation errors differing in
size and sign.

2 Bayes Estimation

Assume the probability space ((),%,P), where () denotes the
set of elementary events, % means its o-algebra, and P is a prob-
ability measure [3,4]. Suppose that the real random variable
X:Q}—R represents the measurement process, and its realizations
are interpreted as the particular independent measurements of the
value of the estimated parameter x. Consider also the loss function
LRXR—RU{=®}; its values /(£,x) denote the losses which
may be incurred by assuming £ as the estimator, whereas the true
(but unknown) value of the estimated parameter is x. Let [,:R
—RU{*e} be a function of the so-called Bayes losses
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fb(f)-“jnl(f.x(w)) dP(w), (1
where [o-dP(w) denotes the integral with respect to the prob-
ability measure P. Therefore, [,(2) constitutes the expectation
value of losses if the value £ is assumed. Every element £,eR
such that

lp(%5)= inf [,(%)

zeR

2

is known as a Bayes estimator. For details see Section 4.1 of [1].
In the present paper, consideration will be given to an asym-
metrical form of the loss function

—pi(#—x) if 2—x=<0
pa(2—x) if £—x=0'

where p,,p;>0. The constants p, and p, constitute the coeffi-
cients of proportionality of losses suffered after obtaining a value
of the estimator that is either smaller or greater than the true value
of the estimated parameter, i.e., for negative and positive estima-
tion errors, respectively. With the values p, and p, given, it is
possible to calculate easily the quantity r such that

A(Rx)= 3

Py
r= l:_l =-—p-2——. “4)
P1TP2 &+l
P2

It is not difficult to show (see e.g., [5]) that if the quantile of order
r is uniquely defined, then it constitutes the Bayes estimator for
the loss function given by formula (3). (The notion of the quantile
can be found e.g., in [4].)

The following will present the practical procedure for calculat-
ing the value of the quantile of order r using the kernel estimators
technique, which in accordance with the above result will com-
plete the solution of the Bayes method for the point estimation
task considered here.

3 Kernel Estimators Technique

The kemel estimator of the density function of the real random
variable X, calculated on the basis of m realizations x,,
X, is defined by the dependence

)= m'—h ¥ K("f‘].

=1

X2, 00

&)

where the measurable and symmetrical function K:R—[0,2¢) with
a unique integral and a maximum in point zero is called the ker-
nel, while the positive constant /4 is known as the smoothing pa-
rameter. Detailed information concerning the rules for choosing
the function K and fixing the value of the parameter / is included
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in [2]. Specifically, the approximate value of the optimal (in the
mean squared sense) smoothing parameter can be calculated by
assuming the normal distribution; one then obtains

v S

8 1
h=(Veg 7] 4, ©)

while

x = -2
Vx=f K(x)zdx-(J sz(x)dx) @)

- -

1 m 1 m 2 1 m 1 m 2
oot (i Ze) wE (5] o
On the other hand, the choice of the type of the kemel K does not
have a major impact on the statistical quality of estimation. In
practice, it becomes possible to take into account primarily the
desired properties of the estimator obtained, e.g., the simplicity of
calculation or the finiteness of the support, etc.

In many applications, it proves to be particularly advantageous
to introduce the concept of modification of the smoothing param-
eter. The estimator can then be constructed in the following
manner:

(A) the kernel estimator f is calculated in accordance with ba-
sic dependence (5);
(B) the modifying parameters 5,0 (i=12,...,m) are stated

as
-2
si=(ﬂ§2) , &)

where b denotes the geometric mean of the numbers
Fx).f(x2), - .. .f(x,,), given in the form of the logarith-
mic equation

1 m
log(s)=- 2, log((x)); (10)
=
(C) the kernel estimator with the modified smoothing param-
eter is defined by the formula

1l w1 [x—x

f m’lg.-ﬁx(h SI)'

One of the essential features of such an estimator consists in its

slight sensitivity to the exactness of the choice of the parameter h.

In practice, when the modification procedure is applied, it quite

often proves sufficient to accept the approximate value given by
dependence (6).

A detailed description of the above technique can be found in

[2].

(1)

4 The Algorithm

To continue the considerations of the previous section, suppose
the kernel K is positive and has the primitive given by

1(x)= f K() dy. a2

Then the estimator of the distribution function £ with modified
smoothing parameter can be described as

1 o - X
-2 52)

i=1

(13)

and, therefore, the estimator of quantile of order r, denoted here-
inafter as §, is uniquely defined by the equation
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3 {52)-
m \ )= (14)

Moreover, the estimator may be calculated recurrently, using
Newton’s method [6], as the limit of the sequence {§"};-, defined
by the formulas

=2 (15)
_ E(s*

At+1=ék+r_ﬂ for k=0,1,..., (16)
f(@"

since-according to formulas (11)-(13)-the function 7 constitutes
the derivative of the mapping F.
For the purposes of the method elaborated here, the kernel

e-—x
K(x)= aTee an
can be proposed. It fulfills all the requirements formulated above,
and in particular its primitive has a form convenient for calcula-
tions, namely,

I(x)= (18)

14e™*"
In this case, the quantity V, occurring.in dependence (6) amounts
to

3
VK='2?;. 19

5 Final Suggestions and Conclusions

The substance of the present paper provides complete material
defining the practical algorithm used to calculate the Bayes esti-
mator for loss function (3). It is assumed that m independent mea-
surements x, ,X,, - . . ,X, Of the unknown value of the estimated
parameter x are available. Based on prior process knowledge, the
user should also identify the ratio p, /p, which characterizes the
proportion of losses resulting from negative and positive estima-
tion errors, i.e., underestimating or overestimating the parameter.
It is then easy to successively calculate the following values:

(A) the order r of the quantile-from the second part of formula
(4),
(B) the smoothing parameter -on the basis of dependence (6),
along with (8) and (19),
(C) quantities f(x;) for basic form (5), applying also equality
1

]

(D) modifying parameters s; thanks to procedure (9)—(10).

Since the forms of the functions K and I are given by dependen-
cies (17) and (18), then all the quantities needed to apply algo-
rithm (15)—(16) have already been defined. This is tantamount to
specifying the value of the Bayes estimator.

The estimator obtained in this fashion is strongly consistent,
i.e., with probability 1 it converges on the proper value along with
the increase in the size of sample. The strict formulation of this
fact, under very mild assumptions, is presented in the Appendix,
whereas the proof can be found in [7]. 1t should be emphasized
that the quite general condition of the uniqueness of the quantile
of order r, fulfilled e.g., when the random variable X has a density
function with a connected support, is in practice the only limita-
tion on the possibility of applying the method proposed in this
paper.

The correct functioning of the algorithm here designed has been
verified using a numerical simulation. Random disturbances of
various distributions, including asymmetrical, long-tailed, and
multimodal, were subjected to testing. The results obtained for

Transactions of the ASME



Table 1 Results obtained for parameter zero and disturbances
with standard normal distribution: (a) value of the Bayes esti-
mator proposed in this work; (b) value of the classical sample
mean (only for p;=1, p,=1); (¢) precision (in relation to theo-
retical) of the quantile estimator proposed in this work; (d) pre-
cision (in relation to theoretical) of the estimator Yy recom-
mended in survey paper [8].

A=1,p=5 p=1,p=3 n=1,p=2
(—F-'-=B.1 : r-o.m] [ﬂ=a.m ;r-n.zs} [&,o_, : r-.ua]
41 Px 1]
m (a) (c) (dy m (a) (c) (d) m (2) (c) d)
10 ~1,031 | 0.328 0.340 0 0717 | 0.296 0328 10 D462 | 0279 0310
20 [-1021 [ 0231 | 0241 2 | 0707 02 [ 0220 20 | 0451 | 0306 | 0229
so |-1007 | 0152 [ 0162 50 | 0698 | 0.38 [ 0.15¢ s0 | 0447 | 0.130 | 0.145
100 [-0993 | 0.108 | 0.115 100 | -06% | 0.099 | 0.107 100 | 0442 | 0.093 | o.105
200 | -0.980 | 0.075 | 0,081 200 | 0682 | 0.069 | 0073 200 | 0436 | 0.065 | 0.0712
500 | 0972 | 0.049 [ 0,053 500 | 0677 | 0.045 | 0.043 500 | -0.434 | 0.043 | 0.046
1000 | -0967 | 0.014 | 0.037 1000 | 0674 | 0.031 | 0.034 1000 | 0431 | 0.030 | 0,033
n=1,p=1
[&=| ; .-=u_|]
P2
m () (U] ] (d)
10 | -0.008 [ -0.005 | 0268 | 0,299
20 | -0.004 | -0.003 | 0200 | 0.222
50 | -0.00s [ -0.007 | 0125 [ 0.18
100 [ -0.003 | -0.003 | 0089 | 0,009
200 | -0.001 | 0.001 | 0.064 | 0.070
300 | -0.002 [ 0.002 | 0041 | 0,044
1000 | -0.001 | -0.001 | 0.029 | 0.001
p=2,p=1 p=3.p=1 p=5.p=1
(L'-z; .--nas-r] Boy; rm07s [ﬂ--ﬁ:r-ﬂ.lﬂ]
Pa P ]
m (a) (©) (d) m () (c) (d) m (2) () (d)
10 | 0440 | 0279 [ 0309 10 | o701 | 0295 | 0326 10 [ 1025 [ 0324 | 0346
20 | 0442 | 0.202 | 02m1 20 | 0897 | 0.212 | 0228 20 | roi6 [ 0235 | 0257
50 | 043¢ | 0130 [ 0243 50 | 0683 | 0136 | 0148 s0 | 0589 | 0.148 | 0.164
100 | 0433 [ 0.0 | 0102 100 | 0681 | 0.097 | 0.106 100 | 0384 | 0.108 | 0.117
200 | 0.433 | 0,067 | 0073 200 | 0578 | 0.07 | 0078 200 | 057 | 0.077 | c.084
so0 | 0431 [ 0042 | 0046 500 | 0.674 | 0.045 | 0.048 500 | 0969 | 0.049 | 0.0
1000 | 0.431 [ 0.030 | 0032 1000 | 0674 | 0032 | 0,034 1000 | 0968 | 0.035 [ 0.037

standard normal distribution are shown in columns (a) of Table 1.
For simplicity, the parameter being estimated had the value zero.

When p,=p,, ie., given the assumption that negative and
positive estimation errors entail the same losses, the Bayes esti-
mator and the classical sample mean are conditioned analogously,
which renders it possible to compare the results that are obtained
by using them. Columns (a) and (b) for p;=1, p;=1 in Table 1
indicate that their precision was comparable. In the case of the
Bayes estimator, however, it is more important that, if p;#p,,
then its value was properly shifted in the direction of those errors
for which the parameter p, or p, was less [see columns () in
Table 1, keeping in mind that the standard deviation of the random
disturbances was 1].

The results obtained by using the quantile estimator presented
in Section 4 were more précise in comparison with those gener-
ated by other quantile estimators available in the literature, espe-
cially with small sample sizes [e.g., compare columns (c) and (d)
in Table 1 created for the estimators proposed in this work and for
¥y recommended in survey paper [8], respectively].

In sum, for p,=p, the proposed algorithm yields results that
are comparable to those obtained using the sample mean, while
assuming different p, and p,, opens up possibilities that are un-
available for this classical method: to properly shift the value of
the estimator in the direction associated with smaller losses. The
Bayes estimation method proposed here is natural, easy to inter-
pret and used in practice.

The algorithm presented here has also been successfully applied
to the positional time-optimal control system described in papers
[5,10). This task consists in bringing the object state to the target
set in a minimal time. In the event that the estimator of the values
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of resistances to motion is underestimated, sliding trajectories ap-
pear in the controlled system, increasing the time to reach the
target proportionally to the magnitude of the underestimation. If,
however, this estimator is overestimated, over-regulations occur in
the system, with a much greater impact on the increase in the time
to reach the target (likewise proportionally to the value of the
overestimation), threatening in the extreme case failure of the de-
vice. The estimator of the values of resistances to motion was
calculated by using the above-elaborated procedure for p,/p,
=0.2; thanks to this, more desirable sliding trajectories clearly
dominated in the controlled system.

The foregoing applicational example points up an engineering
interpretation of the issue, somewhat exceeding the strict math-
ematical point estimation formulation presented in the Introduc-
tion. The parameter under consideration may in fact be the reflec-
tion of an entire array of phenomena, reduced to a single constant
due to the necessity to simplify the model. Then the issue consists
not so much in approaching the *‘true” value (since no such thing
exists), but rather to specify the best possible characterization of
these phenomena using a single number. From the mathematical
point of view, the formalism of statistical decision theory [11] is
then appropriate, although the results obtained using the Bayes
decision rule are in such case identical with those presented in this
paper for the issue of point estimation.

Appendix

In the following, the strong consistency of the kernel estimator
of the quantile defined by Eq. (14) will be commented. For this
purpose, consider the sequence of random variables {X;};-, de-
fined on the common probability space ({2, 3., P), as well as the
corresponding sequence of its realizations {x;};—, . For an arbi-
trarily fixed m e N\{0}, the mapping P,,: B(R)—[0,1] given by
the formula

Po(B)= %#{55{1,2,. ..,m}:x;€ B}, (20)

where #(A) denotes the power of the set A and B(R) represents
the family of real Borelian sets, is known as the empirical distri-

bution of the sequence {X;}.., . Let also P :B(R)—[0,1] be the
distribution of a probability measure. The sequence of random
variables {X;}, is called the empirically ergodic sequence with
the limit P, if the condition

lim P, (E)="P_(E)

m-—o

(21

is fulfilled with probability 1 (with respect to the measure P) for
every set E of the form (—,e], where P_({e})=0.

As results from the Glivenko-Cantelli Theorem [3], this condi-
tion is more general than the assumption frequently formulated in
the theory of estimation concerning the identity of the distribu-
tions and the independence of the random variables X; represent-
ing the random sample. In the case that such an assumption is
accepted, the measure P_ is nothing other than the distribution of
the variables X;, i.e.,

P_(B)=P(x;eB)

for any i=1,2,... and B € B(R).

Theorem. Let the sequence of real random variables {X;}7 |,
defined on the common probability space ({}, Z, P), be empiri-
cally ergodic with the limit P . If the quantile of order r (denoted
below as g) is defined uniquely with respect to the measure P_ ,
its estimator § is given as the solution of equation (14), the kernel
K is positive, and dependence (12) as well as the condition

lim h=0

m—x

(22)

(23)

are fulfilled, then with probability 1 (with respect to the measure
P) the equality
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lim g=gq (24)

m—m

is true, which means the strong consistency (therefore also the
consistency) of the kernel estimator of the quantile.
The proof of this theorem is found in reference [7]. |
Note that if one establishes the smoothing parameter on the
basis of formula (6), then criterion (23) is obviously fulfilled.
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