A Random Approach to Time-Optimal
Control

Piotr Kulczycki'

This paper concerns the time-optimal control for objects described
by a random differential inclusion with discontinous right-hand
side, representing the second law of Newtonian mechanics and
taking into account a complex model of resistance to motion. Such
a task has broad technical applications, especially in robotics. By
generalizing the concept of the classic switching curve to the
switching region, it is possible to construct in practice a range of
convenient suboptimal control structures that provide many ad-
vantages, especially in respect to robustness.

1 Introduction

Consider a single-degree-of-freedom mechanical system, play-
ing a vital role in modern engineering, especially as the foundation
for the analysis of problems associated with industrial manipula-
tors and robots. Its dynamics can be described by the following
differential inclusion:

¥ € H(), y(1), 1) + u(p), 1)

where u denotes a bounded control function, and the scalar map-
ping y means the position of the object. (If the function H iden-
tically equals zero, the above inclusion is reduced to the planar
linear differential equation

¥(#) = u(2) @

which expresses the second law of Newtonian mechanics.) The
multivalued (set-valued) function H, however, describes resistance
to motion. For the majority of cases in engineering practice, this
function can be expressed in the form

H(y(1), y(£), ) = v(3(1), y(1), HF (3(1)), ©)

where v is a continuous mapping, and F denotes a piecewise
continnous function that may be additionally multivalued at the
points of discontinuity. In view of the limitations of the available
mathematical methods, the typice. synthesis of the controlling
system must be preceded by a significant simplification of the form
of the function v to trivial ones.

In this paper, a probabilistic concept for solving the problem
will be proposed. Namely, it is assumed that the function v
introduced in Eq. (3) represents the realization of a given stochas-
tic process V with almost all the realizations being continuous and
jointly bounded. Such a model regards as probabilistic uncertainty
the dependence of resistance on a broad range of factors, not only
¥(), y(#) and ¢, but also those which are usually omitted under
other conceptions, due to the necessity to simplify the model.
Since random control systems take account of the entire set of
possible events, they are distinguished in engineering practice by
their significant robustness against the imprecisions of the model,
the temporal fluctuations of the characteristics, and the perturba-
tions and noise occurring naturally in real objects.

The deterministic approach to time-optimal control for discon-
tinuous systems of type (1) is presented in Hejmo (1994). The
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classical methods of control synthesis can be found in survey
papers by Tourassis (1988) or Ortega and Spong (1989).

2 Main Results

Theorem.
Assume:

(A) t,€ R, T = [t, ), xo0 € R%, v_, v. € R such that

“-I<v=v <1

(B) the origin of coordinates constitutes the target set;

(© (Q, %, P) is a complete probability space, where Q
denotes the set of elementary events w, 3 — the sigma
algebra of its subsets, and P means the probability mea-
sure;

D) U, ={U:Q X T— [~1, 1]} represents the set of

admissible controls;

(E) f:R —[—1, 1] denotes a piecewise continuous function
fulfilling locally a Lipschitz condition except at the points
of discontinuity, and satisfying the condition z * f(z) = 0
for every z € R; moreover, let F : R — P([—1, 1]) be

such that
_[fz) fz#z
where z;, ERand F;, C [—1, 1] fori = 1,2,...,k,

while P([—1, 1]) means the sets of subsets of the
interval [—1, 1];

(F)y V is a real stochastic process with almost all realizations

being continuous, and satisfying the boundary condition
Viw, 1) € [v., vi] fort € T,
the random differential inclusion

Xl(w7 t) = XZ(w7 t) (5)

X (o, t) € Ulw, 1) — V(w, 1) F(X,(0, 1)), (6)

(©)

with the initial condition

[Xl(wf, to)

(0, to)] = x, foralmostall w € Q) @)

describes the dynamics of the system submitted to the
control U.

Then, there exists an almost certain time-optimal control (i.e., a
real stochastic process such that almost all its realizations are
time-optimal controls for proper deterministic systems obtained at
the fixed random factor @ € (), whose realizations take on the
values +1 or —1, and have at most one point of discontinuity. This
control generates a unique almost certain C-solution (i.e., a two-
dimensional stochastic process such that almost all its realizations
are solutions in the Caratheodory sense for proper deterministic
systems obtained at the fixed factor @ € (), which is also a unique
a.most certain F-solution (as above for solutions in the Filippov
sense) and a unique almost certain K-solution (as above for solu-
tions in the Krasovski sense). M

Definitions of Caratheodory, Filippov, and Krasovski solutions
(in the deterministic case) can be found in Kulczycki (1996b).
System (5)—(6) is the random counterpart of differential equation
(1) with the substitution of dependence (3); in this sense, the
stochastic processes X, and X, can be identified with the functions
y and y, respectively. The proof of the theorem presented above,
including the existence of the stochastic processes X, X,, U and
a characterization of the control U, is presented in Kulczycki
(19964, d). The sets of all states which can be brought to the origin
by the control U = +1,if V= v_ or V = v, respectively, have
been defined here as K, _, K, ; analogously, K__ and K_, for
U= —1,if V= v_or V= v,.. These are, accordingly, the sets
of states brought to the target by the control +1 or —1, given the
minimum and maximum values of resistance to motion (for the
relative localization of those sets see also Fig. 1). Because the
change of sign in the particular realizations of the almost certain
time-optimal control (switching of the control) can occur only
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Fig. 1 Trajectories generated by control (8)

when the system state belongs to the set (closed region) restricted
by K.., K., and K__, K_,, this set is called the switching
region. It constitutes the generalization of a switching curve fa-
miliar from the classic case of time-optimal transfer of a mass
(Athans and Falb, 1966; Section 7.2). (The region is reduced to this
curve when v_ = v, = 0.)

Therefore, the function H introduced in formula (1), which
represents the model of resistance to motion, has been decomposed
into two factors: F(y(t)) and V(w, t). The former, a deterministic
one, makes it possible to incorporate the properties of discontinuity
and multivalency of friction phenomena. The latter one, thanks to
its probabilistic nature, includes among other things approxima-
tions and identification errors (of the first factor also), the depen-
dence of resistance on position, time, and temperature, as well as
perturbations and noise naturally occurring in real systems. The
switching curve implied by the first — deterministic — factor has
been “blurred” by the second — random — to the switching re-
gion.

The almost certain time-optimal control obviously ensures the
realization of the minimum expected value of the time to reach the
target set; however, besides specific cases, its direct practical
realization encounters difficulties because of the dependence on
the random factor, in fact unknown a priori. However, thanks to
the results of the above Theorem, the presented material consti-
tutes a useful basis for the creation of technical constructions of
suboptimal control structures, in which such a dependence is
removed.

The first conception of these structures can be based on the
classical idea of the switching curve, though its parameters are
optimally calculated by using statistical decision theory. A detailed
description is found in Kulczycki (1996¢).

For the case when the used actuator allows all control values
from the interval [~1, 1], the above structure can be modified to
eliminate frequent switchings between +1 and —1 occurring on
the sliding trajectories. (Such switchings often have a negative
impact on the endurance of the device and the convenience of its
use.) Namely, let the sets K._, K,, and K__, K_, remain
unchanged; moreover, the sets Q,, O_ and R_, R, are given as
shown on Fig. 1. The control is now defined by the formula

Uw, t) 3
-1 if [Xi(w, 1), Xo(w, )]TER_
_g(_xl’ "xz) if [Xl(w’ t)’ Xz(w, t)]TE 0-

=40 if [Xl(w? t): X2(w’ t)]T € {[0’ O]T},
g(xy, x2) if [X,(, 1), X,(w, )]" € Q.
+1 if [Xy(w, 1), Xo(w, )]T ER,

where the function g : R* — R takes on the fixed value g, € [—1,
11—, +v]
g(xy, x2) = gy )
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on the sets K,._ and K__, after which it shows a continuous and
monotonic increase to the value 1 on the sets K., and K_,. This
idea can be regarded as the result of averaging in respect to the
random factor of the results from the Theorem presented above.
Condition (9) is sufficient to guarantee the existence of a
C-solution, which in practice entails the avoidance of the sliding
trajectories that can appear in the opposite case along the curves
K._ and K__. When that condition is stated more precisely as

g(xlv xZ) = —1’ (10)

one obtains the continuity of control (8). This control can then be
interpreted as a smoothed version of the “bang-bang” conception,
presented in Kulczycki (1996¢).

3 Conclusions

In this paper, a probabilistic concept has been presented for the
synthesis of a time-optimal control for objects described by ran-
dom discontinuous differential inclusion (1). Two suboptimal
closed-loop structures have been proposed as applicational con-
clusions from the presented Theorem. The first of these is intended
for cases where the conditioning of an actuator makes it possible
to use only the extreme values of the admissible controls. The
second, not encumbered by any such limitations, allows for the
avoidance of sliding trajectories, which in practice are often in-
convenient. The above structures are endowed with all the advan-
tages of random control systems, especially as to robustness, a
matter of exceptional importance in the practice of contemporary
engineering.
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A Simplified Robust Circle Criterion
Using the Sensitivity-Based
Quantitative Feedback Theory
Formulation

David F. Thompson'

The circle criterion provides a sufficient condition for global
asymptotic stability for a specific class of nonlinear systems, those
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