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ABSTRACT

In many tasks of contemporary engineering, the classical notion of the so-
lution of a differential equation turns out to be insufficient. The present
paper is devoted to generalized solutions of ordinary differential equations,
utilized to analyze equations with a discontinuous right-hand side. In partic-
ular, the most frequently used types have been discussed: Caratheodory’s,
Filippov’s, and Krasovski’s. Based on examples from the area of automatic
control, there are pointed out a number of aspects connected with the appli-
cations of the aforementioned notions in modern technical problems.

1. INTRODUCTION

The steadily increasing demands placed on modern production systems
are enforcing the use of differential equations with a discontinuous right-
hand side to describe the dynamics of devices being designed. This results,
for example, from the application of ever more precise models of motion re-
sistances, or from the alternating generation of the extreme values of admis-
sible controls—the so-called “bang-bang control” (see e.g. [5]). The classi-
cal solution of a differential equation (i.e. a differentiable function fulfilling
the equation at every point of its domain [4]), whose existence is guaranteed
by the continuity of the right-hand side of the differential equation, may no
- longer exist even in the simplest forms of the discontinuities that appear. A
well known example is the equation

i) =1, (L.1)
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50 = {—1 for x,(£) 20 (12)

1 forx,(t) <0,

whose solution exists only until it reaches the axis x;. In such cases, it be-
comes necessary to make use of the notion of generalized solutions. The
conceptions most often applied for these purposes, those of Caratheodory,
Filippov, and Krasovski, considered together with the practical aspects in
tasks of optimal control, will be the subject of the investigations presented in
this paper.

2. DEFINITIONS

Definition 2.1. Let T be an interval with nonempty interior. Consider a dif-
ferential equation

x(t) = g(x(),1), 2.1

where x : T — R7, and a mapping g : R” x T — R" is discontinuous.
The function x, absolutely continuous on every compact subinterval of
the set 7, is a solution of differential equation (2.1):
— in the Caratheodory sense (C-solution), if it fulfills equation (2.1) al-
most everywhere in T,
— in the Filippov sense (F-solution), if

x(t) € F1gl(x(¢), ) almost everywhere in T, 2.2)

— in the Krasovski sense (K-solution), if

%(t) € K[g)(x(2),2) almost everywhere in T, 2.3)

where the Filippov and Krasovski operators are defined, respectively, by

FIg)(x().1)= N

I szQ (Z)=Oconv[g((x(t)+ eB)\ Z,1)]» 2.4

Kig)(x(2),2) = (] conv[g(x(t) + eB,1)} (2.5)
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B denotes the open unit ball in the space R”, m is the n-dimensional
Lebesgue measure, and conv[C] means the convex closed hull of the set C.

For practical purposes, the C-solution precisely states the conception of
“joining” classical solutions [4], and is most frequently used when the func-
tion g is discontinuous only with respect to the variable . Just as in the case
of the classical solution, the derivative of the C-solution is dependent (be-
sides the variable #) only on the present value of the solution. By contrast, in
accordance with the necessity in contemporary engineering to take into ac-
count the influence of inaccuracies and approximations, the derivative of the
K-solution depends on all the points in the neighborhood of the present
value of the solution. Continuing the concept of taking errors into account,
the F-solution also omits zero-measure sets, which are unimportant from a
practical point of view.

Proposition 2.2.
(A) The C-solution is a K-solution (since g(x(2),t) € K[gl(x(¥),t)).
(B) The F-solution is a K-solution (because F[g](x(?),t) C K[gl(x(9).1)).

Example 2.3. Consider the following differential equation with an initial
condition

1 forx,(t)>0
.X.?I (t) =<-1 for Xy (t) =0, X1 (0) = Xo1» (26)
1 forx,(#)<0

-1 forx,(t)>0
X ()=14 0 forx,(1)=0, x,(0)=xgy, Q.7
1 forx,(r)<0

where x,, xo, € R (Fig. 1).

First, the case X =0 will be considered. The function [x01 . A O]T is then
a C-solution, while the mapping {xy; + ¢, 0}7 constitutes an F-solution (for
values of the Filippov operator, see Fig. 1). In turn, every absolutely contin-
uous function of the form [x,(2), 017, such that x;(0) = x;; and the condition
|J&1(t) | < 1 is fulfilled at the points of existence of the derivative, represents
a K-solution (see also Fig. 1).

In the case Xgp # 0, however, the C-, F-, and K-solutions are given, until
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C-solutions F-solutions K-solutions

Figure 1. C-, F-, and K-solutions, as well as Filippov and Krasovski
operators for equation (2.6)-(2.7).

the X, axis is crossed, as [xg1 + s xpp — t-sgn(xoz)]T. After this axis is
reached, these solutions may be extended, in accordance with the rules pre-
sented in the preceding paragraph.

The above example indicates that there is a lack of relation between C-
and F-solutions, whereas K-solutions often constitute an excessively broad
class.

A detailed discussion of these issues is found in [1,2].

3. EXAMPLES OF APPLICATIONS
In this section, examples from the area of optimal control will be shown
to illustrate various aspects of the application of the conceptions presented in
Section 2.
Example 3.1. (See also [3].) Suppose a dynamical system, submitted to the

two-dimensional control u = [u, uz]T, and described by a differential equa-
tion with an initial condition

X ()= x,(O)+u (1), x(0)= x4, 3.1
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Xy () = =x () +uy(£), x,(0) = xq, (3.2)

where x012 + x022 < 2. Consider the optimal control problem consisting in
reaching the target set, which is the origin of coordinates, and minimizing
the value of the functional

7
Jw)= j [ () =1 +x,8) - 1]2[1410)2 +uy(2)? dt, (3.3)
0

where #;, means the time to reach the origin. (Note that the equation (x;(#) —
1)? + x5(£)> — 1 = O represents a unit circle with its center at the point [1, 07,
which will be marked hereafter with R.)

Thus, if the control u is given by

0
u(t) = [ O]’ (3.4)

then the C-, F-, and K-solutions of the differential equation created in this
manner, i. e. (3.1)—(3.2) and (3.4), take on the form shown in Fig. 2A. How-
ever, for the case

~25() } (3.5)

u(t) = u, (x(1)) = [2x1 -1

where x = [x;, xZ]T, the solutions of equation (3.1)~(3.2), (3.5) are illustrated
in Fig. 2B.
Now, let a control be the following combination of the preceding ones:

g] ifx(r) ¢ R,
W= O=3E 0 (3.6)
[2x](t) _ J if x(t)e R.

For x(f) &€ R, formula (3.6) is equivalent to (3.4), therefore the solutions are
brought to the circle R (see Fig. 2A), and afterwards, being permanently
contained in that circle, reach the origin (compare dependence (3.6) with
(3.5), and see Fig. 2B). In the first case, u,(£)? + u,(#)> = 0; in the second,
(x1(H-1)% + x5(£)% - 1 = 0. Therefore, J(u") = 0. Since the values of the func-
tional J are nonnegative, the control u" defined by formula (3.6) is optimal.

However, in order to confirm the formal correctness of such a result, a
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Figure 2. C-, F-, and K-solutions of equation (3.1)—(3.2) if the function u
is given respectively by formulas A- (3.4), B- (3.5), C- (3.6).
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detailed analysis of the solutions of the obtained equation (3.1)-(3.2), (3.6)
should be performed. Namely, the C-solution can indeed be brought to the
circle R, and then along it to the target set (parts 1-2-3-4 in Fig. 2C), but,
since for a single ¢ the differential equation need not be satisfied, that solu-
tion may “leave” the circle R (parts 3-5). In the same way, it is possible that
the circle R will be crossed many times (parts 2—6 and 7-8); then the C-solu-
tion may also begin to “move” along this circle (parts 2—3 and 7-9), and af-
terwards “leave” it again (parts 3-5, 10-8 or 11-6). The above phenomena
can be repeated in any sequence.

The form of the Filippov operator causes the zero-measure sets (of which
the circle R is one) not to influence the F-solutions. Therefore formula (3.6)
is here equivalent to (3.4), and thus the F-solutions take on the form shown
in Fig. 2A. The origin is not reached by the F-solutions at all.

Finally, in accordance with Propositions 2.2, the K-solutions contain the
C-solutions described above. Nevertheless, the set of the values of the
Krasovski operator at the point [2, 0}7 includes zero as well (see Fig. 2C),
and therefore the K-solution may additionally “stop” at this point. After-
wards it can also “leave.”

The optimal control problem considered above, seemingly completed by
the pointing out of formula (3.6), turns out to be obviously unacceptable,
once the task of the solutions of the differential equation has been carefully
examined.

Example 3.2. Suppose a dynamical system, submitted to the one-dimen-
sional control u with values bounded to the interval [-1, 1], and described by
a differential equation with an initial condition

X (1) = x,(t), x;(0) = x4, 3.7
X () =u()—w-sgn(x, (1),  x,(0)=xgp, (3.8)

where x;,%5, € R and w € (0,1). Consider the time-optimal control prob-
lem consisting of reaching the fixed target set xe= (x4, fo]T € R? in a mini-
mal and finite time.

Assume that x_ and x_ are C-solutions of differential equation (3.7)—-(3.8),
with the conditions x,(0) = x_(0) = Xf defined on the interval (—eo, 0], and
generated by the control # =+1 or u =-1, respectively. Let

Q, ={x.( for <0}, (3.9)

0 ={x_(») for <0} (3.10)
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(Fig. 3); therefore, these are the sets of all points which can be brought to the
origin by the control u = +1 or u = -1, respectively. Let also

X * *
R, = {[xl] such that there exists [xi] € Q, withx; <x; andx, = x, }, 3.11)
2 X2

*
X
%

x2 x2

X * *
R = {[ 1] such that there exists { :| € Q, withx; > x; andx, = xz}, (3.12)

where Q = Q_ u{xf}uQ + The discussions often encountered in the litera-
ture regarding the optimality of the control expressed by the formula

[lifx®e® uQ)
u(t)—u,(x(t))—{+l ifx() e (R, L0,), (3.13)

where x =[x, xz]T, have been based on the conviction that the solutions of
differential equation (3.7)—(3.8), (3.13) are brought to the curve Q, and
being thereafter permanently contained in it, reach the target set in a finite
time. Nevertheless, the detailed analysis of the solutions of that equation,
conducted in the case Xpy # 0, calls into question the correctness of such a
procedure.

X, X,

Figure 3. C-, F-, and K-solutions of equation (3.7)-(3.8), (3.13).
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The C-solution is indeed brought to the curve Q, and, along it, the solu-
tion can reach the target set (parts 1-2-3-4-5 in Fig. 3). However, since, for a
single z, the differential equation may not be satisfied, that solution can also
“leave” the curve Q between the axis x; and the target set, penetrating the re-
gion R. (parts 4-6 in Fig. 3). The cycle that appears in this manner may re-
peat itself any number of times.

The C-solutions described above are also F- and K-solutions. However, at
the point where the curve Q crosses the axis x;, the values of the Filippov
and Krasovski operators include zero as well (see Fig. 3), and therefore the
F- and K-solutions may “stop” at that point. Afterwards, they may also
“leave.”

The nonuniquenss of the solutions demonstrated above causes the time to
reach the target to be a set rather than a number. Moreover, there exist solu-
tions which do not reach the target at all in a finite time. Without additional
explicitness, the acknowledgement of control (3.13) as time-optimal turns
out to be therefore groundless.

The task considered in Example 3.2 is one of the basic problems in the
practice of optimal control, especially in the area of industrial robots and
manipulators [6]. Differential equation (3.7)—(3.8), equivalent to the form

YO =u(t)-w- sgn()')(t)), ¥(0)=xq;, Y(0)=xq, 3.14)

expresses the second law of Newtonian mechanics, when the term
—w-sgn(y (f)) represents an exemplary, simple but discontinuous model of mo-
tion resistances. (Note that the form of control (3.13) introduces a second fac-
tor determining the discontinuity of the right-hand side.) The absence of a
correct analysis of the solutions of the differential equation is the lot of many
advanced publications, even though these solutions are in fact the basis for
drawing conclusions about the evolution of the state of the system under con-
trol. The prevailing tendency towards mathematical precision in technical
problems will doubtless lead in the direction of making the issues presented
above generally familiar in processes of designing engineering devices.
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