
ORIGINAL ARTICLE

Interval probabilistic neural network

Piotr A. Kowalski1,2 · Piotr Kulczycki1,2

Received: 8 April 2015 / Accepted: 4 November 2015 / Published online: 21 November 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Automated classification systems have allowed

for the rapid development of exploratory data analysis.

Such systems increase the independence of human inter-

vention in obtaining the analysis results, especially when

inaccurate information is under consideration. The aim of

this paper is to present a novel approach, a neural net-

working, for use in classifying interval information. As

presented, neural methodology is a generalization of

probabilistic neural network for interval data processing.

The simple structure of this neural classification algorithm

makes it applicable for research purposes. The procedure is

based on the Bayes approach, ensuring minimal potential

losses with regard to that which comes about through

classification errors. In this article, the topological structure

of the network and the learning process are described in

detail. Of note, the correctness of the procedure proposed

here has been verified by way of numerical tests. These

tests include examples of both synthetic data, as well as

benchmark instances. The results of numerical verification,

carried out for different shapes of data sets, as well as a

comparative analysis with other methods of similar con-

ditioning, have validated both the concept presented here

and its positive features.

Keywords Neural network · Interval probabilistic neural

network · Data analysis · Classification · Interval data ·

Imprecise information · Numerical simulation

1 Introduction

In the last ten years, interest has notably arisen in

probabilistic neural network (PNN) [38] methodology.

This statement can be affirmed through perusing its

application within a large number of recent scientific

articles. PNN methodology is often used particularly in

classification tasks, and it has been applied successfully

in solving problems related to email security enhance-

ment [40], most certainly within the intrusion detection

systems [41]. This concept for easing the classification

task has also been applied in medicine, especially for

detecting resistivity to antibiotics [5], as well as for

diagnosing hepatitis [2] and in gaining solutions to other

medical problems [12, 29]. Moreover, the method under

consideration enables the solving of different problems

related to pattern recognition tasks, among these being

biometric speech and speaker recognition [9, 30], in

addition to signature verification [28]. The PNNs are

also constructed to gain solutions within marine admin-

istration problems such as effective ship identification

[1]. Another group of studies wherein this neural net-

work is applied is in chemical and environmental

sciences [14, 39, 46].

In many applications, the conceptualization of PNN

has, however, changed. Where once it was associated

with the working with the large number of neurons that

are derived from a large number of pattern samples

within the first layer, now it is often used in the struc-

turing of the network so as to reduce the quantity of

& Piotr A. Kowalski

pakowal@ibspan.waw.pl; pkowal@agh.edu.pl

Piotr Kulczycki

kulczycki@ibspan.waw.pl; kulczycki@agh.edu.pl

1 Systems Research Institute, Polish Academy of Sciences, ul.

Newelska 6, 01-447 Warsaw, Poland

2 Faculty of Physics and Applied Computer Science, AGH

University of Science and Technology, al. A. Mickiewicza

30, 30-059 Cracow, Poland

123

Neural Comput Applic (2017) 28:817–834

DOI 10.1007/s00521-015-2109-3

hidden neurons in the second layer. This is especially

evident in research on data for medical problems [23],

which usually have a significant amount of reference

examples. Another type of PNN modification is seen in

the adaptation of neural operations to other data types.

An illustrative example of this is the PNN adjustment for

nonlinear time series analysis [44]. Furthermore, during

the development of methods exploiting PNN, still more

type changes in the network were introduced. These

assumed a reduction in neural structure that was

engendered by the selection of good training sets.

Moreover, in this case, principal component analysis was

used to reduce the computational complexity of the

investigated network [3].

Due to current dynamic development in exploratory data

analysis, a widening interest in interval analysis can be

seen. Herein, the fundamental application of interval

analysis is to ensure a suitable precision quality for

numerical calculations. A very important advantage of this

action is the fact that it has a formal mathematical algebra

[11], but the biggest advantage of this approach is its

ability to describe inaccuracies in the simplest possible

way. In other methods, such as probability [10] or fuzzy

logic [13], to describe the uncertainty, a much greater

amount of information is required. Here, only one available

set of information about an investigated quantity x can be

built upon, providing that it is included in the interval

sample ½x; x�. Moreover, in many application tasks, this

simple assumption is absolutely sufficient. What is more, in

a simple way, the use of interval analysis can be extended

to a multidimensional case. Consequently, the algorithm is

very easy to interpret. Furthermore, the calculation com-

plexity is reduced with respect to other similar methods

used for uncertainty modeling.

In this paper, the generalized probabilistic neural net-

work to interval data is introduced. The employment of this

requires a change in the structure of the network through

the introduction of special transfer functions in the neurons

located inside the hidden layer. This classification concept

is based on the Bayes approach, which insures a minimum

of potential losses occurring through misclassifications. For

this concept, the PNN procedure was employed, thereby

freeing the above method from arbitrary assumption

regarding pattern class. Thus, their identification becomes

an integral part of the proposed algorithm. The term “in-

terval probabilistic neural network” (IPNN) is the name put

forward for such a created structure.

In the procedure for classifying based on IPNN, the

elements of pattern sets are given as precise data (e.g.,

deterministic or shape), but work on the tested element

comes about by considering imprecise information as being

an interval or interval vector (in multidimensional cases):

½x1; x1�
½x2; x2�
. . .

½xn; xn�

2
6664

3
7775; ð1Þ

where xk 6 xk for k ¼ 1; 2; . . .; n, is represented.
Here, the pattern sample is considered to be composed

of actual, precisely measured quantities that can be traded,

while the intervals are classified as representing uncer-

tainties and imprecisions in plans, estimations, or

measurements that are hard to remove. In particular, pat-

tern sets may consist of accurate measurements (in which

errors are practically ignored), while the classified interval

contains measurements taken by way of another, much less

accurate apparatus or which were carried out in much

worse conditions. Another example of the application of

this kind of classification is its use in treating precise data

as actual information from the past, e.g., temperature or

currency exchange rates, while the classified element rep-

resents a prognosis, which by nature is limited in precision.

In these cases, the cardinality of the pattern data is often

very large. Therefore, it is advisable to use an intelligent

method to reduce the unnecessary (e.g., outliers elements)

or redundant components inside the pattern sets.

This paper is organized as follows. The first part of the

paper is devoted to a description of PNN methodology. Of

note is the laying out of how the characterization of kernel

density estimators (KDE) with the smoothing parameter

calculation algorithm and procedure for its modification

takes place. Afterwards, the subsequent subsections con-

centrate on the neural representation of the KDE as a PNN.

In the following part of this article, the extension of the

PNN theory to the notion of it being an interval proba-

bilistic neural network is put forward. The full algorithm

for neural classification of imprecise information is the

main subject of the next section, and the numerical veri-

fication for the proposed methodology is to be shown in

Sect. 6. Finally, some concluding remarks with respect to

the presented approach are set out.

The preliminary version of this investigation as a con-

ference short paper, by Kowalski and Kulczycki [19], has

already been presented.

2 Probabilistic neural network

2.1 Kernel density estimator

In most practical data exploration tasks, the probability

density function f of a given sample is multimodal and can

be mapped into a function of any typical distribution.

Therefore, methods of nonparametric density estimation

818 Neural Comput Applic (2017) 28:817–834

123

which do not need any assumptions on the distribution type

are in common use. The kernel density estimation (KDE) is

one of the classical techniques with such property [36].

Consider a n-dimensional random variable, with a dis-

tribution having the density f. A kernel estimator of this

function f̂ : R
n ! ½0;1Þ based on the m-elements data

sample x1; x2; . . .; xm can be defined as:

f̂ ðxÞ ¼ 1

mhn

Xm

i¼1

K
x� xi

h

' (
: ð2Þ

The positive coefficient h is called a “smoothing parame-

ter,” while the measurable function KðxÞ : R! ½0;1Þ, of
unit integral, symmetrical with respect to zero, and having

a weak global maximum at this point, is called a “kernel.”

In this approach, the Cauchy kernel

KðxÞ ¼ 2=pðx2 þ 1Þ2 ð3Þ

will be used. In the multidimensional case, this can be

generalized to the product kernel notation:

KðxÞ ¼ Kðx1; x2; . . .; xnÞT ¼ Kðx1Þ � Kðx2Þ � . . . � KðxnÞ;
ð4Þ

where K constitutes the one-dimensional Cauchy kernel

given above. As a result, the smoothing parameter takes

the form of a vector ðh1; h2; . . .; hnÞ. This can be easily

obtained using automatic smoothing selection proce-

dures, i.e., the plug-in method or the cross-validation

procedure.

The interpretation of the above definition is illustrated in

Fig. 1 for a one-dimensional (n ¼ 1) random variable. In

the case of the single realization xi, the function K (trans-

posed along the vector xi and scaled by the coefficient h)

represents the approximation of distribution of the random

variable X having obtained the value xi. In this example,

the data sample contains eight elements (m ¼ 8), which are

marked using x on the horizontal axis.

Of note is that the quality of the estimation of function

(2) depends upon both the use of an appropriate smoothing

parameter, as well as on the application of the procedures

for its modification. These tasks will be presented in detail

in the following subsections.

More in-depth information about the practical issues of

KDE methods, as well as usage examples, can be found in

cited references [20, 36, 43].

2.2 Smoothing parameter

In this subsection, presentation will be made of the algo-

rithm for the calculation of the smoothing coefficients.

Although it is a known algorithm, the authors of this paper

wish to provide a limited discussion, as doing so comple-

ments the full article, and enables the methodology

presented herein to be employed without recourse to

additional bibliographic sources. This, the authors feel, is

of particular importance, as the described interval neural

network procedure constitutes the complete (entire)

algorithm.

A very important consideration that must be thought

out so as to achieve a high quality estimation is making

an appropriate choice of smoothing coefficient. If this is

too large, the value brings about excessive flattening of

the kernel estimator function, while a too little value

results in the formation of many peaks. Most known

algorithms for the generation of an optimal value of this

coefficient are based on the minimization of mean-square-

error MISE. Moreover, the plug-in algorithm and cross-

validation procedure are the most common methods used

for parameter h calculation. What is more, the cross-

validation method is recommended for application in the

case of multidimensional variables, while a radial type of

kernel function is used. Due to the use of the kernel

product conception, in this work, the plug-in algorithm

will be presented in-depth.

The optimal value of the smoothing parameter may be

obtained, as mentioned above, by minimizing the following

equation (typical for KDE methods) with respect to the

argument h (for details, see [43, Section 3.4])

MISEðf̂ Þ ¼ 1

mhn
RðKÞ þ 1

4
h4PðKÞ2Rðr2f Þ: ð5Þ

Equation (5) is a consequence of the generally applicable

accuracy assessment of estimation based on the mini-

mization of the integrated average quadratic performance

index MISE:

MISEðf̂ Þ ¼ E

Z

Rn

f̂ ðxÞ þ f ðxÞ
h i2

dx

, -
; ð6Þ

Fig. 1 The KDE function

Neural Comput Applic (2017) 28:817–834 819

123

where E denotes the expected value of the distribution of

the n-dimensional random variable X. Furthermore, for

complementarity, the following describes the individual

components of formula (5):

RðKÞ ¼
Z

Rn

KðxÞ2dx; ð7Þ

PðKÞ ¼
Z

Rn

xTxKðxÞdx; ð8Þ

Rðr2f Þ ¼
Z

Rn

r2f ðxÞ
/ 02

dx; ð9Þ

and, finally, taking into account the following notation,

r2f ðxÞ ¼
Xn

i¼1

o
2f ðxÞ
ox2i

: ð10Þ

On the basis of the above formulas, the optimum value

h can be obtained as

h ¼ nRðKÞ
mPðKÞ2Rðr2f Þ

�
" # 1

nþ4

: ð11Þ

Therefore, the value of criterion (5) for h as taken from

formula (11) is given as

MISEðf̂ Þ ¼ nþ 4

4n
CðKÞ n4Rðr2f Þn

m4

3 4 1
nþ4

; ð12Þ

where

CðKÞ ¼ RðKÞ4PðKÞ2n
h i 1

nþ4

: ð13Þ

In the present study, due to the use of the concept of

kernel product, it is sufficient to present the case of a one-

dimensional plug-in algorithm. This method is character-

ized by its simplicity, as well as by the accuracy of the

results.

For a one-dimensional case, formula (11) consequently

takes the following form

h ¼ RðKÞ
mPðKÞ2Rðf 00Þ

" #1
5

: ð14Þ

The right part of formula (14) depends primarily on the

expression Rðf 00Þ. For the second derivative f 00 estimate,

another estimator based on any kernel K1 can be used. The

full mathematical description of this algorithm can be

found in [43, Section 3.6].

As this method is an approximation algorithm, it is

necessary to approach it iteratively. For the purpose of

this study, three iterations ðq ¼ 3Þ of the procedure

were established, and numerical verification tests have

confirmed the validity of this assumption. Thus, the

plug-in method consists of accepting the following

steps:

Step 1 Estimate w10 by using the normal scale estimate

wNS
10

wNS
10 ¼ �945

64p
1
2r̂11

: ð15Þ

where r̂ denotes the estimate of data set standard deviation.

This formula is treated as a first approximation of w, and it

is based on the assumption that the data are characterized

by variance r2 [43].

Step 2 Estimate g1 by using estimator wNS
10

g1 ¼
�2K

ð8Þ
1 ð0Þ

mPðK1ÞwNS
10

 ! 1
11

; ð16Þ

Step 3 Estimate g2 by using estimator ŵ8ðg1Þ

g2 ¼
�2K

ð6Þ
1 ð0Þ

mPðK1Þŵ8ðg1Þ

 !1
9

; ð17Þ

Step 4 Estimate g3 by using estimator ŵ6ðg2Þ

g3 ¼
�2K

ð4Þ
1 ð0Þ

mPðK1Þŵ6ðg2Þ

 !1
7

; ð18Þ

Step 5 And, finally, the smoothing parameter can be

obtained as

h ¼ RðKÞ
mPðKÞ2w4ðg3Þ

 !1
5

: ð19Þ

All the above are applied in the following notation:

ŵrðgqÞ ¼
1

m2grþ1
q

Xm

i¼1

Xm

j¼1

K
ðrÞ
1

xi � xj

gq

, -
: ð20Þ

In Eqs. (16)–(19), we have only even values of indices

for estimators wi as a consequence of the fact that we can

estimate wi by way of using another kernel estimator.

Therein, optimal bandwidth depends on wiþ2. In the pro-

posed case, three iterations of algorithm were introduced;

thus, the parameters i were increased by the value 2,

starting from value 6 and ending on 10. Here, the following

assumptions were made: Initially, the kernel function K1 is

k times differentiable, while the even derivatives fulfill the

following conditions:

K
ð4Þ
1 ð0Þ[0 ð21Þ

K
ð6Þ
1 ð0Þ\0 ð22Þ

K
ð8Þ
1 ð0Þ[0: ð23Þ

The presentation of an iterative algorithm for calculating

the smoothing parameters is characterized by the simplicity

820 Neural Comput Applic (2017) 28:817–834

123

of its use within the numerical calculations. If necessary,

this algorithm can easily be extended by increasing the

number of iterations (i.e., q[3).

2.3 Modification of the smoothing parameter

For the better similarity of the estimation of PNN to the

real data distribution, a procedure to modify the smoothing

parameter should be applied. The main purpose of so doing

is to introduce the modification coefficients for smoothing

parameters which correspond with each element of the

pattern set. The complete algorithm is as follows:

Step 1 Precomputing the smoothing parameter using the

plug-in method and the calculation of the kernel estimator

quantities f̂�ðxiÞ in their basic form (2), for each element xi
contained in the pattern set (for i ¼ 1; 2; . . .;m).

Step 2 For every xi, the modification parameter si should

be obtained, according to the following formula:

si ¼
f̂�ðxiÞ
~s

 !�c

ð24Þ

where ~s is geometrical mean of the estimator quantities

f̂�ðxiÞ for i ¼ 1; 2; . . .;m. The constant c� 0 is referred to as

the “modification intensity.” The case c ¼ 0, implying in

consequence, si � 1, determines the lack of smoothing

parameter modification, whereas, together with an increase

in the value c, its intensity increases. Corollaries resulting

from the mean-square criterion primarily point to the value:

c ¼ 0:5 ð25Þ

Step 3 Finally, the kernel estimator formula takes the

form as follows:

f̂ ðxÞ ¼ 1

mhn

Xm

i¼1

1

sni
K

x� xi

hsi

, -
: ð26Þ

These coefficients put more personalizations of subse-

quent elements of the data set in the construction of the

estimator function, by changing the shape of the kernels. In

the areas where elements of the sample set are dense, for

the elements xi, it is true that f�ðxÞ is greater then si, and

therefore, as a result of formula (24), also si\1. This leads

to a narrowing of the kernels assigned to them, which, in

turn, allows for better characterization of specific proper-

ties of distribution. In opposite cases, in the areas where the

elements of the data set are sparse, f�ðxÞ will be lower then
si, and consequently, si[1. This induces a “flattening”

and thus is advantageous to the estimation quality. More-

over, it provides additional smoothing of the kernel

estimator within the peripheral regions (primarily, the so-

called tails) of distribution. In classification tasks, this is

very important, and it places this especially near the

boundaries of specific classes, which makes this procedure

particularly useful.

2.4 KDE: neural representation

Very often, a PNN, being a special type of Radial Neural

Network, is based on the KDE methodology. This type of

neural network is employed in regression [34], prediction

[40], and classification [23] tasks, but it is also used for

nonlinear time series analysis [44]. For providing solutions

to classification problems, the standard architecture of this

type of network is depicted in Fig. 2.

In this structure, four layers of the network can be seen.

The first, the input layer, is represented by the attributes of

input data x. The subsequent is called the “pattern layer.”

This part of the neural structure contains the elements of

the learning sample. These are placed in separate (for each

class) parts of the network. The kernel transformation (3)–

(4) acting as an activation function within the hidden layer

is then applied here. The third layer is called the summa-

tion layer, and it is composed of J (number of classes under

investigation) neurons, where each one generates the sig-

nals only for the particular pattern which belongs to the j-th

class, according to formula (2). Finally, the output layer

consists of only one neuron. This provides an estimation of

the class of investigated element x. It is based on the

Σ

Σ

Σ

Fig. 2 The basic architecture of the PNN

Neural Comput Applic (2017) 28:817–834 821

123

outputs of all the summation layer neurons (in accordance

with Bayes theorem). Here, all input signals represent the

value of the KDE in each class for x input vector.

According to Bayes theorem, the new tested element is

then assigned to the class for which the input signal is the

greatest (27). The above task is accomplished by way of

this last output neuron.

CðxÞ ¼ argmax
j¼1;...;J

f̂jðxÞ ð27Þ

where C(x) denotes the predicted class of the new tested

element x.

The case in which for two or more classes, that the

discovered value f̂jðxÞ would have equivalence, we think, is

very unlikely. What is more, in computer-assisted calcu-

lation practices, that this situation could arise when

undertaking real data type processing, we feel, is of prac-

tical impossibility.

2.5 Training process

In the PNN, regarding the learning process, initially, a

topological structure should be designed which takes into

account the number of classes under consideration, as well

as the cardinality of the learning samples. The first step in

so doing presupposes a coupling of the training samples to

the second layer of the network. Therefore, the number of

hidden neurons is assumed to be equal to the size of sample

sets in each class. The second step of the training procedure

is connected with applying the algorithm for calculating the

smoothing parameters ðhiÞ and for determining the modi-

fication coefficients ðsjÞ. Both procedures in Sects. (2.2)

and (2.3) are then introduced. After the placement of these

parameters within the network structure, a classifier is

obtained, which is ready to operate.

3 Extension of PNN for interval data

Very often, a PNN can be treated as a neural realization of

the involved KDEs [34, 37]. By means of the form of KDE

presented in this paper, the classification procedure can

also be interpreted as being a natural generalization of the

PNN. In contrast to classical neural networks (e.g., MLP)

as commonly used within probabilistic networks, there is

no problem in the selection of optimal connection weights.

Moreover, the form of KDE brings about a situation

wherein that individual components of the learning sample

are treated as being neural structure elements. This is the

significant advantage of the training procedure in this type

of network. However, in the literature put forward with

regard to application tasks, the issue of setting parameters

that have influence upon learning process is practically

ignored due to the absence of a suitable mathematical

apparatus. The methodology proposed in this article, the

stated issues of optimal selection of these parameters, and

the introduction of additional procedures have been care-

fully considered and analyzed in the previous chapter.

3.1 Structure of the interval probabilistic neural

network

In this section, a new way of structuring IPNN will be

introduced. The form of IPNN structure takes is based on

Specht’s probabilistic network [38], but it includes several

new elements which enable us to better classify interval

information. Figure 3 reveals a topological scheme of a

generalized PNN for interval-type information processing

that is particularly useful for tasks involving classification.

In the created network, four layers can be distinguished.

The first is the input layer, which is of the size of n, wherein

the inputs correspond to particular features of the classified

interval item. The next layer is a subset of neurons repre-

senting successive patterns of classes given as precise data.

Each of these consists of an adequate number of neurons

which are tasked with performing integration operations

(more details associated with this novelty of element will be

presented in the next subsection). The third is a set of neurons

which summarize the signals generatedwithin a pattern class

area, and which then multiply the resulting value by the

cardinality of the considered class. The final single neuron,

located in the output layer, designates the greatest value of

received signal, hereby determining the final outcome of the

classification problem according to formula (27), doing so in

an analogous manner that is similar to classical PNN cases.

3.2 Mathematical model

Now, denote f̂1; f̂2; . . .; f̂J as the KDEs that are associated

with the learning data samples representing every consid-

ered class. According to the Bayes approach, which ensures

a minimum of potential losses due to error of classification,

if sample sizes m1;m2; . . .;mJ are corresponding to the

“frequency” of occurrence of the elements from each class,

then the new tested item ex 2 R belongs to the class for

which the value m1 f̂1ðexÞ;m2 f̂2ðexÞ; . . .;mJ f̂J ðexÞ is the lar-

gest. Therefore, in a situation wherein information is given

by the interval ½x; x�, the tested element belongs to the class

for which the value

m1

x� x

Z x

x

f̂1ðxÞ dx;
m2

x� x

Z x

x

f̂2ðxÞ dx; . . .;
mJ

x� x

Z x

x

f̂J ðxÞ dx

ð28Þ

822 Neural Comput Applic (2017) 28:817–834

123

is the largest. In this formula, the positive constants 1=ðx�
xÞ can be omitted, as they are negligible for the opti-

mization problem under consideration. Hence, the formula

can be presented in the following form:

m1

Z x

x

f̂1ðxÞ dx; m2

Z x

x

f̂2ðxÞ dx; . . .; mJ

Z x

x

f̂J ðxÞ dx ð29Þ

Moreover, for any j ¼ 1; 2; . . .; J one can note
Z x

x

f̂ ðxÞ dx ¼ F̂ðxÞ � F̂ðxÞ; ð30Þ

where F̂ means the primitive of the function f̂ . For the

kernel (3) used here, the following formula has been cal-

culated analytically (here, some constant values can also be

omitted):

F̂ðxÞ ¼
Xm

i¼1

ðx2� 2xxiþ x2i þ h2Þarctanðx�xi
h
Þþ hðx� xiÞ

x2� 2xxiþ x2i þ h2
þp

2

3 4
:

ð31Þ

The above formula, useful within the additional procedures

often employed when kernel estimators are applied prac-

tically, is easily generalized. The main goal of this is to

generate the possibility of modifying the smoothing

parameter procedure [43]. Consequentially, in this case,

equation (31) takes the following form:

F̂ðxÞ¼
Xm

i¼1

ðx2�2xxiþ x2i þh2s2i Þarctanðx�xi
sih

Þþhsiðx� xiÞ
x2�2xxiþ x2i þh2s2i

þp

2

" #
:

ð32Þ

Finally, formulas (29)–(32) define a complete algorithm

of classification in the one-dimensional case.

3.3 Multidimensional classification

In the multidimensional case, when information is given by

the interval vector

½x1; x1�; ½x2; x2�; . . .; ½xn; xn�½ �T; ð33Þ

the new element belongs to the class for which the value

m1

Z

E

f̂1ðxÞ dx; m2

Z

E

f̂2ðxÞ dx; . . .; mJ

Z

E

f̂J ðxÞ dx; ð34Þ

where E ¼ ½x1; x1� � ½x2 � x2� � . . .� ½xn; xn� is the largest.
According to the properties of the product kernel used here,

calculations of the values of the n-dimensional integrals

stated above can be decomposed to the n independent one-

dimensional tasks. This is because of the dependence:
Z

E

KðxÞ dx ¼ ½J ðx1Þ � J ðx1Þ�½J ðx2Þ

�J ðx2Þ�. . .½J ðxnÞ � J ðxnÞ�;
ð35Þ

where J is the primitive function of the (one-dimensional)

kernel K. Taking into account the formulas (30)–(32) all

used for obtaining the one-dimensional case, this formula

completes the algorithm for classifying interval informa-

tion, particularly for the multidimensional case. Additional

information regarding Bayes method and its applications

can be found in the work [18].

Fig. 3 Structure of the interval

probabilistic neural network

Neural Comput Applic (2017) 28:817–834 823

123

4 Complete neural algorithm for the classification

of interval information

In this section, a description is proffered of the entire

network construction algorithm, as well as its learning and

classification. All the components of the methodology

detailed here are set out in Fig. 4. The diagram is, however,

split into two parts: The upper part over the dashed line

consists of a description of IPNN construction and related

learning functions; the lower part reveals an application of

IPNN for providing a solution for a particular classification

task.

In the first part of the algorithm, we start from data

acquisition ❶. If in the learning data set, particular classes

are to be distinguished, it is advisable to proceed to step❸;

otherwise, necessarily, some algorithm for clustering the

data has to be applied❷. In a situation wherein the number

of classes is a priori known, the application of simple k-

means algorithm may be implemented. In a different situ-

ation, the clustering algorithm must be set out in addition to

Fig. 4 Flow chart of algorithm for the neural classification of interval information

824 Neural Comput Applic (2017) 28:817–834

123

assigning the elements of the data set to individual classes.

As these, above all, determine the number of classes under

consideration, the Complete Gradient Algorithm (CGA)

[17, 21, 22] is strongly recommended. A very big positive

for utilizing this approach is the existing possibility of

applying statistical kernel estimation methods—the same

methodology as in the IPNN case. This latter algorithm has

been successfully tested within many issues of business,

science, and technology, for example, in developing mar-

keting strategies, in modeling of dynamic control

structures, and in image analysis. The main advantage of

the CGA is that it does not require additional assumptions

regarding the number of clusters, which allows it to better

suit its obtaining number to real data structures [26].

Thus, we assume in step ❸ that the data that are to be

distinguished are fully prepared so as to constitute the

classifier. In the subsequent step ❹, it is necessary to

design a neural network topological structure. In so doing,

the number of classes considered, and the number of

learning samples representing each class should be taken

into account (a detailed description of ways to do so can be

found in Sects. 2.4 and 3.1). After designing the structure

of the network, it becomes necessary to copy all the

training data into their corresponding neurons ❺ (which

are found within the pattern layer, as described in

Sect. 3.1).

In this way, we thus achieve the basic structure of a

IPNN in which all parameters can be computed. As

described in Sect. 2.2, for each of the classes, the algorithm

for the smoothing parameter hi calculation is actuated. As a

result of its use, n smoothing parameters (for each coor-

dinate of the feature (input) vector X) are obtained ❻,

taking the form of a vector h1; h2; . . .; hn with regard to the

multidimensional case.

In the next stage❼, we focus on designating inside each

class, the m elements sj. These constitute the modification

of the smoothing parameters. This operation is carried out

in accordance with the procedure described in Sect. 2.3.

This step completes the procedure for the construction and

learning of the IPNN.

In the following description of the algorithm, it is

assumed that we intend to use the constructed neural net-

work for classifying imprecise information. Therefore, the

next set of characteristics set out will be related to the

process of bringing about a neural classification that is

intended for dealing with interval-type information. A

detailed mathematical description has been placed in

Sect. 3, while in Fig. 4, this is located under the dashed

line.

A new tested element ex 2 R, consisting of imprecise

information which is set out as an interval or interval

vector, is levied from being a collection of items found

throughout an input layer, to being a group of neurons

inside a pattern layer. In each cell, the integration operation

takes place in ❽, according to Eqs. (28)–(32) or (34)–(35)

for the multidimensional case. This is followed up by the

summation of signals from the previous layer, and taking

into account the training set cardinality, a class distinction

is made in ❾. The tested interval-type element then

belongs to the class for which the output signal from the

summation layer is the largest. The above setup is based on

a generalization of the Bayes theorem for interval infor-

mation and is described in the previous section. In this way,

in ❿, the index (label) of the class according to formula

(27) is obtained.

Taking into account ❽–❿, as well as the mathematical

equations from section 3, this completes the application of

IPNN for classifying imprecise information.

5 Computational complexity of the IPNN

algorithm

In order to fully describe this new algorithm, one of the

more important properties from the point of view of

modern computing will be discussed in this section. This is

the computational complexity of time and memory. The

estimation of these attributes allows a comparison of the

described method with other established algorithms and

provides an indication of the circumstances under which its

use is appropriate.

Initially, time complexity will be presented. It is worth

underlining the two-phased nature of the method presented

in this paper. The first phase contains the procedures for

constructing and learning the IPNN. Here, the most time-

consuming element is applying the algorithm for calcu-

lating the smoothing parameter through the use of the plug-

in method of complexity Oðnm2Þ for every considered

class. Similarly, this same complexity characterizes the

calculations for the smoothing parameter modification

procedure. At this point, it should be emphasized that these

algorithms are executed once only, and this occurs at the

beginning of the neural classifier procedure preparation.

The second phase consists of utilizing the algorithm for

classifying imprecise information of an interval type. In

contrast to the first phase, in this case, the procedure has

linear time complexity with regard to all parameters n, m,

and J, i.e., O(nmJ). This estimate implies the need for

allotting a short calculation time for completing the clas-

sification task. Moreover, in providing solutions to

encountered problems that are of a practical nature, it

allows for the application of the IPNN methodology within

real-time regime constraints. To facilitate a full under-

standing of the features of IPNN methodology, a short

review of its memory complexity is required. This is

related to an appreciation of the extent of work memory

Neural Comput Applic (2017) 28:817–834 825

123

size as used when the IPNN algorithm is applied. In both

steps of the presented procedure, this complexity has a

linear characteristic with respect to all parameters (as

mentioned in the previous discussion). Here, it should be

emphasized that at the end of the learning phase, for each

class, n smoothing parameters and m modification coeffi-

cients are stored within the algorithm. Thus, the complexity

can be expressed as

J þ
XJ

k¼1

ðmk þ nÞ ð36Þ

of double precise memory elements. This is a very

advantageous estimate that is a consequence of the lack of

use of data structures such as lists, stacks, queues, and

above all, the iterative, rather than recursive nature of the

procedures employed.

6 Numerical verification

Verification of the correctness of the IPNN presented in

this paper when used for classifying interval information

was conducted by way of numerical simulation. The fol-

lowing are the results of applications involving data

obtained using a random number generator with normal

distribution, and with a given vector of expected value, as

well as a covariance matrix. It was derived from the

implemented multivariate normal distribution generator,

based on the concept of Box–Muller [4].

The quality assessment method as utilized in the initial

part of the numerical verification is built upon data which

were obtained by generating a set of random numbers for

an assumed distribution, and then, an analysis was under-

taken of the results correctness of the classification

procedures for both the data types’ interval, and by way of

analogy, for an unambiguous number set. In this compar-

ison case, a classification of precise data, the classical PNN

was applied.

After obtaining the sequences of pseudorandom patterns

representing the different classes, a test data set consisting

of classified items was generated. This included interval

types and, occasionally, unambiguous types (for compar-

ative purposes). Each class corresponded to a set of size

1000 items.

The classified elements were obtained through genera-

tion, by utilizing one of the aforementioned generators set

up by way of a normal distribution of the first pseudoran-

dom number, with the second being taken from a generator

with uniform distribution and which defines the location of

the first as within an interval of arbitrarily assumed length.

This represents information that is of interval type when

there are no set circumstances for the considered

imprecision, although its size is known. Such an interpre-

tation seems to be the most appropriate for the majority of

practical interval analysis applications. The tables below

show the results as obtained by way of the following class

cardinality (m): 10, 20, 50, 100, 200, 500, and 1000. In the

mentioned tables, each cell contains the results gained

through 100 tests, giving an average classification error that

was defined on the basis of these 100 random samples.

The basic form of research conducted for the classifi-

cation method developed here is built upon the information

interval and on uniformly given patterns. For n ¼ 1, the

data for the first class were generated using pseudorandom

number generator setup with normal distribution N(0, 1),

while the data of the second class with normal distribution

N(2, 1). The results of this example are presented in

Table 1. These results will provide comparative data in

relation to that presented in the subsequent tables; there-

fore, this table may be deemed as being the basic example

for comparative purposes. For comparison, in Table 1 and

the other tables, a second column of results derived by way

of employing a classic PNN classifier for precise data is

shown.

In this table, in the last column (wherein the interval

length is 5.0), we can see a rather curious phenomenon.

Namely, it is in a sample size of 100 that we obtain the best

result of the simulation. In our opinion, that this came

about is associated with the choice of a rather extreme set

of simulation parameters, as the length of the interval being

equal to 5 is more the twice greater than the distance

between the expected values of random samples of the

examined classes. The aforementioned situation constitutes

a rather random classification for a large number of cases.

6.1 Multidimensional case

The case study presented here concerns the neural classi-

fication of multidimensional interval information.

Table 1 Results of the numerical verification in the case of pattern N

(0, 1) N (2, 1)

m Interval length

0.00 0.1 0.25 0.5 1.00 2.00 5.00

10 0.1713 0.1720 0.1720 0.1723 0.1729 0.1761 0.1944

20 0.1655 0.1669 0.1669 0.1672 0.1680 0.1713 0.1888

50 0.1602 0.1605 0.1606 0.1609 0.1617 0.1652 0.1848

100 0.1596 0.1601 0.1602 0.1604 0.1615 0.1650 0.1827

200 0.1596 0.1602 0.1604 0.1609 0.1618 0.1650 0.1840

500 0.1591 0.1595 0.1596 0.1602 0.1613 0.1647 0.1844

1000 0.1579 0.1584 0.1588 0.1591 0.1603 0.1637 0.1833

The neural classification—basic concept

826 Neural Comput Applic (2017) 28:817–834

123

Generally, to demonstrate the transparency of the results in

the tables presented in this article, three interval lengths

will be contained. As a relatively small length of the

interval a 0.1 was adopted, a further intermediate value of

0.5, being representative of the large length of 2.0, was

then set.

First, the two-dimensional case will be considered. The

patterns of classes were obtained using a pseudorandom

number generator setup for normal distribution, with the

expected values and unit covariance matrices. The results

are shown in Table 2. It is worthwhile comparing these

with the results of a one-dimensional base case as con-

tained in Table 1, because this test case represents its two-

dimensional equivalent.

The results obtained for the 50 elements sample are

comparable with the outcome for the case of the one-di-

mensional sample with 10 members, and for patterns of

stances, respectively, 100 and 20, 200 and 50, 500 and 100,

as well as 1000 and 200.

In Table 3, test results for the case of three-dimensional

patterns of normal distribution, with the expected values

and unit covariance matrices, are presented. Again, it is

worthwhile comparing the results contained therein with

the results shown in Tables 1 and 2, which were, respec-

tively, obtained for the cases of one- and two-dimensional

patterns.

The results obtained for 200 elements sample size in

three-dimensional case are comparable with outcomes

obtained for 50 and 10 element sample sizes in two- and

one-dimensional case, respectively. A similar situation

exists for the samples of stances 500, 100, and 20, and

1000, 200, and 50.

The above relationships are direct demonstrations of the

phenomenon of the “curse of dimensionality,” which is a

consequence of the exponential increasing in the require-

ments for a random sample size allied with the increasing

dimension of the task. It should be noted that in the case

considered here, with regard to the issue of Bayesian

classification of interval information, after ensuring the

above requirements, the properties of the algorithm do not

evoke the appended claims. Again, as in previous studies,

with increasing sample size, as visualized in Tables 2

and 3, the average classification error diminishes. Addi-

tionally, while the length of the interval increases, then the

value of misclassification expands. More numerical simu-

lation concerning investigation on multidimensional data

will be presented in Sect. 6.7, in which real multidimen-

sional data are taken into account.

6.2 Asymmetry of error for unbalanced pattern sets

Similar tests were performed as in the base case, for sets of

classes of patterns that were generated by pseudorandom

number generators for normal distributions N(0, 1) and N

(2, 1). These tests reveal a symmetry of error in situations

of evenly and unevenly matched patterns. Thus, we see in

Table 4 the results for the case of a series of equinumerous

patterns, while the subsequent two tables provide the

results of classifications involving imbalanced patterns. In

Table 5, the sample cardinality of the second class is twice

larger than the first ðm1 ¼ 2m2Þ, while in Table 6, this

value is ten ðm1 ¼ 10m2Þ. The number of misclassifications

is presented here in two columns: The first is characterized

—as before—by the total number of errors. In the second,

the introduced column is divided into two rows, wherein

the top contains an error based on the number of misclas-

sified elements of the second class that are assigned to the

first, while the bottom row is constituted of the error which

arose from the number of first- class elements that are

misclassified into the other.

Regarding the case of equinumerous patterning, as seen

in Table 4, the average classification error does not show

asymmetry, even at very low-class cardinality (i.e., m ¼ 10

Table 2 The results of the numerical verification for normal distri-

butions with expected values E1 ¼ ½0; 0�T, E2 ¼ ½2; 0�T and unit

covariance matrices

m Interval length

0.1 � 0.1 0.5 � 0.5 2.0 � 2.0

10 0.2082 0.2086 0.2109

20 0.1881 0.1882 0.1910

50 0.1725 0.1728 0.1762

100 0.1676 0.1677 0.1710

200 0.1630 0.1634 0.1679

500 0.1610 0.1615 0.1656

1000 0.1590 0.1593 0.1640

Table 3 The results of the numerical verification for normal distri-

butions with expected values E1 ¼ ½0; 0; 0�T, E2 ¼ ½2; 0; 0�T and unit

covariance matrices

m Interval length

0.1 9 0.1 9 0.1 0.5 9 0.5 9 0.5 2.0 9 2.0 9 2.0

10 0.2295 0.2294 0.2302

20 0.2137 0.2140 0.2159

50 0.1906 0.1908 0.1911

100 0.1826 0.1824 0.1830

200 0.1760 0.1760 0.1767

500 0.1684 0.1687 0.1698

1000 0.1629 0.1631 0.1644

Neural Comput Applic (2017) 28:817–834 827

123

or m ¼ 20). This situation, although generally consistent

with intuition, is still worth noting.

With respect to cases of imbalanced data, the larger the

pattern set generated, the greater the number of elements

incorrectly classified (Table 5). This tendency is more

visible as the ratio of sample cardinality is greater

(Table 6). This is mainly due to the better quality of the

pattern with increased cardinality.

It should again be noted that in each case (represented

by each column of Tables 5 and 6), with increasing sample

size, the average classification error gradually decreases.

Moreover, along with the increase of the interval length,

the value of the classification error increases.

6.3 Multimodal pattern sets

The investigations herein are a continuation of the studies

put forward in the previous section, but as applied to the

multidimensional case and to classes consisting of patterns

obtained by way of pseudorandom number generators for

multimodal distributions. In the following test, the first

class consists of a linear combination of three normal

distributions of the expected values E1;1 ¼ ½0; 0�T, E1;2 ¼
½2; 0�T and E3;1 ¼ ½4; 0�T, with unit covariance matrices and

factors (coefficients) of the combination 1/3, 1/3, 1/3. A

second pattern set contains a linear combination of the two

normal distributions of expected values E2;1 ¼ ½1;
ffiffiffiffiffiffiffi
ð3Þ

p
�T,

E2;2 ¼ ½3;
ffiffiffi
3

p
�T, with unit covariance matrices and combi-

nations ratios 1/2, 1/2.

These distributions are arranged in space so that their

expected values are the vertices of an inverted letter W.

The distances between the centers of adjacent patterns are

also equal to 2, and this existence in the one-, two- and

three-dimensional states is presented in Tables 1, 2, and 3,

respectively. The results of this investigation (involving

multimodal pattern data), as displayed in Table 7, are

especially useful for a comparison with Table 2 for the

two-dimensional case.

Table 4 The numerical simulation results for equinumerous pattern

sets, i.e., m1 ¼ m2

m2 Interval length

0.1 0.5 2.0

10 0.1720 0.0870 0.1723 0.0870 0.1761 0.0841

0.0850 0.0853 0.0878

20 0.1669 0.0823 0.1672 0.0823 0.1713 0.0841

0.0846 0.0849 0.0872

50 0.1605 0.0814 0.1609 0.0814 0.1652 0.0836

0.0791 0.0795 0.0815

100 0.1601 0.0806 0.1604 0.0805 0.1650 0.0827

0.0795 0.0799 0.0823

200 0.1602 0.0797 0.1609 0.0801 0.1650 0.0822

0.0805 0.0808 0.0828

500 0.1595 0.0776 0.1602 0.0778 0.1647 0.0797

0.0819 0.0824 0.0850

1000 0.1584 0.0769 0.1591 0.0770 0.1637 0.0784

0.0814 0.0821 0.0853

Table 5 The numerical simulation results for imbalanced pattern

sets, i.e., m1 ¼ 2m2

m2 Interval length

0.1 0.5 2.0

10 0.1703 0.096 0.1705 0.0958 0.174 0.0942

0.0743 0.0747 0.0768

20 0.166 0.0923 0.1662 0.0924 0.1698 0.0942

0.0737 0.0738 0.0756

50 0.1611 0.0896 0.1617 0.0898 0.1661 0.092

0.0715 0.0719 0.0741

100 0.1605 0.0873 0.1608 0.0873 0.1649 0.0899

0.0733 0.0734 0.075

200 0.1605 0.0874 0.161 0.0876 0.1658 0.09

0.0731 0.0735 0.0758

500 0.1597 0.0862 0.1603 0.0862 0.1646 0.088

0.0736 0.0741 0.0766

1000 0.1596 0.087 0.1599 0.0869 0.1641 0.0882

0.0727 0.0731 0.0759

Table 6 The numerical simulation results for imbalanced pattern

sets, i.e., m1 ¼ 10m2

m2 Interval length

0.1 0.5 2.0

10 0.1753 0.1184 0.1759 0.1186 0.1791 0.1176

0.0569 0.0572 0.0588

20 0.1718 0.1155 0.1722 0.1157 0.1754 0.1176

0.0563 0.0565 0.0578

50 0.1691 0.1143 0.1697 0.1146 0.1740 0.1171

0.0548 0.0552 0.0568

100 0.1675 0.1125 0.1682 0.1129 0.1723 0.1156

0.0550 0.0553 0.0568

200 0.1680 0.1125 0.1684 0.1126 0.1726 0.1152

0.0556 0.0557 0.0574

500 0.1665 0.1103 0.1671 0.1105 0.1717 0.1131

0.0562 0.0566 0.0585

1000 0.1646 0.1100 0.1662 0.1095 0.1697 0.1126

0.0546 0.0567 0.0571

828 Neural Comput Applic (2017) 28:817–834

123

Regarding the multimodal pattern data (Table 7), the

obtained results were about 10–15 % worse than those for

the two-dimensional example (Table 2). This result is

obvious from the intuitively point of view: Each of the

modes for the individual pattern less accurate was esti-

mated on the basis of a relatively smaller number of

elements, and therefore, the patterns are naturally less

accurate (np. for classification task) than those in the uni-

modal case.

However, apart from a slight deterioration in quality, the

classification algorithm itself has not been amended in

terms of its structure nor the speed of calculation. Such

attributes are characteristic for nonparametric methods.

Similar results were obtained for other more complex

cases, both in terms of the number of modes and their

mutual arrangement, also when the individual patterns

consisted of mutually dislocated subsets separated using

fragments of other patterns.

What is more, in this case, the average error of classi-

fication decreases with increasing cardinality of patterns,

while expanding the interval length implies increasing the

value of the classification error.

6.4 Data Toy 2D

This subsection provides the reader with the results of the

tests conducted to verify the appropriateness of IPNN in

the classification benchmark data. However, due to the

nature of current research in this field, with regard to this

type data, in general, this data cannot be located within the

available data repositories and web pages. Although there

are several sets of interval data that can be found, for

example, the oil [35] or the fish data set [32], these are

designed to test only the clustering procedure and do not

include reference elements that are given uniformly.

Therefore, the interval data used in the following tests have

been created on the basis of data obtained from repositories

(with unambiguous data) in the same way as described at

the beginning of the section.

The Toy 2D benchmark data set can be found at the

following website [6]. It features a two-dimensional ran-

dom sample—learning and testing—represented by way of

the image of an eclipse of the Moon. The learning sets

contained within consist of 2152 points associated with the

first class, and 2444 points that are associated with the

second. The test sample was drawn from the two-dimen-

sional regular grid and includes 26,130 elements drawn

from the first class and 34,371 drawn from the second.

Test results for classifying Toy 2D data are presented in

Table 8. The results obtained in this classification test point

to the fact that a neural algorithm copes well with inac-

curate information. As is evident, an interval character,

when introduced to the testing data, naturally engenders a

deterioration in the test results. However, if we look at the

range of these changes, we can see a difference varying

from 1.7 to 8 % (each being evident in comparison with the

results shown in the previous column). With regard to this,

we consider the last result (for interval length 2.0�2.0) as

being incomparable due to having too high a degree of

inaccuracy.

6.5 Data Synthetic Two-Class Problem

In the following research, the data set was obtained from

the well-known example described and referred to in the

monograph of [33]. The data set Synthetic Two-Class

Problem consists of two predefined subsets: pattern and

testing for each of the two classes, and contains, respec-

tively, 250 and 1000 differential elements.

The results of the use of this data set are seen in Table 9.

These results show very similar conclusions to those pre-

sented in the previous sections. However, in the present

case, the data range decreases significantly, resulting in,

with respect to accuracy, the tested interval element sig-

nificantly reducing the quality of the classification by the

fifth column (that which corresponds to the length of 1.0).

6.6 Data Iris Plant

In this study, the collection of real data has been down-

loaded from a known repository located at the Center for

Machine Learning and Intelligent Systems, at the Univer-

sity of California, Irvine, and made accessible on the web

page [7]. This data set is built upon the measured length

and width of both the petals and sepals of the flowers of

three species of iris—Setosa canadensis, versicolor, and

virginica. The first two classes are linearly separable. The

Table 7 Results of the numerical verification for a linear combina-

tion of normal distributions: the expected values E1;1 ¼ ½0; 0�T,
E1;2 ¼ ½2; 0�T, E3;1 ¼ ½4; 0�T and unit standard deviations and factors

of the combination 1/3, 1/3, 1/3 for the first class, and for the second

class, with the expected values E2;1 ¼ ½1;
ffiffiffiffiffiffiffi
ð3Þ

p
�T, E2;2 ¼ ½3;

ffiffiffi
3

p
�T and

unit standard deviations and factors of the combination 1/2, 1/2

m Interval length

0.1 � 0.1 0.5 � 0.5 2.0 � 2.0

10 0.2438 0.2442 0.2509

20 0.2251 0.2257 0.2339

50 0.2067 0.2077 0.2166

100 0.1984 0.1992 0.2092

200 0.1929 0.1943 0.2041

500 0.1886 0.1899 0.2015

1000 0.1859 0.1869 0.1994

Neural Comput Applic (2017) 28:817–834 829

123

data set consists of three equinumerous classes represented

in total, by 150 items. However, the learning and testing

samples are not distinguished. For this reason, in light of

the study’s intentions, the data were randomly placed

within two subsets containing patterns and testing elements

with ratio coefficient 0.5. The results of this study are

found in Table 10.

The table shows the average of 1000 bits of data placed

within random divisions. The intervals were generated in

the same manner as in the previous studies.

The results that were obtained highlight the many pos-

itive features of the neural classification method. The first

is the minimal actual sensitivity to the “curse of dimen-

sionality,” since the classification of a four-dimensional

feature vector has been satisfactorily performed on the

basis of pattern sets containing about 25 elements. Addi-

tional confirmation of the effectiveness of the method

proposed herein was obtained by comparison with the

results presented in [16] for unambiguous data. The above

comparison revealed the presence of a classification error

of no less than 4.5 %. A similar result was obtained in this

study when working with unambiguous data (see the first

column of Table 10). Despite the reduction in accuracy of

classified information brought about by processing it into

imprecise data, to the length of interval 1.0, the results have

not deteriorated. This is worth underscoring.

6.7 The data Seeds Data set and the data Breast

Cancer Wisconsin

Further numerical study examples that illustrate the benefit

of IPNNs are built upon the benchmark of real data col-

lected under the names of Seeds Data set and Breast Cancer

Wisconsin (Original). These data sets are located at the

Center for Machine Learning and Intelligent Systems, at

the University of California, Irvine, and made accessible on

the web page [8]. Both sets of data are real data, nontrivial,

and they are multidimensional. The obtained results indi-

cate how the proposed neural network deal with

multidimensional data.

The first data are drawn from images that were recorded

on a 13� 18 cm X-ray KODAK plate. Each data item

consists of 7 coordinates derived from the geometric

parameters of wheat kernels (Triticum spp.) These data

include: area A, perimeter P, compactness

C ¼ 4 � pi � A=P2, length of kernel, width of kernel,

asymmetry coefficient, and, finally, length of kernel

groove. All these parameters are real-valued continuous.

The examined group consisted of kernels belonging to

three different varieties of wheat: Kama, Rosa, and Cana-

dian. There are 70 elements in each class, randomly

selected from an experiment exploration undertaken at the

Institute of Agrophysics of the Polish Academy of Sciences

in Lublin.

In this data set, as in the previous case, the learning and

testing samples are not distinguished. For this reason, data

were assigned to these groups with the ratio of 0.5. The

results, shown in Table 11, demonstrate the average value

of the error originating from 1000 repetitions of the clas-

sification test.

The next data set is built upon breast cancer databases

obtained from the University of Wisconsin Hospitals,

Madison, and compiled by Dr. William H. Wolberg [27].

This data set contains 683 instances of samples, described

using 10 features (i.e., n ¼ 10). These data are the genuine

case histories of medical research cancer patients. Benign

cancer patients are described in the first class, by way of

using 444 data examples, while patients with advanced

Table 8 The results of the numerical verification for the data Toy 2D

Interval length 0.00 � 0.00 0.10 � 0.10 0.25 � 0.25 0.50 � 0.50 1.00 � 1.00 2.00 � 2.00

Classification error 0.0681 0.0737 0.0750 0.0766 0.0828 0.1097

Table 9 The results of the numerical verification for the data Synthetic Two-Class Problem

Interval length 0.00 � 0.00 0.10 � 0.10 0.25 � 0.25 0.50 � 0.50 1.00 � 1.00 2.00 � 2.00

Classification error 0.142 0.141 0.148 0.147 0.181 0.258

Table 10 The results of the numerical verification for the Iris Data Set

Interval length 0.00 � 0.00 0.10 � 0.10 0.25 � 0.25 0.50 � 0.50 1.00 � 1.00 2.00 � 2.00

Classification error 0.041 0.045 0.047 0.048 0.049 0.066

830 Neural Comput Applic (2017) 28:817–834

123

malignant cancers make up the second group of data of 239

samples. For the purposes of classification, the data were

divided into learning data and testing group, in a proportion

of 0.5. All tests were performed 1000 times, and the mean

value of the classification error is shown in Table 12.

By analyzing the data obtained from the numerical

verification of the Seeds Data set, a very interesting phe-

nomenon is noticeable. In the second column, the

classification error value decreases when compared to the

previous column. The reduction in the classification error

for the data (which is affected by inaccuracy derived from

the interval) is unnatural, because the decline in the quality

of data should result in an increase of misclassification. In

this case, the phenomenon occurs only for the data repre-

sented by the smallest interval. It can be assumed that

positive classification result, which was achieved in this

case, is due to the averaging character of the integration

operator used for the KDE method.

It can be additionally concluded that this problem is

solvable, but with a relatively small decline in both the

quality of classification and the quality of the information

represented by the length of the interval. Both examples,

when compared to the other algorithms, however, again

show the superior quality of the proposed neural network in

overcoming the “curse of dimensionality.” This fact par-

ticularly refers to robustness of the classification algorithm

in the case of the growing accuracy of the interval data.

6.8 Comparison with similar algorithms

for classification

Inaccurate information being represented by interval data is

well known in scientific research. Indeed, presently, there

are many algorithms that can deal with this type of data. As

a first example, let us recall the procedure for a decision

tree based on the Fuzzy Neural Network that is put forward

by [42]. This paper presents a concurrent Fuzzy Neural

Network approach to a developed decision support system

for dealing with imprecise information which is built upon

the Fuzzy C-Means Clustering procedure. Other papers that

are devoted to interval-valued fuzzy decision tree methods

are proposed in [24] [25]. In these cases, the model for the

contracting decision tree, in using interval-valued fuzzy

membership values, employs look-ahead based fuzzy

decision tree induction and interval-valued fuzzy sets. This

approach is useful in situations wherein ascertaining the

precise values of the fuzzy membership parameters is not

possible.

Another example of the use of interval types of infor-

mation is contained in [15]. Herein, the authors propose a

classification algorithm based on inaccurate pattern sets.

However, in this case, the cited algorithm has different

assumptions, since the imprecise reference data are of the

interval type, what is in opposition to the IPNN method,

where precise data type reference data are used.

The last to be listed here is the method associated with

Interval Computing in Neural Networks [31]. In this case,

authors propose constructing one-layer interval neural

networks for processing imprecise-valued information. In

this method, interval input data (including the training

data) and interval-valued weights are applied.

As can be seen in the above brief review, there are

various methods employing the information interval notion

in dealing with raw data. However, current methods either

cannot be applied to the classification task, or those that are

dedicated to a classification problem are built upon dif-

ferent assumptions with respect to the method described in

this article. Here it is good to recall once more that the

proposed procedure is used for classifying imprecise

information represented by the interval vector when the

patterns of particular classes are given as sets of precise

data elements. The subject of this subsection is a com-

parison of the quality of classification of inaccurate

information of the interval type done by way of the method

developed in this work, with two others: one currently

available in the literature and one which is of natural

character. The results of numerical verification based on

these methods are shown in Tables 13 and 14. The first

group of data (Table 13) was derived by way of employing

Support Vectors Machine (SVM), a methodology broadly

used today (due to its particular advantages), while the

other was derived by comparing the number of elements of

each pattern contained in the investigated interval

(Table 14). The results shown in Table 13 were compiled

Table 11 The results of the numerical verification for the Seeds Data set

Interval length 0.00 � � � � � 0.00 0.10 � � � � � 0.10 0.25 � � � � � 0.25 0.50 � � � � � 0.50 1.00 � � � � � 1.00 2.00 � � � � � 2.00

Classification error 0.0777 0.0772 0.0798 0.0828 0.0869 0.1018

Table 12 The results of the numerical verification for the Breast Cancer Wisconsin

Interval length 0.00 � � � � � 0.00 0.10 � � � � � 0.10 0.25 � � � � � 0.25 0.50 � � � � � 0.50 1.00 � � � � � 1.00 2.00 � � � � � 2.00

Classification error 0.0296 0.0301 0.0365 0.0404 0.0486 0.0692

Neural Comput Applic (2017) 28:817–834 831

123

by way of using the SVM procedure, in accordance with

the algorithm presented in the work [45]. As a result of this

procedure, there are three types of decisions: the assign-

ment of an interval element to the first or to the second

class, or the lack of this assignment.

The study considered the amount of misclassification,

lack of decision, and the total error. This last is the sum of

bad decisions and those of the elements for which no

decision was made as to placement. The latter were clas-

sified by drawing lots in a relation that is proportional to

the numbers of patterns (for the case considered here,

equinumerous patterns in the proportion of 0.5 and 0.5).

Comparing the above results with the ones revealed

in Table 1 (the basic case), it is clear that the outcomes

obtained using the SVM method are worse by 5 up to 50 %.

If, however, admitting that the failure of the decision is the

correct action, the above argument ceases to be absolutely

true, yet it is still evident that the obtained results are

different after all the conditions of the problem are

considered.

The second, relatively simple, method of classifying

interval-type information is the procedure for pattern

counting. This consists of reckoning how many elements of

the learning sample are contained in the interval which is

under consideration. In this algorithm, the results obtained

were reported by way of four cases: one incorporating the

amount of miscalculation; one in which the value is derived

from a situation wherein the number of elements from both

patterns belonging to the tested element of the interval type

is equal; one in which the subsequent amount describes a

case wherein the inaccuracy elements do not contain any

learning data; and, finally, one which encompasses the total

error. This last is the sum of wrong decisions, and it also

incorporates a resulting erroneous draw ratio of 0.5 and 0.5

for both cases: wherein the number of elements of both

samples classes was the same, as well as when the tested

element of the interval type does not contain any learning

data. The numerical verification of all these situations is

presented in Table 14.

The results gathered from the use of the concept of

counting can be seen as decidedly worse than those

obtained using the method developed in this article. As it is

evident in a side-by-side comparison, these results are

comparable only with results obtained for large set of

samples (i.e., m ¼ 500) and with long interval elements

(interval length ¼ 0:5 or 2.0).

Table 13 The results of verification by way of using SVM for normal distributions N(0, 1) and N(2, 1)

m Interval length

0.1 0.5 2.0

Error No decision Full error Error No decision Full error Error No decision Full error

10 0.2202 0.0460 0.2432 0.1478 0.1892 0.2424 0.0989 0.3197 0.2588

20 0.2020 0.0652 0.2346 0.1166 0.2355 0.2343 0.0965 0.3146 0.2537

50 0.1678 0.0437 0.1897 0.1152 0.1518 0.1911 0.0789 0.2799 0.2189

100 0.1572 0.0225 0.1685 0.1243 0.0920 0.1703 0.0698 0.2666 0.2031

200 0.1538 0.0148 0.1612 0.1273 0.0692 0.1620 0.0669 0.2582 0.1960

500 0.1530 0.0129 0.1595 0.1286 0.0627 0.1599 0.0646 0.2587 0.1940

Table 14 The results of verification by way of counting the elements contained in the interval pattern data for normal distributions N(0, 1) and N

(2, 1)

m Interval length

0.1 0.5 2.0

Error Equal el. No el. Full error Error Equal el. No el. Full error Error Equal el. No el. Full error

10 0.0216 0.0017 0.9086 0.4768 0.0751 0.0223 0.6440 0.4083 0.1296 0.0573 0.2761 0.2962

20 0.0400 0.0055 0.8291 0.4572 0.1063 0.0435 0.4546 0.3553 0.1469 0.0483 0.1558 0.2489

50 0.0775 0.0227 0.6461 0.4120 0.1345 0.0555 0.2377 0.2810 0.1543 0.0296 0.0722 0.2052

100 0.1085 0.0426 0.4592 0.3594 0.1474 0.0422 0.1297 0.2333 0.1588 0.0177 0.0387 0.1870

200 0.1299 0.0557 0.2834 0.2994 0.1525 0.0272 0.0717 0.2020 0.1617 0.0104 0.0211 0.1774

500 0.1473 0.0454 0.1313 0.2356 0.1563 0.0152 0.0319 0.1799 0.1632 0.0048 0.0093 0.1703

832 Neural Comput Applic (2017) 28:817–834

123

7 Conclusions

This paper proposes a new type of neural network, the interval

probabilistic neural network, which is a generalization of the

established PNN for processing inaccuracy information of the

interval type. In our study, IPNN was applied to the classifi-

cation of multidimensional imprecise information of the

interval type, where patterns of particular classes are given on

the basis of sets of precisely defined elements. The presented

methodology is based on the generalization of Bayes theorem

for processing inaccuracy information.

This study reveals in detail the topological structure of an

IPNN, as well as the whole process of learning that is

involved, with particular attention placed upon the method

used for calculating the smoothing parameter (the plug-in

algorithm) and the procedure for modifying this. In the pro-

posed topological structure, the form of the neurons in the

pattern layer is modified by replacing the radial transfer

functions with an integral operator. Moreover, in the sum-

mation layer, the neurons are enriched by way of employing

normalization operations. In addition, the methodology

applied here takes into account the cardinality of the patterns

set in each class. The numerical studies contained within this

article fully confirmed the positive properties of the pre-

sented method. Of note, the research was conducted using

both random and real benchmark data. In particular, the

results indicate that the developed neural classification

algorithm can be successfully applied to data derived from

complex pattern classes which are inseparable, multimodal,

or even consisting of separate subsets deposited alternately.

To summarize the results presented in the previous section,

we can conclude that these have confirmed the correctness of

the neural algorithm that is the subject of this paper, and

which is developed here for the purpose of classifying inac-

curate information. The obtained numerical results were

compared with those achieved when the tested element has

an unambiguous character by the way of classical PNN

application. Furthermore, the achieved results were also

comparedwith the outcomes obtained by the SVMprocedure

and by themethodwhich counts the elements of data samples

which are contained inside a classified interval element. The

analysis performed here indicates that in the above proce-

dures, a significant difference is evident in the results given as

error based on the number of misclassifications for each

length of interval. In the investigated procedure that is the

subject of this article, this effect was significantly reduced by

averaging the properties of nonparametric estimation inclu-

ded in the interval probabilistic neural networks. By using

nonparametric statistical methodology, the independence of

the IPNN procedure was affected from the occurring distri-

bution of the data. This, in practice, is important especially in

the case of nonstandard and multimodal patterns.

Additionally, it should be noted that the presented neural

network can be naturally generalized so as to deal with the

case of multidimensionality. On testing the classifier based

on IPNN, certain general conclusions can be observed. It can

be seen that the loss of information resulting from the

introduction of imprecision that is of an interval type did not

cause a significant increase in error of classification (carried

out here also using the method investigated in this paper) in

the first columns of Tables 1, 8, 9, 10, 11, and 12 of numerical

results, corresponding to the interval lengths 0.1, 0.25, 0.5,

and 1.0. However, for the lengths 2.0 and 5.0, where they are

the multiples of the range of sample data, such imprecise

interval information obviously considerably lowers the

quality of classification. However, in all studies, an expan-

sion of the cardinality of pattern sets resulted in reducing the

average value of misclassification. In practice, this allows a

successive improvement of the quality of the classification as

new data are acquired. It should be noted that due to the

characteristics of the describedmethod, it is possible to break

the neural process into two parts. With regard to this, the

time-consuming algorithms for calculating the required

parameters and modeling topology of the neural network are

included in the first phase, while the second phase consists of

determining the class membership of the new tested element.

This last action is based mainly on the direct application of

analytical models and can be performed in a relatively short

period of time, and through an online regime. The proposed

interval neural network is a response to the increasing interest

in the processing of data that is of an imprecise character. The

issue of information classification on the basis of interval data

can be illustratively interpreted when unambiguous exam-

ples of the patterns are composed of specific, precisely

measured data, while the compartments represent limitations

in the plans, or estimates, or when their measurements are

difficult to perform. In particular, this neural method can be

used for a classification where unambiguous data are treated

as being specific information from the past (for example,

temperature or exchange rates), while the classified element

represents the inaccuracies that are forecasted in a manner

that is naturally limiting.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Araghi LF, Khaloozade H, Arvan MR (2009) Ship identification

using probabilistic neural networks. In: Proceedings of the

Neural Comput Applic (2017) 28:817–834 833

123

international multiconference of engineers and computer scien-

tists, vol 2, pp 18–20

2. Bascil MS, Oztekin H (2012) A study on hepatitis disease diag-

nosis using probabilistic neural network. J Med Syst 36:1603–1606

3. Bolat B, Yildirim T (2003) Performance increasing methods for

probabilistic neural networks. Pak J Inf Technol 2(3):250–255

4. Brandt S (1999) Data analysis. Springer, New York

5. Budak F, Übeyli ED (2011) Detection of resistivity for antibiotics

by probabilistic neural networks. J Med Syst 35:87–91

6. Data set Toy 2D. http://www.cse.ust.hk/twinsen/assgn2

7. Data set Iris Plant. http://archive.ics.uci.edu/ml/datasets/Iris

8. Data set Seeds Dataset and the Data set Breast Cancer Wisconsin.

https://archive.ics.uci.edu/ml/datasets.html

9. Faraj M, Bigun J (2007) Synergy of lip-motion and acoustic

features in biometric speech and speaker recognition. IEEE Trans

Comput 56:1169–1175

10. Gil MA, Hryniewicz O (2009) Statistics with imprecise data. In:

Meyers RA (ed) Encyclopaedia of complexity and systems sci-

ence. Springer, Heidelberg, pp 8679–8690

11. Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval

analysis. Springer, Berlin

12. Jia J, Liang C, Cao J, Li Z (2013) Application of probabilistic

neural network in bacterial identification by biochemical profiles.

J Microbiol Methods 94(2):86–87

13. Kacprzyk J (1986) Fuzzy sets in systems analysis. PWN, Warsaw

14. Kanevski M (2013) A methodology for automatic analysis and

modeling of spatial environmental data. In: GEOProcessing 2013

of the fifth international conference on advanced geographic

information systems, applications, and services, pp 105–107

15. Kaytoue M, Kuznetsov SO, Napoli A, Duplessis S (2011) Mining

gene expression data with pattern structures in formal concept

analysis. Inf Sci 181(10):1989–2001

16. Kotsiantis SB, Pintelas PE (2005) Logitboost of simple bayesian

classifier. Informatica 29:53–59

17. Kowalski PA, Lukasik S, Charytanowicz M, Kulczycki P (2008)

Data-driven fuzzy modelling and control with Kernel density

based clustering technique. Pol J Environ Stud 17:83–87

18. Kowalski PA (2009) Bayesian classification of imprecise inter-

val-type information. Ph.D. Thesis, Systems Research Institute,

Polish Academy of Sciences (in Polish)

19. Kowalski P, Kulczycki P (2014) Neural classification for interval

information. In: Agre G, Hitzler P, Krisnadhi A, Kuznetsov S

(eds) Artificial intelligence: methodology, systems, and applica-

tions. Lecture notes in computer science, vol 8722, pp 206–213

20. Kulczycki P (2002) Statistical inference for fault detection: a

complete algorithm based on kernel estimators. Kybernetika 38

(2):141–168

21. Kulczycki P, Charytanowicz M (2010) A complete gradient

clustering algorithm formed with kernel estimators. Int J Appl

Math Comput Sci 20:123–134

22. Kulczycki P, Charytanowicz M, Kowalski PA, Lukasik S (2012)

The complete gradient clustering algorithm: properties in prac-

tical applications. J Appl Stat 39(6):1211–1224

23. Kusy M, Kluska J (2013) Probabilistic neural network structure

reduction for medical data classification. In: Artificial intelligence

and soft computing, pp 118–129

24. Lertworaprachaya Y, Yang Yingjie, John R (2010) Interval-val-

ued fuzzy decision trees. In: IEEE international conference on

fuzzy systems 2010, pp 1–7

25. Lertworaprachaya Y, Yang Yingjie, John R (2012) Fuzzy deci-

sion support applied to machine maintenance. Appl Soft Comput

24:851–866

26. Lukasik S, Kowalski PA, Charytanowicz M, Kulczycki P (2008)

Fuzzy model identification using kernel-density-based clustering.

In: Atanassov K, Chountas P, Kacprzyk J, Krawczak M, P Melo-

Pinto P, Szmidt E, Zadrozny S (eds) Developments in fuzzy sets,

intuitionistic fuzzy nets and related topics. Applications, vol 2.

EXIT, Warsaw, pp 135–146

27. Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via

linear programming. SIAM News 23(5):1–18

28. Meshoul S, Batouche M (2010) A novel approach for online

signature verification using fisher based probabilistic neural net-

work. In: Proceedings of IEEE symposium on computers and

communications, pp 314–319

29. Nandhini R, Subhasini P (2013) Classification of ECG images

using probabilistic neural network based on statistical feature

analysis. In: Proceedings of the fourth international conference on

signal and image processing, pp 535–544

30. Ooi SY, Teoh ABJ, Ong TS (2008) Compatibility of biometric

strengthening with probabilistic neural network. In: Processing of

international symposium on biometrics and security technologies,

pp 1–6

31. Patio-Escarcina RE, Bedregal BRC, Lyra A (2004) Interval

computing in neural networks: one layer interval neural networks.

In: Das G, Gulati VP (eds) Intelligent information technology.

Lecture notes in computer science. Springer, Berlin, pp 68–75

32. Peng W, Li T (2006) Interval data clustering with applications.

In: Processing of 8th IEEE international conference on tools with

artificial intelligence, pp 355–362

33. Ripley BD (1996) Pattern recognition and neural networks.

Cambridge University Press, Cambridge

34. Rutkowski L (2008) Computational intelligence: methods and

techniques. Springer, Berlin

35. Sato-Ilic M (2003) Weighted principal component analysis for

interval-valued data based on fuzzy clustering. In: Processing of

international conference on systems, man and cybernetics, vol 5,

pp 4476–4482

36. Silverman BW (1986) Density estimation for statistics and data

analysis. Chapman and Hall, London

37. Specht DF (1988) Probabilistic neural networks for classification

mapping, or associative memory. In: Proceedings of IEEE

international conference on neural networks, pp 525–532

38. Specht DF (1990) Probabilistic neural networks. Neural Netw

3:109–118

39. Standal IB, Rainuzzo J, Axelson DE, Valdersnes S, Julshamn K,

Aursand M (2012) Classification of geographical origin by PNN

analysis of fatty acid data and level of contaminants in oils from

Peruvian anchovy. J Am Oil Chem Soc 89(7):1173–1182

40. Tran T, Nguyen T, Tsai P, Kong X (2011) BSPNN: boosted

subspace probabilistic neural network for email security. Artif

Intell Rev 35:369–382

41. Tran TP, Cao L, Tran D, Nguyen CD (2009) Novel intrusion

detection using probabilistic neural network and adaptive boost-

ing. Int J Comput Sci Inf Secur 6:83–91

42. Tran C, Abraham A, Jain L (2003) A concurrent fuzzy-neural

network approach for decision support systems. In: The 12th IEEE

international conference on fuzzy systems, vol 2, pp 1092–1097

43. Wand MP, Jones MC (1995) Kernel smoothing. Chapman and

Hall, London

44. Zaknich A, Desilva CJS, Attikiouzel Y (1991) A modified

probabilistic neural network (PNN) for nonlinear time series

analysis. In: Proceedings of IEEE international joint conference

on neural networks, vol 2, pp 1530–1535

45. Zhao WB, Huang DS, Guo L (2008) Comparative study between

radial basis probabilistic neural networks and radial basis func-

tion neural networks. In: Lecture notes in computer science, vol

2690. Springer, Berlin, pp 389–396

46. Zheng H, Jun W (2006) Electronic nose and data analysis for

detection of maize oil adulteration in sesame oil. Sens Actuators

B Chem 119(2):449–455

834 Neural Comput Applic (2017) 28:817–834

123

