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Abstract. A stochastic model of the development of the Alpine rhododendrons
is discussed here. Two species appearing in the Austrian Alps are considered:
Rhododendron hirsutum and Rhododendron ferrugineum. The idea of the
presented model is based on the theory of branching processes. The technique
of generating functions is also used. The correctness of the model is checked
by a computer simulation. In the model, the distribution of the number of
living shoots and flowers in bloom in particular years of the life of a shrub, are
considered. This may become a basis for a simulated development of an Alpine
rhododendron population over many years, and in particular, a forecast of its
future fate.

Introduction
High mountain populations of the Alpine rhododendrons: Rhododendron hir-
sutum and Rh. ferrugineum, have permanent underground organs whose mor-
phological structure makes it possible to estimate the age and years of flowering
as well as to observe other features useful in the construction of a model. The
normal development, repeated with great regularity, has facilitated the mod-
eling of the vital processes of both reproduction and prognosis. This gives us
interesting prospective knowledge of their dynamics over many years and even
centuries.

The first studies of a stochastic model of the development of the Alpine
rhododendron were carried out under special assumptions that a process char-
acterizing the growth of an individual is Markovian and the number of new
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shoots has Poisson’s distribution [1]. Good results obtained led to the prepa-
ration of a more general model in which those restrictive assumptions were
dropped. This is the subject of the present paper. The results obtained by
a computer simulation confirmed a wide range of application of the model
in demographic considerations referring to some perennials with permanent
underground organs.

Description of the development of Alpine rhododendrons

Both the species of the considered here Alpine rhododendrons: Rhododen-
dron hirsutum and Rh. ferrugineum, are characterized by a similar scheme of
growth [3].

In the first year the germinating seed produces one shoot, at the tip of
which a new section grows every year (Fig. A-1,2,3). The side shoots growing
on these older sections (Fig. A-4,5,7,10) do not have much influence on the
form of the mature individual, as their vitality is limited (Fig. A-7,9,10,13).
Every year the plant may wither in whole or in part. Between eleven and
sixteen years of age, in the spring, the plant may bloom for the first time
(Fig. A-12,13). From this instant the plant begins the fundamental part of its
life-cycle, constituting a basis for the construction of a model.

The origin of the shoots below the inflorescence, whose number varies from
one to seven (Fig. A-13), is thus connected with the process of florescence.
Any of the shoots may wither in any year. The new shoots grow from May
to July. It is possible that the shoot may not put out any new shoots after
flowering (Fig. A-17,18). Every new shoot may bloom between two and twelve
years of age, initiating the next step in this life-cycle with all possible variants.
If it does not flower during this time, it dies.

In the process of development of specimens of Rhododendron hirsutum and
Rh. ferrugineum there may be deviations from the scheme just specified,
resulting from the richness of natural phenomena. Their frequency, however,
is so insignificant that in a model aimed for practical application they may be
ignored.
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Fig. A. Scheme of shrub development in Rhododendron hirsutum and Rh. ferrugineum
(numbers denote age of specimen)
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Mathematical model

Let probability distributions of the following quantities characterizing the de-
velopment of a single specimen of Rhododendron hirsutum or Rh. ferrug-
ineum, be given:

- year of the specimen’s first florescence,

- number of shoots appearing after florescence,

- year of florescence of the shoot,

- year of withering of the shoot;
the second of these distributions refers both to the first inflorescence of the
specimen and to later flowering of particular shoots. The following assump-
tions have also been made:

- the fact that the florescence or withering of a given shoot depends solely
on how many years ago this shoot flowered the last time,

- the events characterizing the development of various shoots are indepen-
dent.

In the model proposed, the possibility that the shrubs might die before the
first florescence has not been taken into account, since from the point of view
of simulation of the life of a single specimen, this case is of no interest.

The subject of the following analysis will be a two-argument family of ran-
dom variables {f*}(n = 1,2,... and k = 0,1,...,n — 1), where f* denotes
the number of shoots appearing at the end of the nt* year of life of a specimen
that last flowered k years ago. On the basis of the specified distributions and
assumptions, the generating function of the random variables f*, defining also
their distributions, will be calculated now. In particular, the expectation of
the number of living shoots appearing in the nt® year of the life of a shrub,
will be specified. The number of living shoots best characterizes the condition
of separate individuals.

The functioning of that model will be discussed in the subsequent part of
the paper dealing with computer simulation.

Let:

—a;(j = 1,2,...) denote the probability that the first florescence took place
in the jth year of specimen’s life,

—-bj(j = 0,1,...) denote the probability that after flowering j new shoots
appear,

—cj(j =1,2,...) denote the probability that the shoot will flower in j years
since the last florescence, on condition that until then it will not die (and will
not flower),

—d;(j =0,1,...) denote the probability that the shoot will die in j years
since the last florescence, on condition that until then it will not flower (and
will not die).
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Now let:

(1) b; = i (J’) bi(1 — do)? di~?

=3

for j =0,1,...; Zj is therefore the probability that the value of the random
variable, defined as the number of those shoots that appeared after florescence,
equals j. The generating function of this random variable is given by the
formula:
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Let f,’f (n =0,1,... and k = 0,1,...,n) denote the number of shoots
appearing on a shrub at the end of the n** year, counting from the year of the
first florescence, last flowering k years ago. The generating function of this
random variable is expressed by the formula:

3) Fi(e) = P(ff = i)’

=0

Of course:

g o

Now the generating function f’,’f for n > 1, will be computed.
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First let £ > 1. The shoots that appeared in the n!* year and flowered
- exactly k years ago are those that appeared in the (n — 1)** year and were
then included in the group finally flowering k£ — 1 years ago, and since then
have neither flowered nor died. As the events of the florescence of individual
shoots are unrelated, the conditional distribution of the random variable fJ,

at the assumed value fkj, is binomial. Thus:

®  P(R=il=i)=(})0-a-dytar

Since ﬁ’f < f,'f:ll, it is true that:

(6) P(fi=4)=P(Fr=i et 24),
and so it follows from the total probability formula:

oo

M) P (f,’: = j) =Y (;) (1= cx — di) (ck + dy) =i P (f,’::ll = z) :

i=j

Substituting the probability obtained in formula (3) and using Newton’s bi-
nomial equation one can obtain:

Fi(z) = ngg (;)(1 — ¢k — di) (ck + di) TP (f;’::ll = ')
(8) - ,Z':P (7::11 = ) FZO (;) (1 - cx — di)’z7 (ck + di)* ™
= iP (f’“:} = i) [(1 = cx — di)z + ci + di]’

= F‘::ll (1 — Ck — dk)z+ck +dk].

Hence for n = 1,2,... and k = 1,2,...,n the following recurrent pattern is
true:

©) F () = FA1 (1 - ok — dy)o+ ek + dal.
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Finally, the demarcated generating function ﬁg remains to be calculated for

n=1,2,.... The random variable f~2 characterizes the number of shoots that
originated from shoots flowered in the n'* year, and so it is the sum of n
independent random variables {¢7} (m = 1,2,...,n), where g denotes the

number of new shoots out of those shoots which had last flowered m years
ago, that did not die in the n'* year. Since the generating function of the sum
of independent random variables is equal to the product of their generating
functions, one obtains:

(10) @) =[] 6r@),
where:
(11) Gy (z) = ZP(y,T =)'

is the generating function of the random variable g/*. In turn, g is the sum of
p independent random variables with a distribution whose generatmg function
is B so that p denotes the number of shoots flowering in the nt* year. Hence
for the fixed value r the provisory generating function may be calculated:

(12) Gr(lp=r) =3 P} =ilp=r)a

=[B(z)]".

Because the shoots that originated in the nt" year but did not flower for m
years, came from those that appeared towards the end of the year n — 1 and
did not flower for m — 1 years, so:

— Tm—1 _ _[9)\ r _ q-r
(13) P (p =r|fry = q) = (r)cm(l [ L
which yields:

cdCbie —q)i(?)cin(l—cmw'*‘[ﬁ(x)r

(14) i=0
= {cmﬁ(m) +1- cm]q,
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and therefore, using the total probability formula one obtains:

(15) Gy () =qZ=%P( mol— q) (CmB(x)+ 1 "Cm)

Finally:

(16) F@) = [T B (enBl@) +1-cm)
m=1

forn=1,2,.

Formulas (4), (9) and (16) used recurrently provide the generating function
of number of the shoots when the year is counted relatively, i.e. from the first
florescence. It will now be replaced by the absolute age.

For consistency of a notation, forn = 0,1,... and k=n+ 1,2+ 2,... let
the random variables f’“ be defined as equal to zero with probability 1.

Now let n = 1,2,... and let I (I = 1,2,...,n) denote the year of the
first ﬂorescence Then for n=12... and k=0,1,...,n — 1 the equality
f¥ = fk_, is true, and so:

P (fy =3) ZP( i=3)Pl=1)
zzaip(jjf—i=j),
i=1

(17)

which implies:

(18) Fr(z) =) aF} i(a),
i=1

forn=1,2,... and k=0,1,...,n - 1.

Using formulas (4), (9), (16) and (18) one can recurrently calculate the
generating functions of all the random variables f¥, which is equivalent to
finding their distributions. In particular, it follows from equation (18) that:
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forn=1,2,... and k=0,1,...,n — 1. From formula (4) one obtains:
~ ~ /
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In turn, for n = 1,2, ... equation (16) yields:
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= zi:di m-1 [ Cm (z)+(1—cm)]
2 =3 (Fr") WenB)
= (1 —do)(izb,)[i:lcm (Fmit)]
=1 m=

and formula (9) implies:
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fork=1,2,...,n—1. Since the expected value of the number of living shoots
in the nt® year of the life of an individual is:

n—1

(23) YE(fF),

k=0

it may be recurrently calculated on the basis of formulas (20)—(23). Their
interpretation is evidently in agreement with intuition.

The random variables characterizing the number of flowers blooming and
as a consequence the number of seeds, may be considered in a similar way.

Computer simulation. Conclusions

To check the accuracy of the presented model, a computer simulation has
been prepared. It simulates the development of a single individual, recording
its picture symbolically. Fig. B presents an exemplary result. The symbol “-”
denotes the annual growth of the shoot, “4+” or “#” its death, “*” or “#”
symbolize the blooming flower, “A” and “|” are connected with the shoots
appearing in the meantime (thus the symbol “#” denotes the withering of the
shoot in the same year in which it flowered). The changes taking place in a
specified year are contained in one column of figures. Fig. C shows an exem-
plary interpretation of the architecture of the shrub described symbolically in
Fig. B.

The data introduced into the program have been taken in a form different
from those appearing directly in the model, but more convenient for identifi-
cation, and so the following random variables have been taken as a data:

- the year of the first florescence of a specimen,

- the number of shoots appearing after a florescence,

- the year of florescence of the shoot on condition that it flowers sometimes
(and does not die),

- the year when the shoot dies, on condition that it sometimes dies (and
does not flower),
as well as the number r — the total probability of the death of the shoot (1 —r
is thus the total probability of its florescence).

On the basis of the observational material, it may be assumed that the
probability measures of those random variables are concentrated on the sets
{1,2,...,20},{0,1,...,20},{1,2,...,20} and {0, 1,...,20} respectively. On
account of this, the probability that these random variables take the value j is
denoted by a; —j =1,2,...,20,b; -5 =0,1,...,20,c; -5 =1,2,...,20 and
d; -3 =0,1,...,20, respectively. In particular, dj is a conditional probability
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Fig. B. Symbolic picture of shrub obtained by computer simulation
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Fig. C. Example of interpretation of shrub architecture recorded symbolically in Fig. B
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* The identification of the distributions of the random variables can be made
with no difficulty. For instance, given a considerable number of observations of
dead shoots it is easy to mark how many of these died in particular years and
hence calculate the values of the parameters dj. For both the species studied,
these distributions were so much alike that they were recognized as the same.
The results are shown in Fig. D.

j aj bj c;-‘ c]' Cj d; d]' dj
rp=0.615 r;=0.635 rp=0.615 r;=0.635

0 0.02 0.06 0.037 0.038
10 0.07 0 0 0 0.08 0.051 0.053
20 0.325 0.215 0.091 0.086 0.013 0.096 0.099
3 0 0.325 0.585 0.3 0.285 0.285 0.333 0.337
4 0 0.17  0.105 0.115 0.108 0.15  0.297 0.3
50 0.065 0.04 0.071 0.066 0.115 0.349 0.352
6 0 0.02 0.015 0.044 0.041 0.07 0.341 0.345
70 0.005 0.015 0.07 0.065 0.06 0.478 0.482
8 0 0 0.005 0.048 0.045 0.015 0.24 0.244
9 0 0 0.005 0.066 0.062 0.015 0.338 0.344

10 0 0 0.005 0.107 0.1 0.01 0.381 0.388

11 025 0 0.005 0.192 0.182 0.005 0.381 0.388

12 0.295 0 0.005 0.385 0.365 0.005 1 1

13 0.295 0 0 0 0 0 0 0

14 0.04 0 0 0 0 0 0 0

15 0.015 0 0 0 0 0 0 0

16 0.015 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0

Fig. D. Parameters of distributions of random variables considered in simulation

The parameter r turned out to be the most difficult to determine. It may
be realized intuitively that it is a markedly conditional parameter, i.e. the
model under consideration is very sensitive to possible errors in identification.
It was not possible to apply a direct method, since in the younger parts of the
plant there appear shoots which may still either flower or wither, while in the
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_older parts some of the withered shoots rot and become imperceptible. For
various reasons indirect methods did not give results. Finally, the parameter r,
different for the two species, was determined on the basis of the analysis of the
simulation results for its individual values and, in particular, on observations
of the number of living shoots in consecutive years. Preliminary estimations
have been obtained on the base of the fact that for:

1 1 1

1— —

E®) Y2 b, 2.85

|
1R
1R

(24) ro=1- 0.65

the expected value of the number of living shoots is constant in consecu-
tive years. Therefore the parameter r should have a slightly lower value.
Finally ), = 0.615 was accepted for the species of Rhododendron hirsutum and
r¢ = 0.635 for Rh. ferrugineum.

The distributions characterizing the first florescence of a specimen and the
number of shoots originating after the florescence do not need elaboration,
and may be applied directly. In accordance with the biological cycle, it has
been assumed that in a given year the first florescence may possibly occur,
and then the withering is possible. Then (Fig. D.):

(1—=r)ct

(25) g={ = 0
0 if ¢°=0
rd} L
(26) A= T if d#0
0 if d°=0,

where:

i-1 j=1
(27) c~=1—(1—7‘)262‘—r2d2‘

i=1 =0

i j=1
(28) d"=1-(1-r)) ¢ -rY dr.
i=1 =0
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First, the computations of the program give the value of the random variable
defining the year of the first florescence on the basis of the parameters a;,
as well as the value of the random variable deciding the number of shoots
appearing on the basis of the parameter b;. Next, the changes taking place in
consecutive years are defined; in each year all the living shoots are considered
in turn. Thus, after determining the number of years which have passed since
the last inflorescence, the fact whether a shoot flowered or not in the year
under observation is established on the basis of the parameters ¢;. If it did, the
number of shoots appearing on it is calculated on the basis of the parameters
b;. Next, on the basis of the parameter dy, it should be established for each
of them whether it withers in the year of appearance or not. If, however, the
shoot in question does not flower, it should be established whether it withers
or not, on the basis of the parameters d;.

In accordance with the results, the symbolic picture of the shrub is sup-
plemented by the symbols: “*¥7  “A” «? «4» op “4” Ttg printed letter is
preceded by the symbol “|” in order to facilitate the interpretation. The re-
sults are recorded in the form of a symbolic picture (Fig. B) and tables. Fig. E
shows such a table for a shrub in Fig. B and C, covering a period of 50 years.
The variety of the changes occurring is worth noticing. As in nature, there are
years of prosperity and years of crisis. What is more, they have a tendency
to appear alternately. Fig. I gives a few results of the simulating program for
the species of Rhododendron hirsutum, as does Fig. G for Rh. ferrugineum.
Their diversity is evident, as are the cases of shrubs dying at various ages,
resembling the modeled nature again.

In conclusion it should be noted that the computer simulation displayed a
satisfactory consistence with the reality of the results obtained by using the
presented model. This consistence however, is difficult to perceive with the
help of numerical criteria.

One problem which emerged during the simulated verification of the cor-
rectness of the model, is overmuch frequent death of the shrub between 15
and 40 years of age. This may be explained by the existence of fluctuations,
natural in probabilistic models. They proceed around the slowly increasing
expected value of the number of living shoots, at this stage still near zero. The
survival of the shrub indicates that there was not a single year in which the
number of living shoots assumed the value zero, which is the product of many
events. It should be remarked that symmetry is not preserved here, because
there is a lack of similar limitation “from above”.
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Year Number Number Numbers Increase Increase Increase

of living of dead of in number in number in number
shoots shoots flowers of living of dead of
shoots shoots flowers

1 1 0 0 1 0 0
2 1 0 0 0 0 0
3 1 0 0 0 0 0
4 1 0 0 0 0 0
5 1 0 0 0 0 0
[ 1 0 0 0 0 0
7 1 0 0 0 0 0
8 1 0 0 0 0 0
9 1 0 0 0 0 0
10 1 0 0 0 0 0
11 1 0 0 0 0 0
12 3 0 1 2 0 1
13 3 0 1 0 0 0
14 5 0 2 2 0 1
15 5 0 2 0 0 0
16 3 2 2 -2 2 0
17 3 2 2 0 0 0
18 4 3 3 1 1 1
19 4 3 3 0 0 0
20 4 4 4 0 1 1
21 4 4 4 0 0 0
22 6 4 6 2 0 2
23 5 5 6 -1 1 0
24 6 7 7 1 2 1
25 8 7 9 2 0 2
26 11 7 10 3 0 1
27 12 7 11 1 0 1
28 9 10 11 -3 3 0
29 7 14 12 -2 4 1
30 7 16 13 0 2 1
31 6 17 13 -1 1 0
32 6 17 13 0 0 0
33 9 17 14 3 0 1
34 8 18 14 -1 1 0
35 9 19 16 1 1 2
36 10 20 18 1 1 2
37 11 22 19 1 2 1
38 9 24 19 -2 2 0
39 10 27 21 1 3 2
40 8 30 23 -2 3 2
41 7 31 23 -1 1 0
42 9 31 24 2 0 1
43 13 33 27 4 2 3
44 11 35 27 -2 2 0
45 13 36 28 2 1 1
46 13 39 29 0 3 1
47 10 42 29 -3 3 0
48 12 45 31 2 3 2
49 16 45 33 4 0 2
50 12 49 33 -4 4 0

Fig. E. Table characterizing development of shrub shown in Fig. B and C



Number Year
1 80
2 80
3 18 +
4 36 +
5 80
6 80
7 80
8 80
9 80
10 80
11 59 +
12 27 +
13 80
14 80
15 32 4+
16 80
17 80
18 80
19 80
20 80
21 27 +
22 80
23 80
24 80
25 80
26 80
27 32 +
28 80
29 42 +
30 80
31 80
32 80
33 80
34 80
35 80
36 73 4+
37 16 +
38 26 +
39 80
40 80
41 80
42 23 +
43 80
44 80
45 80
46 60 +
47 19 4+
48 80
49 80
50 49 +

Number
of living
shoots

83
50
0+
0+
39
81
73
103
108
65
0+
0+
7
52
0+
147
35
99
199
113
0+
173
60
128
44
79
0+
69
0+
133
159
22
93
71
55

Number
of dead
shoots

218
248
5+
16 +
185
273
229
333
447
273
86 +
13 +
70
337
11 +
438
124
366
590
625
8+
363
386
336
274
369
21 4
488
18 +
425
599
361
217
335
348
77 +
4+
12 4
174
297
391
3+
115
335
349
81 +
2+
420
338
28 +

Numbers
of
flowers

145
163
2+
10 +
119
176
155
232
285
179
40 +
4+
44
196
7+
323
97
245
405
392
2+
277
251
240
163
237
8 +
306
9+
283
403
211
153
220
225
46 +
1+
5+
116
201
267
2+
78
196
228
46 +
1+
274
235
18 +

53

Fig. F. Results of simulation obtained for Rhododendron hirsutum (symbol “+” distin-

guishes dead shrubs)
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Number Year
1 80
2 43 4+
3 80
4 80
5 80
6 80
7 19 +
8 80
9 32 +
10 29 +
11 80
12 80
13 80
14 80
15 56 +
16 80
17 36 +
18 80
19 26 +
20 45 +
21 27 4+
22 80
23 80
24 30 +
25 80
26 80
27 80
28 80
29 35 +
30 40 +
31 76 +
32 27 +
33 80
34 80
35 80
36 23 +
37 80
38 80
39 80
40 80
41 34 +
42 80
43 21 +
44 20 +
45 15 +
46 80
47 80
48 66 +
49 80
50 80

Fig. G. Results of simulation obtained for Rhododendron ferrugineum (symbol “+” distin-

guishes dead shrubs)

Number
of living
shoots

77
0+
11
41
30
9
0+
32

Number
of dead
shoots

241
36 +
170
134
166
110
3+
480
13 +
14 +
212
385
443
339
56 +
251
16 +
102
5+
26 +
8 +
245
232
11 +
84
165
313
257
27 +
27 +
68 +
17 +
230
276
296
8 +
287
154
299
472
14 +
631
5+
5+
3+
250
235
55 +
101
515

Numbers
of
flowers

170
21 +
90
88

100
60

3+

285

6 +
6 +

123

241

285

200
34 +

146

9+
55
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Solution of that problem can be the dependence of the random variable dis-
tribution of withering or florescence of shoots on the number of living shoots,
e.g. by the value of the parameter r. Such behavior unfortunately increases
the complexity of the model, which may make render its application difficult,
on increasing the number of parameters requiring identification. In addition
to this, the exploitation of this theory and the formulas becomes more com-
plicated. In spite of these reservations, a creation of such a model will be
the subject of further investigations of the modeling of biological processes by
probabilistic models, although it should be emphasized that by means of the
model which is simpler and so easier to use, quite satisfactory results have
been achieved.
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