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PRINCIPLE OF CONFOCAL IMAGING SYSTEM

Ilumination pinhole

Detection pinhole

Photodetector Focal plane

I Much of the out-of-focus light eliminated from detection
I High optical resolution (sample depth direction)
I Image acquired point-by-point (small number of detectable photons: down to

8-12 photons per highest intensity pixel)
I Application area: biomedical research
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SEEING THE WOOD FOR THE TREES

Confocal microscopy
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SEEING THE WOOD FOR THE TREES

Confocal macroscopy
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CHALLENGES

Confocal macroscopy:
I Determine characteristics of the noise and point spread function (preferably,

based on measured data)
I Improve statistical description of images: models incorporating richer prior

knowledge
I Propose image deconvolution tools

Algorithms:
I Propose image restoration formulations taking into account image properties

and noise model
I Poisson-Gauss noise
I Convex and non-convex regularizations

I Find ways to optimize these formulations exactly and efficiently
I Discrete, continuous and combined approaches
I Primal-dual algorithms

I Find ways to estimate noise parameters from available data (From time series,
From single images)
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OVERVIEW

Noise estimation

Bleaching decay: k̂

Parameters: α̂, σ̂2, ĉ

x̂

Noise estimation
Parameters:
α̂, σ̂2, ĉ

Discrete-Continuous
Framework for
QuantizationQ

Restoration under
Poisson-Gaussian

noise

Restoration with
`2-`0

sparsity measures

x̂

x̂

Problem: Tools related to Poisson-Gaussian noise
Problem: Discrete-continuous optimization: All variables take value from an
unknown discrete set of known cardinality (inclusion of a given continuous set)
Problem: Restoration with both convex and non-convex sparsity measures
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PUBLICATIONS

Journal papers (3):

I Identification of Poisson-Gaussian noise parameters (IEEE TSP 2013 - in
revision)

I `2 − `0 functions as sparsity measures (SIAM Journal on Imaging Science
2012)

I Discrete-continuous optimization (JMIV 2011)

International IEEE conferences (7):

I Identification of Poisson-Gaussian noise parameters (EUSIPCO 2011, ISBI
2012)

I Restoration of data corrupted with Poisson-Gaussian noise (ICASSP 2012)
I `2 − `0 functions as a sparsity measures (EMMCVPR 2011, ICIP 2011)
I Discrete-continuous optimization (ICIP 2010)

I Fast Recursive Ensemble Convolution of Haar-like Features (CVPR 2012)
6 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

CONTENTS

INTRODUCTION
Poisson-Gaussian noise
Degradation model
Restoring data corrupted by Poisson-Gaussian noise

NOISE IDENTIFICATION
Discrete-Continuous problem formulation
Continuous step: EM algorithm
Discrete step: graph-cut
Related work: Vector quantization
Related work: Multiple image noise identification

IMAGE RESTORATION
Image restoration under Poisson-Gaussian noise
`2 − `0 sparsity measures

CONCLUSIONS
Contributions
Ongoing work
Perspectives

7 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

POISSON-GAUSSIAN NOISE

Physical acquisition process:

I Various noise sources
I Some are signal dependent, e.g. photon noise
I Some are signal independent, e.g. electronic noise, thermal noise etc.

I Too complex for either Poisson or additive Gaussian noise models
I Next simplest model: sum of Poisson and Gaussian models for signal

dependent and signal independent components, respectively.

I A recent topic of interest in the literature [Snyder et al. 1993] [Delpretti et
al. 2008] [Benvenuto et al. 2008] [Luisier et al. 2011] [Gil-Rodrigo et al.
2011] [Chakrabarti and Zickler 2012] [Li et al. 2012]

Imaging related application areas:

I Biology (Fluorescence imaging systems)
I Astronomy

I CCD camera imaging
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DEGRADATION MODEL

Poisson noise

x ∈ X - original signal
x = (xi)i∈X xi ∈ [0,+∞) Zi(x) ∼ P([Hx]i))
H : X 7→ Y - blur
z(x) =

(
zi(x)

)
i∈X - realization of

(
Zi(x)

)
i∈X

α ∈ (0,+∞) - scale parameter

y = α z(x) + w

Observations

y ∈ Y
y = (yi)i∈Y

White Gaussian noise

Wi ∼ N (c, σ2)
w = (wi)i∈X - realization of

(
Wi
)

i∈X
c ∈ R - mean σ2 - variance

[Zhang ’07] [Boulanger et al. ’08] [Delpretti et al. ’08] [Luisier et al. ’11]
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RESTORING DATA CORRUPTED BY

POISSON-GAUSSIAN NOISE

Scaled gradient method [Benvenuto et al. 2008]

Gradient of neg-log likelihood approximated by:

exp

− 1 + 2([Hx + c ]i)− yi

2([Hx + c ]i) + σ2



Alternating-minimization alg. [Gil-Rodrigo et al. 2011]

Neg-log likelihood approximated by:

1

2

∥∥∥∥∥∥
(

D
σ̃2 (Hx)

)−1/2

(y− Hx)

∥∥∥∥∥∥
2

2

Covariance matrix D
σ̃2 depends on noise parameters

Augmented Lagrangian method
[Chakrabarti and Zickler 2012]

Neg-log likelihood approximated by:

∑
i∈X

[Hx]i + σ2 −
(

yi + σ2

)
log

(
[Hx]i + σ2

)

Augmented Lagrangian method [Li et al. 2012]

Neg-log likelihood approximated by:

1

2

∥∥∥∥∥∥
(

σ̃2 I + (Hx)

)−1/2

(y− Hx)

∥∥∥∥∥∥
2

2

Noise parameters θ are assumed to be known⇒We need to identify them
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Noise identification
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IDENTIFICATION STRATEGIES

w

Measurements

y = z(x) + w
z(·) +

θ, x

What strategy to find vector of unknown noise parameters θ?

Multiple image noise identification Single image noise identification

Difficulty: Nonstationarity of signal in
time due to the bleaching process. The
simplest model of bleaching:
exponential decay of signal in time

Difficulty: Signal dependent noise⇒
One needs to find homogeneous
regions of the image where the noise
can be considered as stationary
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SINGLE IMAGE NOISE IDENTIFICATION -
SIGNAL DEPENDENT NOISE

Segmentation
step

Estimation
step

θ

y

D4

D4

D1

D5

D5

D3

D7

D2

D6

P

Existing methods ([Foi et al. 2008],[Li et al. 2010], [Paul et al. 2010], ...) -
Two step approach

1. First step returns partitions P = (Dk)1≤k≤K of the image support X
2. Second step returns vector of unknown noise parameters θ
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POISSON-GAUSSIAN CASE

D4

D4

D1 D5

D5

D3 D7

D2D6

4

4 4

4

4 4

4 4

4 4 4
4 4 4

444
4 4

4

1

1 1
1 1
1

1

1

5
5 5

5

5

5 5 5

5

5

55 5
5 5
5 5

5 5

5
5
5

3 3
3 3
3 3

3 3

33
7
7

7 7

77

6 6
6 6
6

6 6

6 22

2

2
2 2
2 2

2 2

15 0 20

10 15 43

20 42 5

y iPP xiP,u | u = [0 5 10 15 20 42 43]>

Probability density function of Y
∀y =

(
y(s)

)
s∈X ∈ RN×M

pY(y; iP, θ) =
K∏

k=1

∏
s∈Dk

+∞∑
qs=0

e−uk (uk)
qs

qs!

e−
(y(s)−αqs−c)2

2σ2

√
2πσ2


K - number of distinct intensity values , u = [u1, . . . , uK]> ∈ RK - codebook
label image

(
iP(s)

)
s∈X ∈ I = {1, . . . ,K}N×M
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PROBLEM FORMULATION

Find θ = (c, σ2, α, u) such that
θ ∈ T = R× (0,+∞)2 × C

Problem

♣

minimize
(iP,θ)∈I×T

Φ(θ, iP, y) + ρ(iP)

MAP

ρ - regularization function
Φ - data fidelity term
Φ(θ, iP, y) = − log

(
pY(y; iP, θ)

)
C - closed convex subset of RK

Where
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DISCRETE-CONTINUOUS OPTIMIZATION FRAMEWORK

Fix K ∈ N∗ and θ(0) ∈ T

For ` = 0, 1, . . .
i(`)P ∈ argmin

iP∈I
Φ(θ(`), iP, y) + ρ(iP)

θ(`+1) ∈ argmin
θ∈T

Φ(θ, i(`)P , y)

I Convex optimization step
I Combinatorial optimization step
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ITERATIVE θ ESTIMATION OVER IMAGE SEGMENTS

Discrete step Continuous step

θ`+1

y

i`P

Graph-cuts methods EM algorithm

K

Assumption: number of distinct intensity K is assumed to be known

Sequence: (i(`)P , θ(`+1))`∈N generated such that
(
Φ(θ(`+1), i(`)P , y) + ρ(i(`)P )

)
`∈N

is a convergent decaying sequence.

Regularization: efficient solution for particular choice of ρ using graph-cuts
17 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

CONTINUOUS STEP: EM ALGORITHM

θ(`)θ(`+1)

Q - missing data
Majorant function -
Conditional expectation

Step 1: Initialization
θ(1) ←

(
c(1), (σ2)(1), α(1),u(1))

Step 2: EM Algorithm
for `← 1 to L do

Expectation step
Φ(θ | θ(`)) = EQ|Y=y,θ(`) [ln pY,Q(Y,Q | θ)]

Maximization step
θ(`+1) = argmin

θ∈T
− Φ(θ | θ(`))

end for
18 / 47
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EM MAXIMIZATION STEP

Update of the quantizations levels: u(`+1) ∈ argmin
u∈C

ϑ(u)

where ϑ(u) =
∑K

k=1 ϑk(uk), and, for every k ∈ {1, . . . ,K},

ϑk(uk) = card(D(`)
k )uk − ln uk

∑
s∈D(`)

k

EQ|R=r,θ(`) [Q(s)]

Two cases:
I C = RK: closed form solution

I C imposes total order constraint: proximal primal-dual algorithm

Update of the noise parameters in a closed form: α(`+1) , c(`+1) ,
σ(`+1) assuming known conditional means EQ|Y=y,θ(`) [Q(s)] and
EQ|Y=y,θ(`) [Q(s)2] computed in EM Expectation Step.
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EM EXPECTATION STEP

EQ|Y=y,θ(`) [Q(s)] =

∑∞
qs=0 Πs(θ

(`), 1, qs)∑∞
qs=0 Πs(θ(`), 0, qs)

Problem: Infinite sums

Πs(θ, d, qs) = exp
(
− (y(s)− α(qs + d)− c)2

2σ2

) (u
i(`)P (s)

)qs+d

qs!

Lemma 3.4.1
Unique maximizer

q∗s =
σ2

α2 W
(
α2

σ2 u
i(`)P (s)

e
α
σ2 (y(s)−c−dα)

)

Proposition 3.4.2

Bounding function: N (q∗s , σα )

Bounds:
q+s = q∗s + ∆ σ

α

q−s = q∗s −∆ σ
α 20 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

EM EXPECTATION STEP

EQ|Y=y,θ(`) [Q(s)] =

∑∞
qs=0 Πs(θ

(`), 1, qs)∑∞
qs=0 Πs(θ(`), 0, qs)

Problem: Infinite sums

Πs(θ, d, qs) = exp
(
− (y(s)− α(qs + d)− c)2

2σ2

) (u
i(`)P (s)

)qs+d

qs!

Lemma 3.4.1
Unique maximizer

q∗s =
σ2

α2 W
(
α2

σ2 u
i(`)P (s)

e
α
σ2 (y(s)−c−dα)

)

Proposition 3.4.2

Bounding function: N (q∗s , σα )

Bounds:
q+s = q∗s + ∆ σ

α

q−s = q∗s −∆ σ
α 20 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

EM EXPECTATION STEP

EQ|Y=y,θ(`) [Q(s)] =

∑∞
qs=0 Πs(θ

(`), 1, qs)∑∞
qs=0 Πs(θ(`), 0, qs)

Problem: Infinite sums

Πs(θ, d, qs) = exp
(
− (y(s)− α(qs + d)− c)2

2σ2

) (u
i(`)P (s)

)qs+d

qs!

Lemma 3.4.1
Unique maximizer

q∗s =
σ2

α2 W
(
α2

σ2 u
i(`)P (s)

e
α
σ2 (y(s)−c−dα)

)

Proposition 3.4.2

Bounding function: N (q∗s , σα )

Bounds:
q+s = q∗s + ∆ σ

α

q−s = q∗s −∆ σ
α 20 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

DISCRETE STEP: GRAPH-CUT

Minimization criterion:

i(`)P ∈ argmin
iP∈I

Φ(θ(`), iP, y) + ρ( iP )

iP takes discrete values
discrete optimization
problem

Graph-cut methods:
I Minimizing the energy of a discrete Markov Random Field
I Computationally efficient
I Good convergence properties

I Global solution for convex ρ
I Approximation of global minimum for wide class of

non-convex ρ
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ANISOTROPIC TV PRIOR

ρ(iP) = µ
(N−1∑

n=1

M∑
m=1

ψ(|iP(n + 1,m)− iP(n,m)|)

+

N∑
n=1

M−1∑
m=1

ψ (|iP(n,m + 1)− iP(n,m)|)
)
, µ ≥ 0
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RESULTS: SINGLE IMAGE NOISE IDENTIFICATION

α = 20, c = 100, σ2 = 1000 α = 5, c = 150, σ2 = 125 α = 20, c = 150, σ2 = 1000 α = 30, c = 150, σ2 = 3000

α̂ = 19.8, ĉ = 103, σ̂2 = 1039 α̂ = 4.89, ĉ = 156.35, σ̂2 = 115.2 α̂ = 19.5, ĉ = 142, σ̂2 = 907 α̂ = 30.96, ĉ = 149.95, σ̂2 = 3183

O
r
i
g
i
n
a
l

N
o
i
s
y

R
e
s
u
l
t
s
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SUMMARY

Experiment σ2 σ̂2 c ĉ α α̂

1 1000 1039 100 103 20 19.8
2 125 115.2 150 156.35 5 4.89
3 1000 907 150 142 20 19.5
4 3000 3183 150 149.95 30 30.96

Table: Estimated noise parameters

Numerical results

♣
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RELATED WORK: VECTOR QUANTIZATION

I Noise parameters are assumed to be known

I Only centroids need to be computed⇒ Continuous step becomes convex

I Continuous step⇒ solver: PPXA+ algorithm

I Discrete step⇒ unchanged with respect to noise estimation algorithm

I Convenient framework to enforce a tunable spatial regularity of variational
form

I Quantization method based on a two-step procedure intertwining a convex
optimization algorithm for quantization level selection and a combinatorial
regularization procedure
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QUANTIZATION IN THE PRESENCE OF NOISE

256× 256 image

N (0, 419.5)
SNR = 11.4 dB

16 quantization levels
Φ - squared `2 norm
ρ - anisotropic TV
ψ - `1 norm
µ = 500
SNR = 16.3 dB
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RELATED WORK: MULTIPLE IMAGE NOISE

IDENTIFICATION

I Segmentation step is not required
I Signal is nonstationary in time due to the bleaching process
I EM algorithm is proposed with Maximization step which additionally includes

estimation of the exponential decay rates (Halley algorithm)
I Results evaluated in terms of Cramer-Rao bounds
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RESULTS: MULTIPLE IMAGE NOISE IDENTIFICATION

Original image: first
frame

Original image: 180-th
frame

Mean over T = 180
realizations

Reconstructed image
Parameters:
α̂ = 25.8, ĉ = 8, σ̂2 = 119

ûs ∈ [0, 147]

Bleaching map:
k̂s ∈ [0, 3.9× 10−6]
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Image restoration
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DEGRADATION MODEL

w

x Direct model Measurements

y = z(H(x)) + wH
z(·) +

Which strategy for restoring image x corrupted by Poisson-Gaussian noise?

Method grounded on approximations
of the noise statistics

Method based on the true
Poisson-Gaussian neg-log likelihood
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POISSON-GAUSSIAN DATA FIDELITY TERM

Φ(x) = − log(pY(y; x))

=
∑Q

i=1 Φi([Hx]i) Φi([Hx]i) is given by

− log

∑+∞
n=0

e−[Hx]i ([Hx]i)n

n!
e
−
(

yi−c−n√
2σ

)2

√
2πσ2


Where

Important questions:

I Is Φ convex?
I What is the explicit form of the proximity operator of Φ?
I Is Φ µ-Lipschitz differentiable?
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CONVEXITY

Theorem 5.2.2

The neg-log likelihood Φ(β) of a mixture of Generalized-Gaussian and
Poisson variables defined over the positive orthant as

Φ(β)(x) =

Q∑
i=1

Φ
(β)
i ([Hx]i)

where for all, i ∈ {1, . . . ,Q}

Φ
(β)
i ([Hx]i) = − log

(
+∞∑
n=0

e−[Hx]i ([Hx]i)
n

n!

β

2
√

2σΓ( 1
β

)
e
−
(
|yi−c−n|√

2σ

)β)
is strictly convex if β > 1 and convex if β = 1.

As a special case we have the convexity of Poisson-Gaussian neg-log
likelihood
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LIPSCHITZ DIFFERENTIABILITY

Theorem 5.2.1

The function Φ is µ-Lipschitz differentiable on [0,+∞)N with

µ = ‖H‖2
(

1− e−
1
σ2
)

exp
((

2 max
i∈{1,...,Q}

{yi} − 2c− 1
)
/σ2
)

Gradient:
∇Φ(x) = H>(1− ξ(Hx))
Hessian:
∇2Φ(x) =

H>diag
(
ηi([Hx]i)

)
H

∀z = (zi)1≤i≤Q ∈ [0,+∞)Q,
ξ(z) =

(
ξi(zi)

)
1≤i≤Q,

η(z) =
(
ηi(zi)

)
1≤i≤Q

ξi(zi) = s(zi, yi − c− 1)/s(zi, yi − c)

ηi(zi) = (s(zi,yi−c−1))2−s(zi,yi−c)s(zi,yi−c−2)
(s(zi,yi−c))2

∀(a, b) ∈ R2,

s(a, b) =
∑+∞

n=0
an

n! e
−
(

b−n√
2σ

)2

Problem: Infinite sums
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PROBLEM FORMULATION

x̂ ∈ argmin
x

f (x)

Find

♣
f (x) = h(x) + ψ0(x) +

∑R
r=1 ψr(Vrx)

Where

• ψr(Vrx) - convex regularization term with
linear operator Vr ∈ RPr×N

• ψ0 ∈ Γ0(RN) - indicator function of a
closed convex subset of [0,+∞)N

• h(x) - for non-negative values defined as
− log(pY (y | x)) and defined as a quadratic
function on (−∞, 0]N
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PROXIMAL METHODS

The proximity operator of a function f ∈ Γ0(X ) (lower semi-
continuous proper convex function) at x is defined as:

∀x ∈ X , proxf (x) := argmin
p∈X

f (p) + 1
2 ‖x− p‖2

Proximity operator

♣

Proximal methods incorporating functions either via their proximity operator
or via their gradient:

I Forward-backward algorithm (R = 2) [Chen and Rockafellar, 1997]
I Forward-backward-forward algorithm (R = 2)[Tseng, 2000]
I Generalized forward-backward algorithm (R ≥ 2) [Raguet et al. 2013]
I Primal-dual algorithm (R ≥ 2) [Vu, 2011] [Condat, 2013] [Combettes

and Pesquet, 2012]
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Primal-dual splitting approach [Combettes and Pesquet, 2012]

Initialization: x0 ∈ RN, and (∀r ∈ {1, . . . ,R}) vr,0 ∈ RPr

for k = 0, . . . do
y1,k = xk − γ

(
∇h(xk) +

∑R
r=1 V>r vr,k

)
+ ak

p1,k = proxγψ0
(y1,k)

for r = 1, . . . ,R do
y2,r,k = vr,k + γVrxk
p2,r,k = y2,r,k − γ proxγ−1ψr

(γ−1y2,r,k)
q2,r,k = p2,r,k + γVrp1,k
vr,k+1 = vr,k − y2,r,k + q2,r,k

end for
q1,k = p1,k − γ

(
∇h(p1,k) +

∑R
r=1 V>r p2,r,k

)
+ ck

xk+1 = xk − y1,k + q1,k
end for
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CONVERGENCE

Assumptions:

Ê f is coercive, i.e. lim‖x‖→+∞ f (x) = +∞,

Ë for every r ∈ {1, . . . ,R}, ψr is finite valued,

Ì γ ∈ [ε, (1− ε)/δ] where ε ∈ (0, 1/(δ + 1)) and

δ = µ+
√∑R

r=1 ‖Vr‖2,

Í (ak)k∈N and (ck)k∈N are absolutely summable sequences.

There exists a minimizer x of f (x) such that the
sequences (xk)k∈N and (p1,k)k∈N converge to x.

Result

♣
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WIDE RANGE OF PENALIZATION STRATEGIES

TV NLTV

BM3D

TV
[Rudin et al. 1992]

NLTV
[Gilboa and Osher et al. 2008]

Hessian-TV
[Lefkimmiatis et al. 2012]

BM3D frames
[Danielyan et al. 2012]

...

Flexibility: Large range of penalization strategies can be applied
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RESULTS

Original image:
size 128× 128

Noisy blurred image:
25× 25 truncated Gaussian
blur with std 1.6
σ2 = 12
MAE = 35
SNR = 10.07

Reconstructed image
(Hessian-TV prior):
MAE = 7.91
SNR = 21.52

(BM3D prior):
ongoing work
MAE = 7.99
SNR = 21.86

39 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

RESULTS

Original image:
size 128× 128

Noisy blurred image:
25× 25 truncated Gaussian
blur with std 1.6
σ2 = 12
MAE = 35
SNR = 10.07

Reconstructed image
(Hessian-TV prior):
MAE = 7.91
SNR = 21.52

(BM3D prior):
ongoing work
MAE = 7.99
SNR = 21.86

39 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

RESULTS

Original image:
size 128× 128

Noisy blurred image:
25× 25 truncated Gaussian
blur with std 1.6
σ2 = 12
MAE = 35
SNR = 10.07

Reconstructed image
(Hessian-TV prior):
MAE = 7.91
SNR = 21.52

(BM3D prior):
ongoing work
MAE = 7.99
SNR = 21.86

39 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

RESULTS

Original image:
size 128× 128

Noisy blurred image:
25× 25 truncated Gaussian
blur with std 1.6
σ2 = 12
MAE = 35
SNR = 10.07

Reconstructed image
(Hessian-TV prior):
MAE = 7.91
SNR = 21.52

(BM3D prior):
ongoing work
MAE = 7.99
SNR = 21.86

39 / 47



INTRODUCTION NOISE IDENTIFICATION IMAGE RESTORATION CONCLUSIONS

RESULTS

Original image:
size 190× 190

Noisy blurred image:
25× 25 truncated Gaussian
blur with std 1.6
σ2 = 9
MAE = 61
SNR = 2.19

Reconstructed image
(Hessian-TV prior):
MAE = 7.79
SNR = 19.53
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`2 − `0 SPARSITY MEASURES

Regularization term: ρ(x) =
∑R

r=1 ψr(Vr(x))

Common assumption: x has a sparse representation with respect to Vr

Question: What sparsity measure ψr should be used?

Theoretically: `0 measure [Donoho et al. 1995]

Usually: `1 measure

We examine `2 − `0 sparsity measures

Discrete approach

2 submodular moves
which alternate
Convex move
[Murota 2000]
Quantized move
[Jezierska et al. 2011]

Continuous approach

Majorize-Minimize alg.
Extension of
[Chouzenoux et al. 2011]
`0 penalty obtained
asymptotically
New convergence proof
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RESULTS: `2 − `0 SPARSITY MEASURES
Original image:
size 256× 256

Noisy blurred image:
3× 3 uniform blur Noise:
N (0, 16)
SNR = 18.65
MSSIM = 0.82

Reconstructed image
Hessian-TV prior
(3MG SC):
SNR = 26.90
MSSIM = 0.94

(3MG SNC2):
(TV: Geman-McClure sparsity
measure)
SNR = 27.96
MSSIM = 0.94
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RESULTS: `2 − `0 SPARSITY MEASURES - DETAILS
Original image:
size 256× 256

Noisy blurred image:
3× 3 uniform blur Noise:
N (0, 16)
SNR = 18.65
MSSIM = 0.82

Reconstructed image
Hessian-TV prior
(3MG SC):
SNR = 26.90
MSSIM = 0.94

(3MG SNC2):
(TV: Geman-McClure sparsity
measure)
SNR = 27.96
MSSIM = 0.94
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CONTRIBUTIONS: ALGORITHMS

I An optimization framework featuring both continuous and
combinatorial techniques.

I Properties of Poisson-Gaussian neg log likelihood.
I Approximation for the Poisson-Gaussian neg log likelihood.
I Numerical method for a maximum likelihood estimate of

Poisson-Gaussian distribution hyperparameters and its Cramer-Rao
bounds.

I Image denoising problem with `2 − `0 sparsity measures, in discrete
and continuous frameworks.
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CONTRIBUTIONS

Confocal Macroscopy

I Noise identification techniques useful for calibration systems and
restoration algorithms (from time series data and from single image).

I Image deconvolution algorithm (realistic noise model, but not PSF).

Software:

I GC-PPXA-QUANTIZER
(http://www-syscom.univ-mlv.fr/∼jeziersk/software.html)
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ONGOING WORK

Confocal macroscopy optical PSF
estimation

Experiment:

Point source

Cover slip
Mounting medium

Intensity profile:
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PERSPECTIVES

I Study of BM3D prior for Poisson-Gaussian data restoration
I Restoration of Generalized Poisson-Gaussian data
I Non-convex regularization strategies for Poisson-Gaussian data
I Comparison with other Primal-Dual algorithms
I Robustness of restoration algorithm to noise parameters
I Inter-channel prior for confocal images

I Proposed restoration algorithm: a preliminary work towards future
restoration techniques.

Thank you
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EM ALGORITHM POISSON-GAUSSIAN RESTORATION

CONTINUOUS STEP: EM ALGORITHM

EM algorithm

(∀` ∈ N) θ(`+1) = argmin
θ∈T

Φ(θ | θ(`))

Expectation step

Φ(θ | θ(`)) = EQ|Y=y,θ(`) [ln pY,Q(Y, Q | θ)] Q - missing data

Φ(θ | θ(`)) =
1

2σ2

∑
s∈S

EQ|Y=y,θ(`) [(y(s)− αQ(s)− c)2] +
NM

2
ln(σ2)

+

K∑
k=1

card(D(`)
k )uk −

K∑
k=1

ln uk

∑
s∈D(`)

k

EQ|R=r,θ(`) [Q(s)]

Maximization step

θ(`+1) = argmin
θ∈T

Φ(θ | θ(`))

1 / 4



EM ALGORITHM POISSON-GAUSSIAN RESTORATION

(x+, σ2) Init. Poiss. Gauss. GAST Exact

(15,9)

λ - 0.145 0.139 0.069 0.079
MAE 54.26 13.29 10.86 11.38 10.60
SNR 6.31 18.68 19.74 19.27 19.89
SSIM 0.088 0.659 0.730 0.736 0.747

(30,12)

λ - 0.105 0.120 0.056 0.048
MAE 34.81 9.60 8.46 8.71 8.25
SNR 10.72 21.13 21.60 21.41 21.85
SSIM 0.179 0.752 0.811 0.807 0.812

(60,30)

λ - 0.076 0.069 0.032 0.032
MAE 26.72 8.28 7.41 7.44 7.28
SNR 12.34 22.23 22.67 22.67 22.85
SSIM 0.255 0.783 0.845 0.834 0.839

(90,50)

λ - 0.065 0.052 0.022 0.025
MAE 22.67 7.43 6.64 6.59 6.55
SNR 13.73 23.13 23.59 23.79 23.82
SSIM 0.312 0.804 0.864 0.855 0.859

(120,60)

λ - 0.047 0.042 0.017 0.018
MAE 19.64 6.71 6.11 5.92 5.92
SNR 14.85 24.01 24.39 24.62 24.67
SSIM 0.367 0.829 0.876 0.877 0.877

(150,80)

λ - 0.046 0.032 0.016 0.016
MAE 18.17 6.61 5.94 5.85 5.85
SNR 15.46 24.02 24.59 24.54 24.65
SSIM 0.399 0.829 0.878 0.878 0.878 2 / 4



EM ALGORITHM POISSON-GAUSSIAN RESTORATION

Poiss. Gauss. GAST Exact

TV

λ 0.163 0.197 0.093 0.083
MAE 10.71 9.42 9.70 8.90
SNR 20.21 20.6 20.55 21.22
SSIM 0.715 0.777 0.782 0.802

NLTV

λ 0.105 0.120 0.056 0.048
MAE 9.60 8.46 8.71 8.25
SNR 21.13 21.60 21.41 21.85
SSIM 0.752 0.811 0.807 0.812

TV + Hessian

λTV 0.042 0.258 0.026 0.032
λH 0.148 0.376 0.070 0.082

MAE 8.99 7.92 8.10 7.91
SNR 21.09 21.52 21.40 21.52
SSIM 0.794 0.854 0.851 0.854
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EM ALGORITHM POISSON-GAUSSIAN RESTORATION

Poiss. Gauss. GAST Exact

TV

λ 0.394 0.254 0.176 0.158
MAE 11.58 9.02 10.16 8.66
SNR 16.7 18.49 17.49 18.81
SSIM 0.643 0.670 0.660 0.679

NLTV

λ 0.283 0.197 0.138 0.138
MAE 11.80 9.33 10.35 9.27
SNR 16.69 18.28 17.37 18.29
SSIM 0.622 0.643 0.632 0.644

TV + Hessian

λTV 0.079 0.167 0.125 0.119
λH 0.856 0.690 0.582 0.346

MAE 10.69 7.84 9.13 7.79
SNR 17.32 19.48 18.38 19.53
SSIM 0.726 0.755 0.742 0.755
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