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POISSON-GAUSSIAN NOISE

Physical acquisition process:

I Various noise sources
I Some are signal dependent, e.g. photon noise
I Some are signal independent, e.g. electronic noise, thermal noise etc.

I Too complex for either Poisson or additive Gaussian noise models
I Next simplest model: sum of Poisson and Gaussian models for signal

dependent and signal independent components, respectively.

I A recent topic of interest in the literature [Snyder et al. 1993] [Delpretti et
al. 2008] [Benvenuto et al. 2008] [Luisier et al. 2011] [Gil-Rodrigo et al.
2011] [Chakrabarti and Zickler 2012] [Li et al. 2012]

Imaging related application areas:

I Biology (Fluorescence imaging systems)
I Astronomy

I CCD camera imaging
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OUR MAIN MOTIVATION: CONFOCAL IMAGING

Ilumination pinhole

Detection pinhole

Photodetector Focal plane

I Much of the out-of-focus light eliminated from detection
I High optical resolution (sample depth direction)
I Image acquired point-by-point (small number of detectable photons: down to

8-12 photons per highest intensity pixel)
I Application area: biomedical research
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SEEING THE WOOD FOR THE TREES

Confocal microscopy
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SEEING THE WOOD FOR THE TREES

Confocal macroscopy
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DEGRADATION MODEL

w

x Direct model Measurements

y = z(H(x)) + wH
z(·) +

Which strategy for restoring image x corrupted by Poisson-Gaussian noise?

Method grounded on approximations
of the noise statistics

Method based on the true
Poisson-Gaussian neg-log likelihood
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DEGRADATION MODEL

Poisson noise

x ∈ X - original signal
x = (xi)i∈X xi ∈ [0,+∞) Zi(x) ∼ P([Hx]i))
H : X 7→ Y - blur
z(x) =

(
zi(x)

)
i∈X - realization of

(
Zi(x)

)
i∈X

α ∈ (0,+∞) - scale parameter

y = α z(x) + w

Observations

y ∈ Y
y = (yi)i∈Y

White Gaussian noise

Wi ∼ N (c, σ2)
w = (wi)i∈X - realization of

(
Wi
)

i∈X
c ∈ R - mean σ2 - variance

[Zhang ’07] [Boulanger et al. ’08] [Delpretti et al. ’08] [Luisier et al. ’11]
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POISSON-GAUSSIAN DATA FIDELITY TERM

Φ(x) = − log(pY(y; x))

=
∑Q

i=1 Φi([Hx]i) Φi([Hx]i) is given by

− log

∑+∞
n=0

e−[Hx]i ([Hx]i)n

n!
e
−
(

yi−c−n√
2σ

)2

√
2πσ2


Where

Important questions:

I Is Φ convex?
I What is the explicit form of the proximity operator of Φ?
I Is Φ µ-Lipschitz differentiable?
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CONVEXITY

Theorem 5.2.2

The neg-log likelihood Φ(β) of a mixture of Generalized-Gaussian and
Poisson variables defined over the positive orthant as

Φ(β)(x) =

Q∑
i=1

Φ
(β)
i ([Hx]i)

where for all, i ∈ {1, . . . ,Q}

Φ
(β)
i ([Hx]i) = − log

(
+∞∑
n=0

e−[Hx]i ([Hx]i)
n

n!

β

2
√

2σΓ( 1
β

)
e
−
(
|yi−c−n|√

2σ

)β)

is strictly convex if β > 1 and convex if β = 1.

As a special case we have the convexity of Poisson-Gaussian neg-log
likelihood

9 / 25



INTRODUCTION POISSON-GAUSSIAN DATA FIDELITY TERM PROPOSED OPTIMIZATION METHOD RESULTS CONCLUSIONS

LIPSCHITZ DIFFERENTIABILITY

Theorem 5.2.1

The function Φ is µ-Lipschitz differentiable on [0,+∞)N with

µ = ‖H‖2
(

1− e−
1
σ2
)

exp
((

2 max
i∈{1,...,Q}

{yi} − 2c− 1
)
/σ2
)

Gradient:
∇Φ(x) = H>(1− ξ(Hx))
Hessian:
∇2Φ(x) =

H>diag
(
ηi([Hx]i)

)
H

∀z = (zi)1≤i≤Q ∈ [0,+∞)Q,
ξ(z) =

(
ξi(zi)

)
1≤i≤Q,

η(z) =
(
ηi(zi)

)
1≤i≤Q

ξi(zi) = s(zi, yi − c− 1)/s(zi, yi − c)

ηi(zi) = (s(zi,yi−c−1))2−s(zi,yi−c)s(zi,yi−c−2)
(s(zi,yi−c))2

∀(a, b) ∈ R2,

s(a, b) =
∑+∞

n=0
an

n! e
−
(

b−n√
2σ

)2

Problem: Infinite sums
10 / 25
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INFINITE SUMS PROBLEM [JEZIERSKA ET AL., 2013]

s(a, b) =

+∞∑
n=0

π(a, b, n) where Π(a, b, n) =
an

n!
e−
(

b−n√
2σ

)2

Lemma 3.4.1
Unique maximizer

n∗ = σ2W
( a
σ2 eb/σ2

)
Proposition 3.4.2

Bounding function: N (q∗s , σα )

Bounds:
n− = bn∗ −∆σc
n+ = dn∗ + ∆σe
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PROBLEM FORMULATION

x̂ ∈ argmin
x

f (x)

Find

♣
f (x) = h(x) + ψ0(x) +

∑R
r=1 ψr(Vrx)

Where

• ψr(Vrx) - convex regularization term with
linear operator Vr ∈ RPr×N

• ψ0 ∈ Γ0(RN) - indicator function of a
closed convex subset of [0,+∞)N

• h(x) - for non-negative values defined as
− log(pY (y | x)) and defined as a quadratic
function on (−∞, 0]N
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PROXIMAL METHODS

The proximity operator of a function f ∈ Γ0(X ) (lower semi-
continuous proper convex function) at x is defined as:

∀x ∈ X , proxf (x) := argmin
p∈X

f (p) + 1
2 ‖x− p‖2

Proximity operator

♣

Proximal methods incorporating functions either via their proximity operator
or via their gradient:
I Forward-backward algorithm (R = 2) [Chen and Rockafellar, 1997]
I Forward-backward-forward algorithm (R = 2)[Tseng, 2000]
I Generalized forward-backward algorithm (R ≥ 2) [Raguet et al. 2013]
I Primal-dual algorithm (R ≥ 2) [Vu, 2011] [Condat, 2013] [Combettes

and Pesquet, 2012]
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Primal-dual splitting approach [Combettes and Pesquet, 2012]

Initialization: x0 ∈ RN, and (∀r ∈ {1, . . . ,R}) vr,0 ∈ RPr

for k = 0, . . . do
y1,k = xk − γ

(
∇h(xk) +

∑R
r=1 V>r vr,k

)
+ ak

p1,k = proxγψ0
(y1,k)

for r = 1, . . . ,R do
y2,r,k = vr,k + γVrxk
p2,r,k = y2,r,k − γ proxγ−1ψr

(γ−1y2,r,k)
q2,r,k = p2,r,k + γVrp1,k
vr,k+1 = vr,k − y2,r,k + q2,r,k

end for
q1,k = p1,k − γ

(
∇h(p1,k) +

∑R
r=1 V>r p2,r,k

)
+ ck

xk+1 = xk − y1,k + q1,k
end for

14 / 25
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CONVERGENCE

Assumptions:

Ê f is coercive, i.e. lim‖x‖→+∞ f (x) = +∞,

Ë for every r ∈ {1, . . . ,R}, ψr is finite valued,

Ì γ ∈ [ε, (1− ε)/δ] where ε ∈ (0, 1/(δ + 1)) and

δ = µ+
√∑R

r=1 ‖Vr‖2,

Í (ak)k∈N and (ck)k∈N are absolutely summable sequences.

There exists a minimizer x of f (x) such that the
sequences (xk)k∈N and (p1,k)k∈N converge to x.

Result

♣
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DATA FIDELITY TERMS

I Exact Poisson-Gaussian model

− log(pY(y; x)) =

Q∑
i=1

− log

+∞∑
n=0

e−[Hx]i ([Hx]i)
n

n!

e−
( yi−n√

2σ

)2

√
2πσ2



Compared with

I Poisson model
I Gaussian model
I Generalized Anscombe transform (GAST) model [Murtagh et al. 1995]

− log(pY(y; x)) =

Q∑
i=1

(ν([Hx]i)− ν(y))2 , ν(θ) =

√
θ +

3
8

+ σ2

Flexibility: Large range of data fidelity terms can be applied
16 / 25
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WIDE RANGE OF PENALIZATION STRATEGIES

TV NLTV

BM3D

TV
[Rudin et al. 1992]

NLTV
[Gilboa and Osher et al. 2008]

Hessian-TV
[Lefkimmiatis et al. 2012]

BM3D frames
[Danielyan et al. 2012]

...

Flexibility: Large range of penalization strategies can be applied
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RESULTS

Original image:
size 128× 128

Noisy blurred image:
25× 25 truncated Gaussian
blur with std 1.6
σ2 = 12
MAE = 35
SNR = 10.07

Reconstructed image
(Hessian-TV prior):
MAE = 7.91
SNR = 21.52

(BM3D prior):
ongoing work
MAE = 7.99
SNR = 21.86
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RESULTS

Original image:
size 190× 190

Noisy blurred image:
25× 25 truncated Gaussian
blur with std 1.6
σ2 = 9
MAE = 61
SNR = 2.19

Reconstructed image
(Hessian-TV prior):
MAE = 7.79
SNR = 19.53
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Poiss. Gauss. GAST Exact

TV

λ 0.163 0.197 0.093 0.083
MAE 10.71 9.42 9.70 8.90
SNR 20.21 20.6 20.55 21.22
SSIM 0.715 0.777 0.782 0.802

NLTV

λ 0.105 0.120 0.056 0.048
MAE 9.60 8.46 8.71 8.25
SNR 21.13 21.60 21.41 21.85
SSIM 0.752 0.811 0.807 0.812

TV + Hessian

λTV 0.042 0.258 0.026 0.032
λH 0.148 0.376 0.070 0.082

MAE 8.99 7.92 8.10 7.91
SNR 21.09 21.52 21.40 21.52
SSIM 0.794 0.854 0.851 0.854
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Poiss. Gauss. GAST Exact

TV

λ 0.394 0.254 0.176 0.158
MAE 11.58 9.02 10.16 8.66
SNR 16.7 18.49 17.49 18.81
SSIM 0.643 0.670 0.660 0.679

NLTV

λ 0.283 0.197 0.138 0.138
MAE 11.80 9.33 10.35 9.27
SNR 16.69 18.28 17.37 18.29
SSIM 0.622 0.643 0.632 0.644

TV + Hessian

λTV 0.079 0.167 0.125 0.119
λH 0.856 0.690 0.582 0.346

MAE 10.69 7.84 9.13 7.79
SNR 17.32 19.48 18.38 19.53
SSIM 0.726 0.755 0.742 0.755
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CONCLUSIONS

I Properties of Poisson-Gaussian neg-log-likelihood

 Convexity
 Lipschitz differentiability

I Primal-dual splitting algorithm

 High flexibility
 Robust to computational errors

I Future work

 Variable metric acceleration for primal-dual algorithm
 Non-convex regularization strategies for Poisson-Gaussian data
 Comparison with other approximation of Poisson-Gaussian data

fidelity term present in the literature

22 / 25
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VARIOUS APPROXIMATIONS OD POISSON-GAUSSIAN

DATA FIDELITY TERM

Scaled gradient method [Benvenuto et al. 2008]

Gradient of neg-log likelihood approximated by:

H>
(

1− exp

(
−

1 + 2([Hx]i)− yi

2([Hx]i) + σ2

))
i∈X

Alternating-minimization alg. [Gil-Rodrigo et al. 2011]

Neg-log likelihood approximated by:

1

2

∥∥∥∥(D
σ̃2 (Hx)

)−1/2
(y− Hx)

∥∥∥∥2

2

Covariance matrix D
σ̃2 depends on noise parameters

Augmented Lagrangian method
[Chakrabarti and Zickler 2012]

Neg-log likelihood approximated by:

∑
i∈X

[Hx]i + σ
2 −

(
yi + σ

2
)

log
(
[Hx]i + σ

2
)

Augmented Lagrangian method [Li et al. 2012]

Neg-log likelihood approximated by:

1

2

∥∥∥∥(σ̃2I + (Hx)
)−1/2

(y− Hx)
∥∥∥∥2

2
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