A Memory Gradient Algorithm for /,-¢, Regularization

with Applicationsto | mage Restoration
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State of the art:

Non-convex priors have good ability to promote sparsity
However, they lead to a difficult optimization problem
Proposal: Majorize-Minimize Memory Gradient algorithm
Proof of convergence of the iterates of the algorithm

Good numerical performance on image restoration problems y

B

Objective: Restore the unknown original imagec R” fromy € R, re-
lated tozx through:

y=Hx + u, H ¢ RN

Goal of the algorithm:

minimize Fs(x) = d(Hx — y) + Vs(x)
rcRN

® - some measure of data fidelity
U - regularization term defined as:

Us(x) = 2SS vs(V. x) + || x|

with V., a dictionary of analysis vectors,a positive real valuellI a matrix in
RN and; adifferentiable, non-convex approximation of thé, norm.
Property:. Epil-convergence to th& solution.

Examples of /5-¢, penalty functions

level will
Te 15 1nsufll
& should declle should dechle should dec
be made 1n 2@Mbe made 1n 2BMbe made 1n &
Original image Noisy image (15 dB) Restored image
g ] gl
k=2 '
- v T ineuly
IS .
) - ) Tl 1 Lo T
T AEEE I T Tl i LT T e Bl Ui, i La o ol

Proposed non-convex
22.4dB, MSSM =0.92

Smooth convex
20.2 dB, MSSM =0.89

Truncated quadratic
22.8 dB, MSSM =0.93

Proposed MM-MG algorithm 0.74 s
Conjugate Gradient algorithfplager 2006] | 1.11 s
Quasi-Newton algorithniLiu & Nocedal 1989] | 1.05 s
Half-Quadratic algorithnpAllain et al. 2006] | 4.16 S
TRW algorithm[Kolmogorov 2006] 6.96 S

BP algorithm|Felzenszwalb & Huttenlocher 201Q0.95 s

Convergence speed of several optimization algorithms
for the considered denoising problem, with />-¢, penalties.
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Majorize-Minimize M emory-Gradient algorithm:
~ Subspace algorithm

T = xp + Dp.s;.
~ D). set of Memory-Gradient directions
~ 81, resulting from MM minimization off; ;(s): s — Fs(x; + Dys)

Construction of the directions. Memory-Gradient subspa¢€antrell 1969]
D, = [—VFg(:Bk), L. — wk_l] - RNXQ

Computation of the stepsize: [Chouzenowset al. 2011]We assume that for
all ', there existsA (x’), definite positive, such that

Q(x,x') = Fs(x') + VFs(x') (. — x') + %(a:‘ —x) Az )(x — =)

IS a quadratic tangent majorantBf atx’ i.e.,Q(x, x') > Fs(x), V.

o L o MM minimization in the subspace:
Majorize-Minimize principle

32 = 0,
(Vjel0,...0-1})
S]k_H - ArgminSQk(Sv 8?{)7

Sl — Si.

where g;(s, s}) is a quadratic tan-
gent majorant of;. ; at s; with Hes-
J Sian:BSi — 1)]—!14(213].C Dksi)Dk

I+l

Conver gence result

o If ®Is coercive,Ker H N KerII = 0, and the gradient ob Is -
Lipschitzian, then, forall/ > 1, limy_., VFs(ax;) = 0.

e Morever, If F; satisfies the tojasiewicz inequalifAttouch et al.
2010] the sequencex;,), . converges to a critical poinat of F5.
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Smooth convex
18.4 dB, MSSM =0.78

Proposed MM-MG algorithm 36 S
Conjugate Gradient algorithfhlager 2006] | 48 s
Quasi-Newton algorithrfLiu & Nocedal 1989] 42 s

Half-Quadratic algorithnpAllain et al. 2006] 779 s
Convergence speed of several optimization algorithms

for the considered reconstruction problem, with /5-¢, penalties.

Proposed non-convex
20.4 dB, MSSM =0.79




