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Abstract

This article introduces the imprecision approachigh—level graphical
object interpretation. It presents a step towaodsmputing which sup-
ports the implementation of a content-based imatieral (CBIR) system
dealing with graphical object classification. Soanacial aspects of CBIR
are presented here to illustrate the problems weatre now struggling
with. The main motivation of our researches is tovfile effective and ef-
ficient means for the interpretation of graphichjext classification. The
paper shows how the traditional feature vector oetextends to match
graphical objects, difficult to classify, by appig intuitionistic fuzzy sets
and possibility theory. We consider the cases wheté classification of
objects and their retrieval are modelled with tliecd fuzzy set extensions.

Keywords. content-based image retrieval system, graphigjgod, image
indexing, image classification, intuitionistic fuzgets, possibility theory.

1 Introduction

In recent years, the availability of image resosror the WWW has increased
tremendously. This has created a demand for effeetnd flexible techniques
for automatic image retrieval, coupled with thetftwat a lot of graphical in-
formation is available in an imperfect form onlgdeed, information is likely to
be imprecise, vague, uncertain, incomplete, insbesi, etc. For this reason,
attempts to perform the Content-Based Image Retri@@BIR) in an efficient
way have been made for many years. NeverthelessCBIR system, for a
number of reasons, has yet to reach maturity. Aom@joblem in this area is
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computer perception. In other words, there remainensiderable gap between
image retrieval based on low-level features, swchhape, colour, texture [12],
[14], [19] and spatial relations, and image re@igdvased on high-level semantic
concepts, for example, houses, windows, roofs, dlawetc [5], [7], [15]. This
problem emerges especially as challenging when éntedabases are excep-
tionally large.

Given the above context, it comes as no surprigefdst retrieval in data-
bases has recently been an active research are&ffEiotiveness of the retriev-
al process from the start has been a motivatiotetelop more advanced, se-
mantically richer system models. One of the numenmwblems which CBIR
system authors struggle with is the ability to deih information imperfection.
Here, we will focus on this issue, briefly introdlug some other, related aspects
of the main subject.

In the literature, the fuzzy set theory [21] arglriélated possibility theory
[22] have been used as the underlying mathemdtiaalework for enhanced
approaches to integrate imperfection at the levalghanumeric data in, what
is usually called a “fuzzy” database [23]. Howewee propose a fuzzy ap-
proach to graphical data in the CBIR structure.sTfioblem has turned out
specially challenging with graphical informatioradually becoming predomi-
nant in modern databases [9], [13]. ApplicationAdAnassov's intuituinistic
fuzzy sets and possibility theory seems to befjadtin terms of improvement
of the effectiveness of graphical object classifmafor image retrieval. We are
aware that some problems remain and in this pagewil discuss a few of
them, for example, misclassification of graphicabjests and imperfect
knowledge.

2 CBIR Concept Overview

In content-based image retrieval, representatiah dascription of the content
of an image is a central issue. Among differenicitral levels, object level is
considered the key linking the lower feature leamtl the higher semantic one
[1]. In order to be effective in terms of the preisgion and choice of images,
the system has to be capable of finding the graplubjects that a particular
image is composed of.

Figure 1 shows the block diagram of our CBIR systAmcan be seen, the
top part of the diagram illustrates the image cangmalysis block of our sys-
tem. In this approach we use a multi-layer desoripmodel [8]. The descrip-
tion for the higher layer could be generated fréva description of the lower
layer, and establishing the image model is syndheahwith the procedure for
progressive understanding of image contents. THéfrent layers could pro-
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vide distinct information on image content, so tmedel provides access from
different levels as a multi-layer representation.

Image content analysis

Segmentation level

_Basic object featn

Basic image feature

! colour
histogram shape area
- edges centre of gravity
texture

perimeter

v

Visual perception level

MLogical features

location spatial relations

l

Object recognition level

User
!

Graphical user's interface Ind@

colour shape location

edges texture spatial relations

1 |

Match engine

Match measures Quality functions

l

Match results

I

User
Figure 1. Block diagram of our content-based imagaeval system

Each new image added to our CBIR system, as welegraphical user's
query, must be preprocessed, as shown in the seégmoanlevel frame of the
image content analysis block (top, Fig. 1). Allghecal objects, such as houses,
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trees, a beach, the sky etc., must be segmente@xdratted from the back-

ground at the stage of preprocessing. Althoughwadlmages are downloaded

from the Internet (in the JPEG format), their pomgssing is unsupervised.

Similarly, an object extraction from the image bgrdund must be done in a

way enabling unsupervised storage of these ohijetite DB.

For this purpose, we apply two-stage segmenta&nabling us to extract
accurately the desired objects from the imagehinfirst stage, the image is
divided into separate RGB colour components whiehreext divided into lay-
ers according to three light levels. In the secstadje, individual graphical ob-
jects are extracted from each layer. Next, the llovel features are determined
for each object, understood as a fragment of thigeeimage. These features
include: colour, area, centroid, eccentricity, otaion, texture parameters,
moments of inertia, etc. The segmentation algoriémah object extraction algo-
rithm, as well as the texture parameter-findingoatgm are presented in detail
in an article by Jaworska [10]. The informationaibed from the image content
analysis is stored in the database.

In general, the system consists of 5 main blodis 1):

1. the image preprocessing block (responsible for ensggmentation), ap-
plied in Matlab;

2. the Oracle Database, storing information about wholages, their seg-

ments (here referred to as image objects), segateiiiutes and object lo-

cation;

the indexing module responsible for the image inmagprocedure [11];

4. the graphical user's interface (GUI), also appireatlab. In comparison
to the previous systems, ours has been developediar to give the user
the possibility to design their image which latecbmes a query for the
system [11].

5. the match engine responsible for image matchingratratval. In this pa-
per we would like to focus on the advanced mechaniealing with im-
precision implemented in this engine.

The next element of the system is the matchingrengvhich uses indexes
based on the multi-layer description model and acilpatterns to search for “the
best matching images”. Research on models whicknexthe flexibility of
matching methods to obtain semantically profourtdeneal, similar to human
image understanding, leads us to experiments widmassov's intuitionistic
fuzzy sets and possibility theory.

The bottom part of figure 1 is dedicated to usdte-GUI block — and pre-
sents the on-line functionality of the system — i@ch engine and match re-
sults blocks.

w
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3 Basic Concepts of Extended Fuzzy Sets

Definition 1
A fuzzy setA over a universe of discourgkis defined by means of a member-
ship functionua which associates with each element x of U a meshiy@igrade
#a (W) O[0,1] [21].
In what follows, a fuzzy se over a universe of discourkkis denoted by
A={(x ua (¥ [x DO U)}. (1)
Two important concepts abre andsupportare related to a fuzzy sat
corgA) = {x|xOU N ua (X) =1}
and
support(A) = {x | x O U A ua (X) >0}.

Definition 2
Atanassov's intuitionistic fuzzy set (A-IF8)over a universe of discourke[2]
is defined by two functions:

pa va U - [0,1] (5)
such that
Osu () +v, () <1, DxOU (6)
and is denoted by
A={< X, 1p(X),V 4 () > XOU} . (7)

For eachx O U the numberg(X) andva(X), respectively, represent the de-
gree of membership and the degree of non-membeo$kipn A. The constraint
(6) reflects the consistency condition. For eadbeva ] U, the difference

ha(X) = 1 —ua(X) —va(X) (8)
is referred to as the hesitation margin. If xarl U, h (X) = O, then there is no
hesitation aboutx being an element ofA or not, which implies that
Va(X) =1- 1, (X). On the other hand, if for O U, ha(X) = 1, then there is full
hesitation ag (X) = 0. In all other cases, the consistency comtlijoarantees
thath, (X) 0 ]0,1[, which reflects partial hesitation.
15 H, (%) )

V(%)

0 >
Data

Figure 2. Graphical representation of Atanassantstionistic fuzzy set.
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Thus, as in Atanassov's intuitionistic fuzzy seex¢ are two grades associ-
ated with each element of the universe. The grade) of x in A is interpreted
as a membership grade, which is the same as thiealrinterpretation of mem-
bership grades in fuzzy sets. The gragéx) of x in A is interpreted as a non-
membership grade. Hereby, it is explicitly demaststti that membership and
non-membership do not necessarily complement ek, on other words they
do not need to sum up to 1, as it is illustratefign2.

4 Methods of Image Indexing and Classification

Since the early 90’'s the effectiveness of clagsifleas considerably improved
which is strongly connected with fast developmehtachine learning meth-
ods, for example, nearest neighbour classifier$, [2dyesian classifiers, deci-
sion trees or support vector machines.

In the case of image analysis, we have tried tdesehcategories strictly
connected with the human perception of images. iBafoage set can be repre-
sented by the classifier, some form of representatiust be chosen. Feature
selection is a key task for the proper classif@ati20]. For graphical objects
low-level features are as important as shape geecsi and object locations
(mutually and in the whole image). If not enougmiver of features is we can
receive confusing results whereas using many featig troublesome due to
space and computing time limitations.

4.1 Data Representation for Objects

) parametry =[]
File o

Parametry elementu (w pikselach)

element 13 Area 10284

Centroids :272.9473  230.1982

obraz wybranej warstwy

BoundingBox:136.5 1825
296

MajorAxisLength :301 6878
MinorAxisLength :75.5999
Eccentricity:0.96809
Orientation 15.9409
ConvexArea:23127

FilledArea :10284

100 200 300 400 500 600 700 800

100 200 300 400 500 600 700 800 Solidity :044468
BT Euler number :1

Pokaz wybrany element ‘ Parametry textury | Zapis do bazy parametréw wybranego elementu | m_11:-14478839 5908

Figure 3. (Left) One colour layer from which thgextt was extracted. (Centre)
An image of a separate object (element 13). (RiQbfect features.
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Each graphical object, selected according to tgerdihm presented in detail in
[10], is described by some low-level features sashaverage colodg,, texture
parameterd,, areaA, convex ared, filled areah;, centroid ., yc}, eccentrici-

ty e, orientationa, moments of inertiay;, bounding box :(x.y), ..., bw (X,y)}

(w — number of vertices), major axis lengtig,g, minor axis lengtimq, solidi-

ty s and Euler numbeE. These features are presented in the example windo
of the interface (Fig. 3) for a selected objectt Eebe a set of features where
F={ka To A, A, ..., B. For ease of notation we will uge= {f, f,,..., f},
wherer — number of features. For an object, we constaufgature vectoO
containing the above-mentioned features:

O(ka) | | O(fy)

oT,) | |O(f,)
O=| oA [=|o(fy) | (9)
oE) | |o(f,)

This feature vector is further used for object silsation.

The average colour is a complex feature. It mehas values of the red,
green and blue components are summed up for alpitteds belonging to an
object, and divided by the number of object pixels:

n n n
rm z gm Z bm
kav ={ ravv gav’ bav} =4 ’ =L ’ =L ) (10)
n n n

The next complex feature attributed to objecteigure. Texture parame-
ters are found in the wavelet domain. The algorittetails are also given in
[10]. The use of this algorithm results in obtagiwo ranges for the horizontal
object dimensiom and two others for the vertical one

P .
min, , 7Vmax1‘2

T =[hm‘”1vz;hm%z] - (11)
4.2 Pattern Library

The pattern library contains information about @atttypes, shape descriptors,
object location and allowable parameter valuesafoobject [11]. We define a
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model feature vectdp, for each type of graphical element. We assumehtgig
up characteristic for each model which satisfy:

Mg, (1) D[01] (12)
where: 1<i < r, k— number of patterns. These weights for each npattempo-
nent should be assigned in terms of the best disghability of patterns.

First, each graphically extracted object is clasdifnto a particular catego-
ry from the pattern library. For this purpose, lire tsimplest case, we use Eu-
clidean metric, where the distance between vecrsand P, in an r-
dimensional feature space is defined as follows:

d(O,R) = Zﬂpk(fi)|o(fi)_Pk(fi)| } (13)
i=1

where:k — pattern number, 41 <r. In the fuzzy set description our weiglats
correspond to a membership function. Then, fomtlest important features of a
graphical object we can assuméf;) = 1.

5 Clasdsfication Results

The first step in our task was defining pattePagor each graphical object cat-
egory. We chose patterns for door and glass pardelsdaistinguished from
other objects, as an example. For this experinveatised 35 known graphical
objects, previously extracted from some imagesrd kere 9 doors with object
ID = [4,5,7,9,13,15,20,28,35] and 9 panes with cb}® = [3,6,14,16,17,27,
29,30,34], respectively.

From the methods mentioned in Sec. 4, we usedl#ssification tree for
data for 8 features of an object. These features eacentricity, moments of
inertia, solidity, minor axis length, major axisfgh, orientation and average
colour RGB components.

As we can see in fig. 4, the main distinguishingapzeter is the major axis
length. We had to normalize all data to [0,1] toalide to compute distances of
vectors from the particular pattern. The ratiols tninor axis length to the ma-
jor axis length is also a feature containing thigioal data, but after applying
this axes ratio and 6 features enumerated abovepteen a simpler classifica-
tion tree (fig. 5).

After some numerical experiments we chose two patfeespectively, for
the door and glass pane models based on the nstisigdishable features (as it
is shown in Table 1).
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Classification tree viewer

Class membership = |

Figure 4. Classification tree for data for 8 featuwithout any modifications.

Classification tree viewer

Figure 5. Classification tree with ratio of minormajor axes.
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Table 1: Patterns for the door and glass pane mddealed on the most distin-
guishable features.

Features PatternWeight 4, | Pattern | Weight
door pane e

eccentricity 0,93 0,1 0,85 0,1
moments of inertia avera@®,01 average 0,01
solidity 0,8 0,3 0,9 0,19
minor axis length 0,427 | 0,1 0,5 0,1
/major axis length
orientation 0,99 0,46 0,99 0,3
average colour component R 0,33 0,01 0,15 0,1
average colour component G 0,217 0,01 0,27 0,1
average colour component B 0,33 0,01 0,12 0,1

“ ' ' [ R

18- ]
14 % —
1.2~ 4 3 |
1 : il
08— -
06—
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R

o] 5 10 15 20 25 30 35
object numbers

Figure 6. Distanced for all graphical objects computed for pattern_rdaad
pattern_pane, respectively without weights.

Figure 6 illustrates the appropriateness of ouisitat. There are distances
d (computed based on eq. (13) but without weighjsor each object in its ID
order. The figure presents overlapping distancesidor and pane patterns (see
the legend). The majority of smallestorresponds with the object numbers IDs
for pattern_door and pattern_pane, respectively.

Only for doors ID = [7,15] and for glass panes I)1%,27] misclassifica-
tion can be noticed. Hence, subsequently, we addrghtsp for both pat-
terns, respectively, and obtained distande$or each object according to
eg. (13). The results are presented in fig. 7pitern_door and in fig. 8 for
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pattern_ pane, respectively. Doors and panes imxperiment were varied, for
instance, the panes came from windows as well assdwhich means that not
all objects classified, as doors or panes gainedrtimimal values ofl in com-
parison with other objects. But the weight introdglure improved the classifica-
tion when we compare patterns to each other fan ebfect separately. We can
see it in fig. 7 and fig. 8, respectively. It is mtlo noticing that for the above-
mentioned doors and panes the distances for psitfg, and Ppae With
weights received better values. For examplé?,Pyoo) = 0.065, whereas
d(7,Ppand = 0.067 or d(15Pgo0) = 0.051, whereasd(15P,and = 0.057, and
d(27 Pgoo) = 0.113, wheread(27 Ppand = 0.104. This is a right tendency in the
case when we have many patterns and we classéwahject.

distances d for door pattern with weight
08 T T T T

e .......... T —  T— S o ..... i
T
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il e o e S5 90 | o 1 A 0

(| A VR - _

" iels Tt LT

20 25 30 35
object numbers

Figure 7. Distanced for pattern_door with weight, .

However, in reality, while misclassifications ocgtire relationship is more
complicated. An example of this is object ID = 1Fieh is a glass pane but dis-
tance values for the considered patterns are egue{17Pgo) = 0.1 and
d(17 Ppand = 0.166.

6 Possibility theory for the best graphical object classifi-
cation

We can assume that we have such imbalanced anthssified data that it is
very problematic to achieve high accuracy by singifgsifying some examples
as negative. However, many attempts have been mmadedress the imbal-
anced data problem. Some methods try to receive foalanced, relevant and
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irrelevant training data via up-sampling and dowampling [6]. Unfortunately,
in the case of overlapping classes, or a lessebauwf classes than required,
even the balance received in an artificial way dugssolve the problem.

distances d for glass pane pattern with weight
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Figure 8. Distanced for pattern_pane with weigmppane.

As it has been shown in fig. 6, the commonly usethwods of feature se-
lection (using the positive features only) may léaabject misclassification. It
may be even worse for the imbalanced data with datinig irrelevant objects.
That is why, we suggest the application of intuitibic fuzzy sets for the graph-
ical object classification. For our task, when wek at fig. 6, it is easy to see
that for some objects the classification problerth bécome especially compli-
cated when we introdude> 2 patterns.

Then we can use, the apparently distant from oscudision, possibility
theory and introduce Baldwin’'s model developed bgid®in [3], [4] and
Szmidt [16], [17], [18], which so far has been eaygld only for votings. The
basic representation of uncertainty in Baldwin’sdelocontains terms necessity
n and possibilityp. Following these authors we can cite equalityhef parame-
ters for Baldwin’s model and the IFS model (Table 2

Table 2: Equality of the parameters for Baldwin'sdal and IFS model.

Baldwin’s model IFS model
Voting for n u
Voting against Ip v
Abstaining p-n h
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In the case of graphical object classification, pepose to use the notions
necessityandpossibilityto a support the estimation of an object assigtittea
particular class. As it was explained in Sec. 4,aksignment of objegtinto k-
class is based on distana®©(x),P,) O [0,1] between an object feature vector
and patterns.

We can assume that the necessity for an objealtm to a class is repre-
sented by the differences of valuksAn object is attributed into this class for
which valued is the smallest. For a given objectits distances from particular
patterns?, can be denoted as a distribution of possibility

p (x,R) =1-d(x,R), (14)
then the possibility that belongs to clasBy is equal tg (x,P). Therefore, the
necessity that belongs to clasBy is given in the form:

n(x, B,) :mjax(l—dj)—rrj\#akx p(x P;) (15)

where 1< j,k < n. This formula means that we subtract the smallakievof
d(x,P) from the maximum value of othés without the distance fd«-pattern,
whichis presented in fig. 9 (the case r

dﬂ
1 .................................... mh:.o .......................... * . p*O
h=0
-
I
'3: n=1
=
= n(x,P,) )
n=0
d, p=1
h=1
O W : >
x 1 i it X

Figure 9. The interpretation of the degree of ngitggpossibility and hesitation
for the distances of an object feature vector feoparticular pattern.

Under the above assumptions, we can consider thenei cases:
If de = 0 andd = 1 therp (Xx,P) = 1 andn (x,R) = 1, respectively. Thus, the
degree of hesitation (x,RP) =p (X,R) - n (x,R) = 0.

. If dy =0 andd = 0 therp (Xx,P) = 1 andn (x,R) = 0O, respectively. Thus, the
degree of hesitation (x,R) = 1.

. If de =1 andd = 1 thenp (x,P) = 0 andn (x,R) = O, respectively. Thus, the
degree of hesitatioh (x,P) = 0. In this particular case we can infer there
should be a new class introduced distinguishingtijects more precisely.
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This approach seems to be useful with respectdblgmms with assigning a
new object to particular class or small distingatsitity of some graphical ob-
jects.

7 Conclusions

The construction of a CBIR system requires comigiiome systems: an image
processing module for automatic segmentation, abdae to store the generated
information about images and their segments, andhaalule for image
classification with predefined patterns. Having lbuhese elements of the
system, we faced the problem of image retrieval.atfempt to deal with it by
introducing an intuitionistic fuzzy set, as well @mstructing and describing an
object pattern library. Object patterns are usedoftimum object distinction
and identification.

The application of intuitionistic fuzzy sets, inrggal, gives the opportunity
to introduce another degree of freedom (non-merhigsy into a set
description. Such a generalization gives us antiadal possibility to represent
imperfect knowledge, which leads to describing meagl problems in a more
adequate way.

To classify a new graphical object, we used anadiyeknown method of
comparing the object feature vector with pattetdewever, we suggest the
application of the possibility theory, and introduBaldwin’s model with its
notions of necessity, possibility, and IFS for ilsimeced and uncertain data.
This approach seems to be important for unsupehaselysis of large image
databases.
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