Agent-based Computing
Jadex: A BDI Reasoning Engine

Maciej Gawinecki

Overview

Theoretical foundation of BDI
Introduction to Jadex reasoning engine
JADE example

Developing tools in Jadex
Implementation in Jadex

Conclusions

Overview

Theoretical foundation of BDI
Introduction to Jadex reasoning engine
JADE example

Developing tools in Jadex
Implementation in Jadex

Conslusions

Theoretical foundation of BDI

* Reasons

- M. E. Bratman, D. J. Isreal, and M. E. Pollack (1987)
"Plans and resource-bounded practical reasoning.”

- A. S. Rao, M. P. Georgeff, (1995), “BDI Agents: From
Theory to Practice.”

BDI abstraction

* Deciding on which goals to achieve and how to achieve
them

- Beliefs: the information an agent has about its surroundings
- Desires: the things that an agent would like to see achieved

- Intentions: the desires that an agent is working on; also involves a
deeper personal commitment

* Example:
- Belief: My students are unhappy...
- Desire: | want to make my students happy.
- Intention: I will buy 22" LCD for each of them!

Requirements for BDI Architecture

* A BDI architecture addresses how beliefs, desires and
iIntentions are represented, updated, and processed

* |In BDI architecture an agent should (Bratman et al. 1987):
— monitor its plans when it changes its beliefs,
— check compatibility with prior plans (intentions),

— propose new plans when enviroments changes.

* These processes should be performed in timely fashion
(Bratman et al. 1987).

Generic BDI Architecture

* Generating options and
filtering options are
together called deliberation

Sensor
input

~
Beliefs

|
|
= @
Desires

Overview

Theoretical foundation of BDI
Introduction to Jadex reasoning engine
JADE example

Developing tools in Jadex
Implementation in Jadex

Conslusions

Background and Motivation

Jadex is based on the BDI model

Integrates agent theories with object-orientation and XML
descriptions

Object-oriented representation of BDI concepts

Explicit representation of goals allows reasoning about
(manipulation of) goals

Jadex is based on JADE Platform

Jadex Abstract Agent Architecture

Agent
Capability
Reaction]] Messages
S ‘?F’,f'e“t Plans >
Deliberation J ans J
! |
Handle Read/Write Application Events Dispatch
Events Facts i (Sub-) Goals
Messages
g
Condition
Events

=)=

Beliefs

* Beliefbase contains the knowledge of an agent

- Beliefs (single facts stored as Java objects)
- Beliefsets (sets of facts as Java objects)
— object-oriented representation

* No support for logical reasoning

* Advantages of storing information as facts

— Central place for knowledge (accessible to all plans)

- Allows queries over agent's beliefs

- Allows monitoring of beliefs and conditions (e.g. to trigger events /
goals)

Jadex Abstract Agent Architecture

Agent
Capability
Reaction]] Messages
S ‘?F’,f'e“t Plans >
Deliberation J ans J
! |
Handle Read/Write Application Events Dispatch
Events Facts i (Sub-) Goals
Messages
g
Condition
Events

=)=

Goals (desires)

* Generic goal types
- perform (some action)
— achieve (a specified world state)
- query (some information)
- maintain (reestablish a specified world state whenever violated)

* Are strongly typed with

- name, type, parameters
- BDI-flags enable non-default goal-processing

* (Goal creation/deletion possibilities

- initial goals for agents
— goal creation/drop conditions for all goal kinds

- top-level / subgoals from within plans

Jadex Abstract Agent Architecture

Agent
Capability
Reaction]] Messages
S ‘?F’,f'e“t Plans >
Deliberation J ans J
! |
Handle Read/Write Application Events Dispatch
Events Facts i (Sub-) Goals
Messages
g
Condition
Events

=)=

Plans (intentions)

* Represent procedural knowledge

- Means for goal achievement and reacting to events
- Agent has library of pre-defined plans

- Interleaved stepwise execution

* Realisation of a plan

- Plan head specified in ADF
- Plan body coded in pure Java

* Assigning plans to goals/events

— Plan head indicates ability to handle goals/events
- Plan context / precondition further refines set of applicable plans

Jadex Abstract Agent Architecture

Agent
Capability
Reaction]] Messages
S ‘?F’,f'e“t Plans >
Deliberation J ans J
! |
Handle Read/Write Application Events Dispatch
Events Facts i (Sub-) Goals
Messages
g
Condition
Events

=)=

Events

* Three types of events

- Message event denotes arrival/sending messages

- Goal event denotes a new goal to be processed or that the state
of an existing goal is changed

- Internal event

* Timeout event denotes that a timeout has occurred, e.g., waiting for
arrival of messages/achieving goals/waitFor (duration) actions.

* Execute plan event denotes plan to be executed without metalevel
reasoning, e.g., plans with triggering condition

* Condition-triggered event is generated when a state change occurs
that satisfies the trigger of a condition

Jadex Event Dispatching Mechanism

Jadex Agent

Message queue

Message Y Select message

receiver
Create event \[Capabilities/eventbases
for message

|
y

Event list

-
Internal/goal events)\
s
Dispatcher Y Select event

Find applicable| - Capabilities/planbases
candidates |~

Y

Select Meta-level reasoning
candidates

\ | y.
Y

Ready list

Scheduler Y Select intention

Execute
{ plan step

Overview

Theoretical foundation of BDI
Introduction to Jadex reasoning engine
Developing tools in Jadex

JADE example

Implementation in Jadex

Conslusions

Example in JADE

* Package ibspan.lab3.exl

* Launching

- bin\exl-nurse.bat

- bin\exl-doc.bat
* Observation

- Patient's blood presure depends on her age, recently taken drugs
and time flow

— Nurse observes patient's blood pressure, informs Doctor about it
and gives drugs on Doctor's request

— Doctor diagnoses Patient's state and Doctor diagnoses Patient's
state and orders the Nurse to keep Patient's blood pressure at a
specific average level

Doctor in BDI
{ maintain_battery_loaded (Initial goa)

[load_battery (Plan) |

[update_patient_info (Plan) |

| diagnose_patient (Plan) |

* Beliefs: my chargestate, patient_pressure,
patient_is_alive, nurse

Nurse in BDI

[
Lt

[inform (Plan) |

["apply_doctors_order (Plan) |

* Beliefs: my patient, pressure, is_alive

Overview

Theoretical foundation of BDI
Introduction to Jadex reasoning engine
Developing tools in Jadex

JADE example

Implementation in Jadex

Conslusions

Platform adapters

* |s a BDIl-extension (add-on) for the FIPA-compliant JADE
multi-agent platform

Agent Infrastructure

Rational Agent Layer - Jadex

Reaction &
Deliberation
Mechanism

Agent Platform - JADE

Directory Agent Message
Facilitaror Management Transport
(DF) System (AMS) Service (MTS)

Platform adapters

Jadex is realized as pure reasoning engine.

Can use any middleware platform providing services for
agent managements and messaging

Adapter required to access middleware platform
Adapters realized for:

- JADE
- Standalone platform (from Jadex)

Jadex Standalone Adapter

Fast and efficient execution environment
Small memory footprint
No support for mobility & persistence

Contained in Jadex distribution
(jadex standalone. jar)

Starting standalone platform
java jadex.adapter.standalone.Platform

JADE Adapter

Provides mobility & persitence
Allows using standard JADE behaviours approach
Not contained in the standard Jadex distribution

Download & add to classpath:

- from Jadex page:
adapter (jadex jadeadapter. jar)

- from JADE page:
official JADE jars (base64.jar, http.jar,
iiop.jar,jade.jar, jadeTools.jar)and additionally
Crimson (crimson. jar)

Starting with JADE platform
jJava jade.Boot
rma: jadex.adapter. jade.tools.rma.rma

Jadex Control Center

e Started per default when the Standalone platform is
launched

* Provides:

- project handling
— central access point for all runtime toolset
- functionalities provided by plug-ins in separate perspectives

Jadex Control Center

Jadex Control Center 0.96-betal (2007/03/20): Project lab3-ex?

File Model Help

I ey ed i =Y T Vs F
Lo 5% UL 08 < u .4 Jadex
Iﬁ lab3-ex2 jar (Chibspanwarkspacelabdistilabh3-ex2 1|~ Settings

-\ Filename ihspanflab3feximanagerManager.agent.xml |E|
S T -1 | configuration defaut -
Mame | Address | Agent name |Manager [_] Auto generate

¢ 3 beethoven ;§
.&jcc@heethwen tep-mtpa 0,74 36.192: 3474 §§
& ams@beethoven top-mitp 10 74 36.192:3475 | el Reload || Reset Help
&df@beethwen tep-mip 074 361523474 §§ ~Description
.lDuctur@beethwetcp-mtp:ﬂ*lD.T4.35.192:34?‘5 E'

..lNurse@heethwetcp-mtp:ﬂ'lD.T4.35.192:34T5 Error | IMHHHEET |

The manager agent for starting the application.

Can be used to start the Doctor and Murse example.

DF Browser

Jadex Control Center 0.96-betat (2007/03/20): Project lab3-ex?
File View Help

& R L L4 Jadex|

MNarme | Address ; ~Registered Agent Descriptions
? atieethwen — Agent Leasetime | Services | Ontologies | Languages | Protocols
di@besthoven top-rmtpaf0:0:0:0:0:0: | Murse@heethoven nia AUrSE

i Flame ¢ Type Cwwnershipl Agent [Ontolog.. | Lanouad.. [ProtocolsPropert..
B [hurse SEMNICE_NUrse WL MUrseE...

~Service Properties

Name:
Type:
Ownership:
Agent:
Ontologies ——— rLanguages | rProtocols ——— (Properties

T T

Conversation Center

File Help

Jadex Control Center 0.96-betal (2007/03/20): Project lab3-ex2

RRog

e N A
<3 ~Jadex

4, A Axl

Mame

¢ a heethoven

P dfi@heethoven

AT Sent Messages

jcripbeathoven
& amz@besthove :

.l Doctorg@heetho
& Murse@beetho :

uery-ref{null)

e, T e

query-refinull)
query-ref{null)
query-refinull)
query-refinull)
query-ref{null)
query-refinull)
query-ref{null)
query-refinull)
query-refinull)
query-ref{null)

- Received Messages

inform{46)
inform{50)
inform{(51)
inform(51)
inform{50)
inform({50)
inform(51)
inform{50)
inform{49)
inform{49)
inform{48)

~ Content Description

|- Content

[.=Send [; Jinform(46) | . query-ref(null) |

3 Message Properties

: Performative | | |
Sender Anentldentifiername=Murse@beethoven) DD
Receivers [Aoentldentifieriname=jcc@besthoven)] DD
Reply-to [][x]

Comversation Control

Protocol

Conversation-id
Reply-with
In-reply-to
Reply-by

Language java-xml
Encoding
Ontology

46

Introspector

Jadex Control Center 0.96-betal (2007/03/20): Project lab3-ex2
File Default Options Help

&6 RO ¢ d Jgcex

Mame :1’ Beliefhase | () Goalbase | {:}Planbase | - Debugger |
¢ & beethoven g
B icc@beethoven | 1) | 0] ([0 k{‘} ‘.:;-;,'
armsigheethove :
jdf@beethwen gg Marme | Class | Yalue
4 Doctorg@hestho 1 Doctorg@beethoven
& Hurse@beetho Al v ° Beliefase
¥ my_chargestate int a4
nurse jadex adapter.fipa.Agent.. Agentldentifieriname=Hh...
patient_is_alive hoolean true
patient_pressure int a1
o & dfcap
¢ Beliefhaze
timeout long 10000
o W procap
¢ | Beliethaze
chp_filter jadex runtime. Filter Indexmapimap={value=rf..
da_filter jadex runtime. Filter Indexmapimap={value=rf..
ea_filter jadex.runtime. [Filter IndexdMapimap={value=f...
rp_filter jadex.runtime. [Filter IndexdMapimap={value=f..
timeout javalang.Long 10000
| e T e T T T T T T N

‘| Details

Info rny_chargestﬂte|
AlIREelief ry_chargestate -

id: jadexruntime.impl.REeliefi@294 6673
scope: Doctor

updaterate: 0 =
owner: Doctor beliethazes

value: 71 | ¥
exported: false

isencodeablepresentation: true =

J 0] Dk == ans

A R R R T A A A R A A A N NSy

Introspector

Jadex Control Center 0.96-betal (2007/03/20): Project lab3-ex2
File Default Options Help

&6 RO ¢ d Jgcex

Mame :1’ Beliefhase | () Goalbase | {:}Planbase | - Debugger |
¢ & beethoven g
B icc@beethoven | 1) | 0] ([0 k{‘} ‘.:;-;,'
armsigheethove :
jdf@beethwen gg Marme | Class | Yalue
4 Doctorg@hestho 1 Doctorg@beethoven
& Hurse@beetho Al v ° Beliefase
¥ my_chargestate int a4
nurse jadex adapter.fipa.Agent.. Agentldentifieriname=Hh...
patient_is_alive hoolean true
patient_pressure int a1
o & dfcap
¢ Beliefhaze
timeout long 10000
o W procap
¢ | Beliethaze
chp_filter jadex runtime. Filter Indexmapimap={value=rf..
da_filter jadex runtime. Filter Indexmapimap={value=rf..
ea_filter jadex.runtime. [Filter IndexdMapimap={value=f...
rp_filter jadex.runtime. [Filter IndexdMapimap={value=f..
timeout javalang.Long 10000
| e T e T T T T T T N

‘| Details

Info rny_chargestﬂte|
AlIREelief ry_chargestate -

id: jadexruntime.impl.REeliefi@294 6673
scope: Doctor

updaterate: 0 =
owner: Doctor beliethazes

value: 71 | ¥
exported: false

isencodeablepresentation: true =

J 0] Dk == ans

A R R R T A A A R A A A N NSy

Introspector

Jadex Control Center 0.96-betal1 (2007/03/20): Project lab3-ex2

File Default Options Help
s RO v L4 Jadex

B Mame ; r Beliefhase r () Goalbase |/{:-:-.} Planbhase |/ 2': Debugger |
heath 4
¥ iejcfghneethwen :|{&} Plamview - shows goaliplan hierarchy

3| (] | @) |

& ams@beethove
& di@besthoven

& Doctor@beetho| - Marne | Lifecycle State | Processing State| Type |
& Murse@besthoy ; N Doctor@heethoven
3 keep_patient_info_uptodated option idle keep_patient_in...
¢ Gl maintain_battery_loaded®! active in_process rmaintain_batter...
{z} lnad_battenmta by
Gﬁ maintain_patient_alivei#1 option idle maintain_patie..

(Info | my_chargestate | keep_patient_info_uptodate#1

RhaintainGoal keep_patient_info_uptodates# |~ |
scope: Doctor
maintaincondition: false =
targetcandition: false
processingstate: idle]
izsencodeahlepresentation: true
type: keep_patient_info_uptodate
kind: maintain -

i e " e id e

Introspector

Jadex Control Center 0.96-betal (2007/03/20): Project lab3-ex2

File Default Options Help
? } 3 6 - .. .!ﬁ : ra
- B RO L LG Jodex|
Mame r Beliefbase |/ () Goalbase r {z} Planbase r 2'- Debugger |
? & hesthoven =
B icc@heethoven 3| |[&] k{‘} »L’-";l]
.l amsggbeethove -
B di@beethoven | - Marne | State [
Doctori@besthal © 1 Doctorighbeethoven
Murse@besthoy || ¢ & Planbase
: {2} load_batens boky
o & dicap
ﬂ Flanbase
o & procap
) Flanbasze

il

[e T T e T e e e e T e T e T e T T R T T X

| Details
: [info | my_chargestate | keep_patient_info_uptodate#1 | load_battery#6

RFPlan load_hattenss
hody: LoadBatteryPlaniname=load_battenmta)
proprietarygoal; maintain_hattery_loaded#1
scope: Doctor
state: body
waitgueue: null
isencodeablepresentation: true
trpe: load_hattery =

[Y

L

Tracer

Jadex Control Center 0.96-betal (2007/03/20): Project lab3-ex2

File Agent Table Graph Help
s q] . 'E: ...--"{E-‘fx .‘-: ﬁ/uﬁ.l. /g“i.]. I‘-J---CIdex
1jcc@beethwen ; #| Agent Marne Content Cause |Time| | Tracing Settings
> ams@beethoven 17 Murse.. |[{EF apply_doctors_order#58 |RPlan(name=appl.. [#1880.. [06.. [~ i
& dfmbeethoven 18[Nurse. |, #1&80@0octor DO_VALIUM 06 | || LI Trace Belief Reads
> Doctarigheethaven A18Nurse.. |k #1885@MNurse true apply_... |0G.... [¢] Trace Belief Writes
4 Mursei@beethoven §§ 20|Murse... Aressure 100 0&....
121 Murse... pressure 104 o7..| | [v] Trace Goals
22|Murse... AressUre 104 07... [w] Trace Plans
1 23|Murse... pressure 108 0g... |=
|24/Nurse... [{) informat 45 RFlaniname=infor... #1803... [08...| || & Trace Messages
§§ 25|Murse.. 0 #1903@0octor il 08.. | [] Trace Internal Events
§§ 26| Murge... | _F #1906@MuUrse 108 inform... |0&... i
127 Murse... pressure 104 0g.... [] Trace Actions
§§ 28|Murse... [z} apply_doctors_ordertsd |RPlaniname=appl.. [#1921... |08.... Modes Limit
29\ Murse... g #1921 @0Doctar Do WAL 0a..
§§ 30|Murse... |k #1926@MNUrse triie apply_.. |08
131 | Murse... pressure 106 0g....
132 Nurse... pressure 106 04....
A 33| Murse... pressure 104 10.... |— | Clear || Apply |
=F 1T T A0 A0 -
e e £ 0 ot
‘|Locality || [4] Il | [»]
: -
WRITE = pressure
Value = 1049
Agent = Murseg@beethoven
Seq = 27
P—{'-&-:-.‘ Causes =
: - Date = Mon May 21 11:25:08 CEST 2007
4| Thread = AsyncExecutabledStandaloneAgentidapterMurse@beathoveny)

Components of a Jadex Agent

Agent Platform

/r Jadex Agent

ADF

<agent name="ping">
<beliefs>

public class PingPlan
extends ThreadedPlan
{
pubTlic void body()
{
}
}

<goals=
<plans>

</agent>

3

Agent Definition File (ADF)

* ADF defines agent startup properties:
— initial goals and beliefs
- heads of plans

* ADF syntax and semantics:
— ADF is written in XML

- semantics defined by XML schema: which elements can be
specified inside an agent definition file

— XML schema defined in
jadex/docs/schema/jadex-0.95.html

Agent Definition File (ADF)

<agent xmlns="http://jadex.sourceforge.net/jadex"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://jadex.sourceforge.net/jadex
http://jadex.sourceforge.net/jadex-0.95.xsd"

name="..." package="...">
<imports>...</imports>
<capabilities>...</capabilities>
<beliefs>...</beliefs>
<goals>...</goals>
<plans>...</plans>
<events>...</events>
<expressions></expressions>
<properties>...</properties>
<initialstates>...</initialstates>

</agent>

—

MCapability

(MBDIAgent |}|L_|;

1

1

1

g

1

e A

Yo
-|:—--—jE|—+-- plans

1 L 1

1

1 1

L 1

1 1

1

Agent Definition File (ADF

element agent

diagram

namespace

hitp:/fladex sourceforge netfadex

type

extension of MBDIAgent

children | imports capabilities beliefs goals plans events expressions properties initialstates
attributes | Name Type lse Default Fixed Annotation

name ¥SIstring documentation The elements name.

description xs:string optional documentation The elements optional description tex.

package xsstring optional documentation The package to which this capability belongs.

abstract xs:boolean optional false documentation Ywhen a capability is declared as abstract, it cannot be
used directhy for execution. Instead there need to be
some implementation for this capability that will be
resolved from the capability identifier.

propertyfile xsstring optional jadex config runtime

annotation | documentation Defines a new agent type.

Agent Definition File (ADF)

* \WWhen an ADF is loaded:

— Java objects are created for the XML elements defined in the
ADF, e.g.
* belief - jadex.model.IMBelief
* goal - jadex.model.IMGoal
* plan - jadex.model.IMPlan

Beliefs

<beliefs>
<!-- The patient (of age of 90), this Nurse takes care about.

<belief name="my patient" class="Patient">
<fact>new Patient (90)</fact>
</belief>

<!-- Patient's blood pressure updated every 0.5 second. -->
<belief name="pressure" class="int" updaterate="500">

<fact>Sbeliefbase.my patient.getPressure()</fact>
</belief>

<!-- Is patient alive flag, updated every time accessed. —-->

<belief name="is alive" class="boolean"> MEeliefbase

<fact evaluationmode="dynamic"> | =e-----

Sbeliefbase.my patient.isAlive()</fact> i

</belief> ! D_m

</beliefs> P :' _____________
h&mﬂsiiﬂ—ﬁ}ﬂ:}

e D_m
b E-I_l}éiné-ﬁéfi

B 3

3. = '|}éi.;%ééiEéf '

Access to Beliefs from Plans

* Methods:

- getFact () — get the fact of a belief
- setFact (Object fact) — set a fact of a belief

- isAccessible () —is this belief accessible
* Example:

Integer pressure = (Integer) getBeliefbase () .getBelief ("pressure")
.getFact (),

// Updating information about patient consumes some energy...
int charge = (Integer)

getBeliefbase () .getBelief ("my chargestate") .getFact();
getBeliefbase () .getBelief ("my chargestate") .setFact (

new Integer (charge - 2));

qgoals I;I-

MGoalbase

1

- - = achievegoal ‘
I e e e e e - ==y = -

: ------------ Tun - !

1

b ﬂll-&rjfﬂﬂﬂl -

[A.\,H:-__I
3‘ 0.
_5\? __________________
0.0 |:-erf4:rrmgn:ralref
______________________________ o
0.

:r-l querygoealref ‘
: Y- 'l,‘:? =_1

Creation
Condition

Create

Goal Lifecycle

New

Legend

- Negated condition
D--»o Condition guards transition
[_)---e Condition triggers transition

\

Condition

T
]
]
]
]
= I
1
]
]
]
T

Suspended

suspend

suspend

activate

finished

Drop
Condition

—6—»@

drop

Finished

Goal

MParameterElement

—@E : assignto "

-
AR R L TR Rt .
—E:EI-*, 0.

I -
- unigque

1
'i'il
q
b
3
a
-
x]
e
-
=
=
=
e

1
=
q

2
t
L]
e
-
=
=
=
e

=== =-==°=-=--
1
-:'i-
=
=
cp
=
x
=
-
=
=
=
-

-, deliberation [.
1

Goal Creation

<initialgoal>: Initial goals are created and adopted as
top-level goals when an agent is born

<creationcondition>. When the creation condition
triggers, then one or more goal instances are created and
adopted as top-level goal(s).

Plans may directly create goals and dispatch them as
subgoals. These goals are adopted as subgoals of the
plan's root goal. When a plan terminates or is aborted, all
not yet finished subgoals are aborted automatically.

Plans may also create goals and dispatch them as top-
level goals. Once adopted, such a goal exists
independently of the plan that created it.

Goal Lifecycle
O e

9,

1=

Creaion—) | Qe cCorét_?_xt SUSURRERE SRS Drop
Condition i LUl ! Condition

drop
Finished
Legend
Negated condition

D——~o Condition guards transition
__)---e Condition friggers transition \

-l

| option |

Suspended

suspend

option

/

* <contextcondition>: indicates when Active/Option goal should
be suspended

suspend

activate

finished

* <dropcondition>: indicates when adopted goals should be
dropped

* <deliberation>: indicates which Option goals should be
(de)activated (inhibition and cardinality)

Goal Flags

* retry {true, false}:

- the goal should be retried or redone, until it is reached, or no more
plans are available, which can handle the goal.

- Default=true

* exclude {when tried, when succeeded,
when failed, never}:

— used in conjunction with retry; when retrying a goal, only plans
should be called, that where not already executed for that goal.

- Default=when tried
* posttoall {true, false}:

— enables parallel processing of a goal, by dispatching the goal to
all applicable plans at once.

- Default=false

Goal Flags

* retrydelay (positive long value)

— optional waiting time (in milliseconds)

* Without retrydelay goal processing works as follows:
goal - plan 1 - plan 2 - plan 3 - ...
until the goal is failed or succeeded.

* The retrydelay just specifies a delay in milliseconds before
trying the next plan, when the previous plan has finished, i.e.:
goal - plan 1 - wait - plan 2 - wait - plan 3 - ...
until goal fails or succeeds.

* This is e.g. useful, when already tried plans are not excluded
from the applicable plan set, leading to the same plan being
tried over and over again.

- Default=0

Goal Flags

!--— Maintain correct patient's blood pressure, but only if Doctor
has energy. —-->
<maintaingoal name="maintain patient alive" exclude="never"
retry="true" retrydelay="2500">
<contextcondition>$beliefbase.my chargestate >
0</contextcondition>
<!-- Engage in actions when the pressure is out of [50,100] range.
-——>
<maintaincondition> Sbeliefbase.patient pressure >= 50 & &
$beliefbase.patient pressure <= 100
</maintaincondition>
</maintaingoal>

Maintain Goals

Target Active
Condition | i .
; ‘ :

Jvl 2 l recur [~¢ " Unmaintainable i

E = _ -

In Process

Maintain
Condition

Maintain Goals

* Keep-Operational (keep track of the battery state and
charge it when necessary)

<!-- Observe the battery state. —-->
<maintaingoal name="maintain battery loaded" exclude="never"
retry="true">

<!-- Engage in actions when the state is below 20. -->
<maintaincondition> Sbeliefbase.my chargestate >= 20
</maintaincondition>
<!-- The goal is satisfied when the charge state is 100. -->
<targetcondition> Sbeliefbase.my chargestate >= 100
</targetcondition>

</maintaingoal>

* To avoid the agent loading only until 21% (which satisfies
the maintain condition), the extra <targetcondition>is
used. It ensures that the agent stays loading until the
battery is fully recharged.

Perform Goals

———————— —
. \ | MPerformGoal |
Active e, i
|—@31 assignto !, |
'''''''''''''''' T‘:_ "
| = |
r- parameter
| | e o |
v | RS2 B |
[Frerformgoal E]T "7y parameterset o
F In Process Succeeded | = | ‘e sl |
@) | -4 unique £ |
Failed | - - Fereationcondition []
redo L(amg | Foomencondtion £
: .- Zacopeondition [I
L} deliberation [
) | emtessemeneean
<!-- Look out for waste when nothing better to do, what means that
the agent is not cleaning, not loading and it is daytime. -->

<performgoal name="performlookforwaste" retry="true" exclude="never">

<contextcondition>
$beliefbase.daytime
</contextcondition>
</performgoal>

Achieve Goals

/ Active \

.

Target
Condition

.— In Process =@

S Unknown
- 1
retry
Failure — | ______ i Failed
Condition
<!-- Drop a piece of waste into a wastebin. -->

<achievegoal name="achievedropwaste" retry="true" exclude="never">
<paraméeter name="wastebin" class="Wastebin"/>
<1-- The goal has failed when the aimed wastebin is full. -->
<failurecondition>
(select one Wastebin $wastebin
from $beliefbase.wastebins
where $goal.wastebin.getId() .equals($wastebin.getId())) .isFull()
</failurecondition>
</achievegoal>

Succeedec

| MAchieveGoal o
— : 1 assignto
---------------- o
0.

v -\~ dropeondition |
:

U

<!-- Try to_move to the specified location. -->

<achievegoal name="achievemoveto">)
<$arameter name="location" class="Location"/>
<!

<targetcondition>

</targetcondition>
</achievegoal>

$beliefbase.my location.isNear ($goal.location)

-- The goal has been reached when the agent's location is
near the target position as specified in the parameter. -->

Query Goals

Active

o

n

astebin"

is as near as possible to the agent.
<querygoal name="quer
<parameter name="result" class="Wastebin" direction="out">
<value evaluationmode="dynamic">
select one Wastebin $wastebin

-->

exclude="never">

MOueryGoalReference |
Target [E o ST fr
: 1+ assignto
Condition | '-_-_-_-_-_-L_I-_-_:‘;,-'_' |
| 0.
Succeeded - concrete |
| i B = |
.— In Process —b@ _ | abstract |
Unknown |_t|l_|erygn:ralref E‘T r-:Eparameterref
I : ---------------------------- 1
retry |—E:EH 0.0 |
s E - LE arametersetref [+
Failure — | ________ + Failed | ; parametersere -
Condition 0 oo |
T |—E:Eh deliberation |
- L_ el _eelieieialieieileill
<!-- Try to find a not full waste bin that

from $beliefbase.wastebins
where !'$wastebin.isFull ()
order by
Sbeliefbase.my location.getDistance ($wastebin.getLocation())
</value> -
</parameter>
</querygoal>

Conflicting Goals

* Goal-oriented agent is capable of pursuing multiple goals
simultaneously

* Some goals could be in conflict

— Doctor cannot take care about patient and regenerate
its energy at the same time

* Some goals require limitation in number of activated
iInstances

- see Cleaner example in Jadex package

Goal Deliberation Strategy

* Goal deliberation allows avoiding activatation of conflicting
goals

* Jadex uses Easy Deliberation strategy

— Cardinalities for goal instances:
Only x instances of a certain type of goal are allowed to be active

simultanously

— Inhibition links:
Goals which has been activated should suspend goals inhibited

by them

Inhibition Links

— N —

A 4 A 4

* |dle maintain goals (mainly them), might not always be in
conflict with other goals — is sometimes required to restrict
the inhibition to only take effect when the goal is in
process.

* This can be specified with the inhibit attribute of the
<inhibits> tag, using "when active" (default) or
"when in process'" as appropriate.

Inhibition Links

!-— Observe the battery state. —-->
<maintaingoal name="maintain battery loaded" exclude="never"
retry="true">

<deliberation>
<!-- The Doctor's first takes care about its energy, does 1t
cannot do anything else when regenerating. -->

<inhibits ref="keep patient info uptodate"
inhibit="when in process"/>
<inhibits ref="maintain patient alive"
inhibit="when in process"/>
</deliberation>

<!-- Engage 1n actions when the state 1s below 20. -->
<maintaincondition> Sbeliefbase.my chargestate >= 20
</maintaincondition>
<!--— The goal is satisfied when the charge state is 100. -->
<targetcondition> Sbeliefbase.my chargestate >= 100
</targetcondition>

</maintaingoal>

Goal Deliberation Strategy

* Graph consitisting of inhibiting arcs should be acyclic to
avoid cycles in deliberations.

* Agent should deliberate only on demand:

- Deliberate a new option
Check which inhibited goals should be suspended.

— Deliberate a deactived goal
Check which inhibited goals should be reactivated.

Plan Head

MPlan
== == . assignto !,
'''''''''''''''' S =
Q..o
-IE|}ﬂrﬂn1eter

@ g
Foo B

~plan

;

- parameterset
1 o

s = T

EI]u:r{l:-,-r

g S =

L " precondition
1 1 1

- - contextcondition

- -1 waltqueue

Plan Head

* Create plan instance when a message arrives (plan pre-
condition)

<!-— A plan, from which a new instance 1is created
whenever a drug applying request 1s received. —-->
<plan name="apply doctors order">
<body>new ApplyDoctorsOrderPlan ()</body>
<trigger>
<messageevent ref="request drug applying"/>
</trigger>
</plan>

Plan Head

* Create plan instance when a goal is adopted

<!-- Load the battery. -->
<plan name="load battery">
<body>new LoadBatteryPlan ()</body>
<trigger>
<goal ref="maintain battery loaded"/>
</trigger>
</plan>

Plan Head

* <precondition> is evaluated before a plan is
instantiated

* When it is not fulfilled this plan is excluded from the list of
applicable plans.

Plan Head

* <contextcondition> is evaluated before & during the
execution of plans.

* When context condition is violated, the plan is aborted and
the plan had failed.

<!-- Maintain correct patient's blood pressure, but only if Doctor
has energy. -->
<maintaingoal name="maintain patient alive" exclude="never"
retry="true" retrydelay="2500">
<contextcondition>$beliefbase.my chargestate >
0</contextcondition>
<!-- Engage 1n actions when the pressure is out of [50,100] range. —-->
<maintaincondition> Sbeliefbase.patient pressure >= 50 & &
$beliefbase.patient pressure <= 100
</maintaincondition>
</maintaingoal>

Plan Body

The standard plans inherit from jadex.runtime.Plan

This class provides set of abstract methods:

- body () — plan code

- passed () — optional cleanup code in case of a plan success

- failed () — optional cleanup code in case of a plan failure

- aborted () — optional cleanup code in case the plan is aborted

Plan body may:
- Send / receive messages

- Manipulate beliefs
- Create subgoals

Plan Execution

* For the first step:

- The body () method of standard plans is called only
once

— and runs until

* the plan explicitly ends its step by calling one of the
waitFor () methods,

* or the execution of the plan triggers a condition (e.g.,
by changing belief values).

* For subsequent steps the body () method is continued,
where the plan was interrupted.

Plan Execution

AgentIdentifier nurse =

if (nurse == null) {
// If Nurse unknown yet, find it in Directory Facilitator
IGoal df search = createGoal ("df search");

dispatchSubgoalAndWait (df search);
AgentDescription[] result = (AgentDescription[]) df search

.getParameterSet ("result") .getValues() ;

}

IMessageEvent outcoming = createMessageEvent ("query for patient");
IMessageEvent incoming = sendMessageAndWailt (outcoming) ;
Integer pressure = (Integer) incoming.getContent();

events [%:I—

Events

MEventhase

e =a IF_H
"«.'.1-;;.- :
0. .co -

:

Receiving Messages

Incoming messages are handled by the event dispatching
mechanism

Event dispatching mechanism is based on two mappings:
- from message to message event
- from (message event) to plan trigger

Mappings are recommended to be unambigous

When more than one mapping from a received message to
different message events are available

- agent chooses the alternative which is the most specific

- if there are two or more with the same specificity, the first one is
chosen

Receiving Messages

* The message event (jadex.runtime.IMessageEvent)
denotes the arrival or sending of a message.

Receiving Messages

<events>
<l-- Specifies a drug applying request being all
messages with performative request. -->

<messageevent name="request drug applying" direction="receive"

type="fipa"> - -

<parameter name="performative" class="String"

direction="fixed">

<value>SFipa.REQUEST</value>

</parameter>

<parameter name="language" class="String" direction="fixed">
<value>SFipa.JAVA XML</value>

</parameter>
</messageevent>
</events>
<plans>
<!-- A plan, from which a new instance 1s created
whenever a drug applying request is received. —-->

<plan name="apply doctors order">
<body>new ApplyDoctorsOrderPlan ()</body>
<trigger>
<messageevent ref="request drug applying"/>
</trigger> o o
</plan>

</plans>

Receiving Messages

public class ApplyDoctorsOrderPlan extends Plan {

public void body () {
// Access the event that triggered this plan.
IMessageEvent incoming = (IMessageEvent) getInitialEvent();
// Get Doctor's order/decision.
String decision = (String) incoming.getContent () ;

Sending Messages

<events>
<l-- Specifies a drug applying request being all
messages with performative request. -->

<messageevent name="request drug applying" direction="send"
type="fipa"> B B
<parameter name="performative" class="String">
<value>SFipa.REQUEST</value>
</parameter>
<parameter name="conversation-id" class="String">
<value>SFipa.createUniquelId (Sscope.getAgentName ())</value>
</parameter>
<parameter name="language" class="String">
<value>SFipa.JAVA XML</value>
</parameter> -
</messageevent>
</events>

Sending Messages

public class DiagnosePatientPlan extends Plan {

public void body () {

// Prepare a message to the Nurse
IMessageEvent outcoming =
createMessageEvent ("request drug applying");
outcoming.getParameterSet (Jadex.adapter.fipa.SFipa.RECEIVERS)
.addValue (nurse) ;

// Prepare diagnosis and decision to apply in the situation
Integer pressure = (Integer)
getBeliefbase () .getBelief ("patient pressure") .getFact();

String decision = (pressure < 50) ?
"DO INJECTION" : (pressure > 100) ? "DO VALIUM" : null ;
if (decision != null) {

outcoming.setContent (decision) ;
IMessageEvent incoming = sendMessageAndWait (outcoming) ;

Replying Messages

<events>
<!-- Specifies a return message about patient's blood pressure
or being alive information, being all messages with
performative inform. -->

<messageevent name="inform about patient" direction="send"
type="fipa"> - -
<parameter name="performative" class="String"
direction="fixed">
<value>SFipa.INFORM</value>
</parameter>
<parameter name="language" class="String" direction="fixed">
<value>SFipa.JAVA XML</value>
</parameter> -
</messageevent>
</events>

public class InformAboutPatientPressurePlan extends Plan ({

public void body () {
// Access the event that triggered this plan.
IMessageEvent incoming = (IMessageEvent) getlInitialEvent();
Integer pressure = (Integer)
getBeliefbase () .getBelief ("pressure") .getFact () ;
// Prepare reply of "inform about patient" type, defined in ADF
IMessageEvent outcoming = a
incoming.createReply ("inform about patient",pressure);
sendMessage (outcoming) ; o -

Overview

Theoretical foundation of BDI
Introduction to Jadex reasoning engine
Developing tools in Jadex

JADE example

Implementation in Jadex

Conslusions

Documentation

* Jadex support

— Tutorial and User Guide:
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

- forum and mailing list:
http://sourceforge.net/projects/jadex

* QOther presentations about Jadex

- Prof. Michael N. Huhns, Jadex and BDI Agents:
http://www.cse.sc.edu/~huhns/csce590/BDI-agents.ppt

- Mehdi Dastani, Multi-Agent Programming, Jadex: A BDI
Reasoning Engine:
http://www.cs.uu.nl/docs/vakken/map/slides/jadex.pdf

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://sourceforge.net/projects/jadex
http://www.cse.sc.edu/~huhns/csce590/BDI-agents.ppt
http://www.cs.uu.nl/docs/vakken/map/slides/jadex.pdf

Jadex summary

* Obijective: Supporting the construction of open multiagent
systems by making use of mentalistic notions

* Supports easy agent construction with XML-based agent
description and procedural plans in Java

* Supports reusability through the capability concept offers
toolsupport for debugging (in addition to the JADE tools)

- BDI-Viewer allows to observe and modify the internal state
- The BDI-Introspector allows to control the agent

- The Logger agent collects log-outputs of any agents

FAQ

* In my agents there is always one plan for a goal. Why do |
need goals anyway?

- You don't need to use goals for every problem.

- Using goals in many cases simplifies the development
and allows for easier extensions of an application.

- The difference between plans and goals is fundamental.

* Goals represent the "what" is desired

* plans are characterized by the "how" could things be
accomplished.

- If you e.g. use a goal "achieve happy programmers”
you did not specify how you want to pursue this goals.
One option might be the increase of salary, another
might be to buy new TFT monitors.

FAQ

* In my agents there is always one plan for a goal. Why do |
need goals anyway?

- Example from Nurses

FAQ

* How can the environment of a Jadex MAS be
programmed?

- As a a separate environment agent:

* Works when distribution required
* The agent administers the environment

* Domain specific ontology is defined: FIPA-compliant actions
(e.g.such as moveup)

* Each agent encodes each action into an AgentAction.

* The environment agent tries to execute the contained action
and sends back the result e.g. Done(AgentAction).

* As this procedure is cumbersome, we used following idea. For
every primitive action a goal is defined with corresponding
plans that do the message handling. The agent programmer
can subsequently use just the goals for interaction with the
environment.

FAQ

* How can the environment of a Jadex MAS be
programmed?

— As a singleton object for all agents:

* Precisely as a simple belief with a fact expression that refers
to that singleton object:

* e.g. garbagegollector example

<!-- Environment object as singleton.-->
<belief name="env" class="Environment">
<fact>Environment.getInstance (Sagent.getType (),
agent.getName ()) </fact>
</belief>

* Limited in nature as it is not possible to distribute the
application over more than one Java VM.

Tools

* XMLBuddy plugin for Eclipse
http://www.xmlbuddy.com/
for editing XML files

http://www.xmlbuddy.com/

Many Thanks Go To...

* Mehdi Dastani and Michael N. Huhns for their
presentations

* Marcin Paprzycki and Maria Ganzha for their valuable
comments

Thank you
for your attention

