
1

Maciej Gawinecki
Systems Research Institute, Polish Academy of Sciences

maciej.gawinecki@ibspan.waw.pl

http://www.ibspan.waw.pl/~gawinec

Software agent computing

2nd laboratory activities
at Warsaw University of Technology

✔4 h

mailto:maciej.gawinecki@ibspan.waw.pl

2

Agent-
oriented

methodology

3

Technological challenge

Chris Preist
HP Laboratories Bristol, UK

et al. say*

* M. Luck, P. McBurney, Ch. Preist (2003). Agent technology: Enabling next
 generation computing: A roadmap for agent-based computing. AgentLink report.,
 http://www.ecs.soton.ac.uk/~mml/papers/al2roadmap.pdf

“One of the most fundamental obstacles to
 large-scale take-up of agent technology is
 the lack of mature software development
 methodologies for agent-based systems.”

Methodology for software development is intended to:

✔ discipline software development by defining set of guidelines for covering
 the whole lifecycle of system development

✔ define the abstraction for modelling software (object-oriented,
 agent-oriented, data-oriented, knowledge-based etc.)

http://www.ecs.soton.ac.uk/~mml/papers/al2roadmap.pdf

4

Ask Kate Slezavina,

Project #3: Designing eLearning environment with
three different agent-oriented methodologies

Exisiting methodologies
■ Exisiting methodologies

 MaSE
Scott A. DeLoach, Mark F. Wood and Clint H. Sparkman, “Multiagent Systems Engineering”, The International
Journal of Software Engineering and Knowledge Engineering, Volume 11 no. 3, June 2001,
http://www.cis.ksu.edu/~sdeloach/publications/Journal/MaSE%20-%20IJSEKE.pdf

 Tropos
Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. “A knowledge level software engineering
methodology for agent oriented programming”. Autonomous Agents, Montreal CA, May 2001,
http://www.auml.org/auml/supplements/Bresciani-Agents2001.pdf

 JADE-oriented
Magid Nikraz1a, Giovanni Caireb, Parisa A. Bahri (2006), "A Methodology for the Analysis and Design of
Multi-Agent Systems using JADE",
http://jade.tilab.com/doc/JADE_methodology_website_version.pdf

 Other: Gaia, Prometheus – described on 1st lecture!

■ Comparision:which one is better ?
 Onn Shehory, Arnon Sturm, Methodologies for Agent-Oriented Software Engineering,

Presentation from EASSS 2006, Annecy, France.
➔ I've got copy for you :-)
➔ See links there

✔ See
✔ 1st Lecture

✔ for details.

http://www.cis.ksu.edu/~sdeloach/publications/Journal/MaSE%20-%20IJSEKE.pdf
http://www.auml.org/auml/supplements/Bresciani-Agents2001.pdf
http://jade.tilab.com/doc/JADE_methodology_website_version.pdf

5

Software development lifecycle
■ Planning

■ Analysis

■ Design

■ Implementation

■ Testing

I propose methodology based on
✔ JADE-oriented methodology
✔ Prometheus methodology

✔ own experience

6

Planning
phase

PL
AN

N
IN

G
 P

H
AS

E

7

Planning phase

Is an agent-based approach the best alternative ?

Existing
agent-based

solutions

Piftalls

Existing
traditional
solutions

Use another technique!

[No]

Methodologies

Not formally addressed

Go on!

[Yes] PL
AN

N
IN

G
 P

H
AS

E

8

Philosophy of agent modelling

 Agents mainly should be used for modelling

✔Decentralized nature of a problem
✔Many points of control
✔Various perspectives
✔Competitive tasks

*Nicholas R. Jennings. An agent-based approach for building complex software
 systems. Commun. ACM, 44(4):35–41, 2001.

Prof. Nick Jennings
School of Electronics & Computer Science
University of Southampton, UK

says*

PL
AN

N
IN

G
 P

H
AS

E

9

Examples and contr-example

✔ Air Traffic Manament System,
 tested at Sydney airport

✔ Flexible Manufacturing System
 developed and used by DaimlerChrysler

PL
AN

N
IN

G
 P

H
AS

E

✗ Travel Support System,


10

Example 1:
Flexible

Manufacturing
SystemPL

AN
N

IN
G

 P
H

AS
E

11

Traditional manufacturing line

✗ Mała zdolność do adaptacji

 każda zmiana produktu to kosztowna rekonstrukcja

 linii produkcyjnej
✗ Brak elastyczności

 uszkodzenie pojedynczej maszyny to blokada całej

 linii produkcyjnej

Problem

Sytuacja

✔ różne maszyny realizują różne etapy

 produkcyjne
✔ przesuwacze dostarczają maszynom produkty

 z taśmy
Machine2Machine1 Machine3

Pr
ze
su
w
ac
z

Pr
ze
su
w
ac
z

Pr
ze
su
w
ac
z

Pr
ze
su
w
ac
z

PL
AN

N
IN

G
 P

H
AS

E

12

Making the system flexible

Machine2Machine1

Pr
ze
su
w
ac
z

Pr
ze
su
w
ac
z

Pr
ze
su
w
ac
z

Pr
ze
su
w
ac
z

Machine3

Machine
Agent

* S. Bussmann and K. Schild (2004). An Agent-based Approach to the Control of Flexible
 Production Systems

Machine
Agent

Switch
Agent Product

Agent

Switch
Agent Product

Agent

Machine
Agent

DaimlerChrysler: Agent-based
Manufacturing Control System*

✔ Lokalni agenci
 każdy element systemu kontroluje oddzielny
 agent
✔ Koordynacja
 agenci koordynuują działania między sobą
✔ Negocjacje zmniejszają obciążenie
 ProductAgent ogłasza aukcję, MachineAgenci
 składają propozycje – wygrywa maszyna o
 (przede wszystkim) najmniejszym aktualnym
 obciążeniu
✔ Rozmowy bilateralne rozwiązują deadlock
 rozmowy między ProductAgent a SwitchAgent
 pozwalają przemieszczać produkty w
 kierunku pożądanych maszyn z pomięciem
 zablokowanych maszyn
Zysk
✔ Zwiększona wydajność (10%)
✔ Elastyczność: szybka reakcja na lokalne problemy typu bottleneck

PL
AN

N
IN

G
 P

H
AS

E

13

✔Questions ??

PL
AN

N
IN

G
 P

H
AS

E

14

Example 2:
“OASIS”

Air Traffic
Manament

System

PL
AN

N
IN

G
 P

H
AS

E

15

Aim of project
■ Aim: Design an air traffic manament system which:

✔ Calculates expected time of arrival (ETA) of aircraft

✔ Sequences them in respect to optimality criteria

✔ Issuing control directives to the pilots to achieve assigned ETAs

✔ Monitor conformance

PL
AN

N
IN

G
 P

H
AS

E

16

Domain characteristics

■ Environment can evolve in nondeterministic way:
 wind field can change
 operating conditions can change
 runway conditions can change
 presence of other aircraft can change, etc.

■ System can act in nondeterministic way:
 system can take a number of different actions:

➔ Requesting an aircraft change speed
➔ Strech / shorten / hold a flight path, etc.

■

PL
AN

N
IN

G
 P

H
AS

E

17

✔Questions ??

PL
AN

N
IN

G
 P

H
AS

E

18

Other examples

Ask Paweł Olesiuk,

Project #8: Modelling logistic company with
holonic multi-agent system

Ask Andrzej Borowczyk,

Project #9: BDI agents in erderly people
 hospitalization

PL
AN

N
IN

G
 P

H
AS

E

19

Contr-example:
Travel

Support
SystemPL

AN
N

IN
G

 P
H

AS
E

20

Inspiration for system

“Hungry foreign tourist arrives to an unknown city
 and seeks a nice restaurant serving cuisine that she
 likes. Internet, contacted for advice about
 restaurants in the neighborhood, recommends
 mainly establishments serving steaks, not knowing
 that the tourist is a fanatic vegetarian.”

■ Paradigmatic case of agent system design and implementation

PL
AN

N
IN

G
 P

H
AS

E

✔ See
✔ 1st Lecture

✔ for details.

21

Bird-flight perspective
PL

AN
N

IN
G

 P
H

AS
E

22

Pitfall of agentifying all

Prof. Michael Wooldridge
Department of Computer Science
University of Liverpool
Liverpool, UK

Prof. Marcin Paprzycki
Systems Research Institute
Polish Academy of Sciences
Warsaw, Poland

“Decompose all functionalities as agents! Agentify
all! If something is not an agent (e.g. expert system,
database, etc.) it will be wrapped in an agent or
interfaced via an agent.”* EXPERIMENT!

“You see agents everywhere! It'ss a pitfall.”*

PL
AN

N
IN

G
 P

H
AS

E

* Wooldridge, M., Jennings, N.R.: “Pitfalls of Agent-Oriented Development”. In
 Sycara, K.P., Wooldridge, M., eds.: Proceedings of the 2nd International
 Conference on Autonomous Agents (Agents’98), New York, ACM Press (1998)
 385–391

* Maciej Gawinecki, Mateusz Kruszyk, Marcin Paprzycki, Maria Ganzha
 (2007) “Pitfall of agent system development o the basis of a Travel
 Support System”. Proceedings of the BIS Conference (to appear)

23

MVC pattern – theory
PL

AN
N

IN
G

 P
H

AS
E

24

MVC pattern – adaptation
PL

AN
N

IN
G

 P
H

AS
E

Ask Edilbek Slanor,

Project #6: Agent as data provider in
Content Management System

SHA – Session Handling Agent, PrA – Proxy Agent,
VTA – View Transforming Agent, PA – Personal Agent

25

Why not agents ?

■ Characteristics of MVC + HTTP:
 stateless – each user request is independent to others,
 reactive – MVC components react only to external

requests,
 synchronous – process of realizing a single user request is

a sequence of steps, where each next step cannot be
realized until the previous one has been finished,

 parallel, but not concurrent – parallelism is utilized to
decrease interleaving in I/O operations.

■ But... agents are:
 proactive,
 statefull,
 concurrent,
 use asynchronous communication.

PL
AN

N
IN

G
 P

H
AS

E

26

General guideline

■ Modelling a part of the system with higher
abstraction than naturally necessary, results in
difficulties of verifying and reasoning about such
solution (i.e. the simpler the model the easier it is to
think about it, to verify its correctness and to remove
errors).*PL

AN
N

IN
G

 P
H

AS
E

Use simpler traditional
approaches if possible!

* Maciej Gawinecki, Mateusz Kruszyk, Marcin Paprzycki, Maria Ganzha
 (2007) “Pitfall of agent system development o the basis of a Travel
 Support System”. Proceedings of the BIS Conference (to appear)

27

✔Questions ??

PL
AN

N
IN

G
 P

H
AS

E

28

Example for
modelling

E-Commerce
Agent

PlatformPL
AN

N
IN

G
 P

H
AS

E

29

E-CAP team

Costin Badica

PL
AN

N
IN

G
 P

H
AS

E

30

AN
AL

YS
IS

 P
H

AS
E

Analysis
Phase

31

Analysis aim and steps

■ Aim
 Clarify the problem
 Avoid concerning about the solution

■ Steps
 Defining system scenarios and use cases
 Identifying roles and their responsibilies
 Identifying roles acquaintance
 Matching agents with roles
 Deploying agents over platforms and hosts

AN
AL

YS
IS

 P
H

AS
E

32

Main scenario in E-CAP

1. The Client chooses a Shop to negotiate at.

2. The Shop registers the Client for negotiation.

3. Negotiations.

4. The Shop reserves a product for the Client.

5. The Client confirmes/cancels the reservation.

6. Sale finilization:

 (a) the Client pays for the product to the Shop,

 (b) the Shop delivers the product to the Client.

AN
AL

YS
IS

 P
H

AS
E

33

Identifying roles and responsibilies

34

E-CAP general use-case diagram
AN

AL
YS

IS
 P

H
AS

E

35

E-CAP detailed use-case diagram
AN

AL
YS

IS
 P

H
AS

E

36

Deploying agents over platforms

■ Physical hosts/platforms are indicated for particular
agents

■ Factors to consider:
 agents belonging to competitive or politically conflicted

owners go to different platforms (security reasons)
 communication efficiency
 inter-platform communication
 inter-platform mobility

AN
AL

YS
IS

 P
H

AS
E

37

Deployment diagram

Maria's Agent Platform

Marcin's Agent Platform

Paweł's Agent Platform

BuyerAgent

GatewayAgent

BuyerAgent

migrating

creatjng

created

registrating

ShopAgent

SellerAgent

GatewayAgent

BuyerAgent

finilizing transactioncreating

negotiating delegating

negotiating

Costin's Agent Platform

ClientAgentClientAgent
Created,
after
migration

BuyerAgent

E-Commerce Agent Platform*

ShopAgent

AN
AL

YS
IS

 P
H

AS
E

38

D
ES

IG
N

 P
H

AS
E Design
Phase

39

Analysis aim and steps

■ Aim
 Clarify the problem
 Avoid concerning the about solution

■ Steps
 Defining system scenarios and use cases
 Identifying roles and their responsibilies
 Identifying roles acquaintance
 Matching agents with roles
 Deploying agents over platforms and hostsD

ES
IG

N
 P

H
AS

E

40

Implementation
Phase

IM
PL

EM
EN

TI
N

G
 P

H
AS

E

41

Analysis aim and steps

■ Aim
 Clarify the problem
 Avoid concerning the about solution

■ Steps
 Defining system scenarios and use cases
 Identifying roles and their responsibilies
 Identifying roles acquaintance
 Matching agents with roles
 Deploying agents over platforms and hosts

IM
PL

EM
EN

TI
N

G
 P

H
AS

E

42

Perspectives in MAS

■ External (inter-agent) perspective

 Cooperation and competitiveness
 Communication
 Interaction protocols
 Communication ontologies

■ Internal (intra-agent) perspective

 Behaviours
 Knowledge
 Handling with messages

IM
PL

EM
EN

TI
N

G
 P

H
AS

E
IM

PL
EM

EN
TI

N
G

 P
H

AS
E

IM
PL

EM
EN

TI
N

G
 P

H
AS

E
IM

PL
EM

EN
TI

N
G

 P
H

AS
E

Perspectives in MAS

43

Translating
Interaction
Protocols

into
FSMBehaviourIM

PL
EM

EN
TI

N
G

 P
H

AS
E

IM
PL

EM
EN

TI
N

G
 P

H
AS

E
IM

PL
EM

EN
TI

N
G

 P
H

AS
E

44

Interaction protocols

■ Having a standard set of types of messages (INFORM,
REQUEST, PROPOSE) allows specifying predefined
sequences of messages exchanged by agents during a
conversations.

■ These are known as Interaction Protocols

IM
PL

EM
EN

TI
N

G
 P

H
AS

E
IM

PL
EM

EN
TI

N
G

 P
H

AS
E

45

FIPA Propose Interaction Protocol

FIPA Propose Interaction Protocol Specification, http://www.fipa.org/specs/fipa00036/

 Description:
 Initiator propose to
 do an action, if
 Participant will
 accept the proposal.

 Exception:
 Participant can
 inform Initiator
 that it did not
 understand what was
 communicated.

IM
PL

EM
EN

TI
N

G
 P

H
AS

E

http://www.fipa.org/specs/fipa00036/

46

Support for interaction protocols
■ The jade.proto package contains behaviours for both the Initiator and

Responder role in the most common interaction protocols:

 FIPA-Request (AchieveREInitiator/Responder)
 FIPA-Contract-Net (ContractNetInitiator/Responder)
 FIPA-Subscribe (SubscriptionInitiator/Responder)
 FIPA-Propose (ProposeInitiator/Responder)

■ All these classes automatically handle
 the flow of messages checking that it is compliant to the protocol
 The timeouts (if any)

■ They provide callback methods that should be redefined to take the
necessary actions when e.g. a message is received or a timeout expires.IM

PL
EM

EN
TI

N
G

 P
H

AS
E

47

Propose Participant states
IM

PL
EM

EN
TI

N
G

 P
H

AS
E

48

Propose Participant implementation

public class ProposeResponder extends FSMBehaviour implements
 FIPANames.InteractionProtocol {
 ...
 // Register the FSM transitions
 registerDefaultTransition(RECEIVE_PROPOSE, PREPARE_RESPONSE);
 registerDefaultTransition(PREPARE_RESPONSE, SEND_RESPONSE);
 registerDefaultTransition(SEND_RESPONSE, RECEIVE_PROPOSE);

 // Create and register the states that make up the FSM
 Behaviour b = null;
 // RECEIVE_PROPOSE
 rec = new MsgReceiver(myAgent, mt, -1, getDataStore(), PROPOSE_KEY);
 registerFirstState(rec, RECEIVE_PROPOSE);

 // PREPARE_RESPONSE
 b = new PrepareResponse(myAgent);
 b.setDataStore(getDataStore());
 registerState(b, PREPARE_RESPONSE);

 // SEND_RESPONSE
 b = new ReplySender(myAgent, RESPONSE_KEY, PROPOSE_KEY);
 b.setDataStore(getDataStore());
 registerState(b, SEND_RESPONSE);

➢ Code: jade.proto.ProposeResponder

IM
PL

EM
EN

TI
N

G
 P

H
AS

E

49

Propose Initiator states
IM

PL
EM

EN
TI

N
G

 P
H

AS
E

50

Propose Initiator implementation

public class ProposeInitiator extends FSMBehaviour {
 ...
 // Register the FSM transitions
 registerDefaultTransition(PREPARE_INITIATIONS, SEND_INITIATIONS);
 registerTransition(SEND_INITIATIONS, DUMMY_FINAL, 0);
 registerDefaultTransition(SEND_INITIATIONS, RECEIVE_REPLY);
 registerTransition(RECEIVE_REPLY, CHECK_SESSIONS,
 MsgReceiver.TIMEOUT_EXPIRED);
 registerTransition(RECEIVE_REPLY, CHECK_SESSIONS,
 MsgReceiver.INTERRUPTED);
 registerDefaultTransition(RECEIVE_REPLY, CHECK_IN_SEQ);
 registerTransition(CHECK_IN_SEQ, HANDLE_NOT_UNDERSTOOD,
 ACLMessage.NOT_UNDERSTOOD);
 registerTransition(CHECK_IN_SEQ, HANDLE_REJECT_PROPOSAL,
 ACLMessage.REJECT_PROPOSAL);
 registerTransition(CHECK_IN_SEQ, HANDLE_ACCEPT_PROPOSAL,
 ACLMessage.ACCEPT_PROPOSAL);
 registerDefaultTransition(CHECK_IN_SEQ, HANDLE_OUT_OF_SEQ);
 registerDefaultTransition(HANDLE_NOT_UNDERSTOOD, CHECK_SESSIONS);
 registerDefaultTransition(HANDLE_REJECT_PROPOSAL, CHECK_SESSIONS);
 registerDefaultTransition(HANDLE_ACCEPT_PROPOSAL, CHECK_SESSIONS);
 registerDefaultTransition(HANDLE_OUT_OF_SEQ, RECEIVE_REPLY);
 registerDefaultTransition(CHECK_SESSIONS, RECEIVE_REPLY, toBeReset);
 registerTransition(CHECK_SESSIONS, HANDLE_ALL_RESPONSES,
 ALL_RESPONSES_RECEIVED);
 registerTransition(CHECK_SESSIONS, DUMMY_FINAL, TERMINATED);
 registerDefaultTransition(HANDLE_ALL_RESPONSES, CHECK_AGAIN);
 registerTransition(CHECK_AGAIN, DUMMY_FINAL, 0);
 registerDefaultTransition(CHECK_AGAIN, RECEIVE_REPLY, toBeReset);
 ...
 registerFirstState(b, PREPARE_INITIATIONS);
 ...
 registerLastState(b, DUMMY_FINAL);

➢ Code: jade.proto.ProposeIntiator

IM
PL

EM
EN

TI
N

G
 P

H
AS

E

51

Documentation
■ Chapter 3.5 in the Programmers guide included in the JADE

distribution provides a detailed explanation of the interaction protocol
support

■ API documentation (javadoc): jade.proto package

■ Sample code: examples.protocols package in the examples
included in the JADE distribution.

IM
PL

EM
EN

TI
N

G
 P

H
AS

E

52

✔Questions ??

IM
PL

EM
EN

TI
N

G
 P

H
AS

E

53

Tools
for testing

phase

TE
ST

IN
G

 P
H

AS
E

54

Debugging communication

 DummyAgent
 interacting with JADE agents
 sending ACL messages
 maintains a list of ACL messages sent and received

 Introspector
 monitoring and controlling the life-cycle of agent
 monitoring agent's exchanged messages
 monitoring the queue of behaviours (step-by-step execution)

 SnifferAgent
 tracking and displaying messages from/to sniffed an agents
 saving tracked messages

✔ See tutorial from

1st Laboratory

✔ for details.

TE
ST

IN
G

 P
H

AS
E

55

Logging
■ Type of error information and its narrow context are usually sufficient

to find the reason of the error and eliminate it in the source code.
■ Traditional solutions for Java:

 Java Logging API (JSR47), comes with the JRE,
http://java.sun.com/

 log4j, http://logging.apache.org/log4j/
■ Agent-oriented solutions for JADE:

 JADE Logging service, http://jade.tilab.com
➔ JSR47-based

 LoggerAgent environment, http://jadex.sourcefoge.net/
➔ Part of JADEX project,
➔ JSR47-based

 Log4JADE (experimental), http://log4jade.sourceforge.net/
➔ log4j-based

■ Comparision of different approaches can be found in
 Maciej Gawinecki, “Agent-based logging system," in: Proceedings

of the 18th Mountain Summer School of Polish Information
Processing Society. Szczyrk, Poland. 2006.

TE
ST

IN
G

 P
H

AS
E

http://java.sun.com/
http://logging.apache.org/log4j/
http://jade.tilab.com/
http://jadex.sourcefoge.net/
http://log4jade.sourceforge.net/

56

Testing suites

■ Traditional solution

TE
ST

IN
G

 P
H

AS
E

57

TE
ST

IN
G

 P
H

AS
E

58

✔Questions ??

TE
ST

IN
G

 P
H

AS
E

59

60

61

Ask Michał Oglodek,

Project #5: Utilization of an agent and Web Service
as wrappers for existing legacy software

Agents and legacy software

62

63

Homework
■ Re-implement presented application by use of any of complex

behaviours (SequentialBehaviour, FSMBehaviour)
 Documentation

➔ examples.behaviours.ComplexBehaviourAgent,
examples.behaviours.FSMAgent classes in JADE
package

➔ JADE Programmer’s Guide, http://jade.tilab.com

■ Think about agents modelling some phenomen from real world

✔Questions ??

http://jade.tilab.com/

64

Acknowledgements
■ Mateusz Kruszyk for veryfing part of tutorial

