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Background: tracking the progression of bipolar disorder through speech

Bipolar disorder is a mental health condition marked by alternating states of
depression, mania, mixed state, and stable mood (euthymia).

Goal: track the patient’s state over time using speech.

The main challenge is label sparsity: a patient’s state is evaluated only during
infrequent psychiatric visits, which are both costly and time-consuming.

Consequence: highly limited labeled data that renders many methods ineffective.
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Background: tracking the progression of bipolar disorder through speech

What is the goal?

To improve partial supervision (in scarce labels scenarios) in hidden Markov models by
applying soft labelling based on fuzzy clustering of observations.
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Introduction to hidden Markov models

Let Xt be a Markov process with a space S = {s1, ..., sN} of hidden states, and Yt a
stochastic process with continuous observations in V ⊆ Rk, for some N, k ∈ N+.
A hidden Markov model1 (HMM) is defined by a triple λ = (A,B, π), where:

A = {aij} = {P(Xt = sj | Xt−1 = si)} is a transition matrix,
B = {bj(Yt)} = {p(Yt ∈ V | Xt = sj)} is the emission probability,
π = {πi} = {P(X1 = si)} is the initial distribution.

for i, j = 1, ..., N and t = 1, ..., T .

Hidden states: X1 X2 X3 · · · XT

Observations: Y1 Y2 Y3 · · · YT
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B

A

B
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1L. R. Rabiner, 1989, A tutorial on hidden Markov models, in Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286.
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Introduction to hidden Markov models

By default, HMMs are unsupervised, with learning typically performed using the
Baum-Welch algorithm, a variant of the expectation–maximization method.
Incorporating partial supervision during training involves constraining the set of possible
paths in the HMM’s lattice representation (treillis), as shown in the Figure 1.

Figure 1: A constrained lattice. Known states {X1, X4, X5} restrict the set of possible paths.

However, this approach doesn’t support soft or uncertain labels.
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Partial supervision with soft labels: weight matrix

To allow for soft partial labels, we introduce a stochastic weight matrix

Φ = {φtj} t ∈ {1, ...T}, (1)
j ∈ {1, ..., N},

where φtj ∈ [0, 1] and
∑N

j=1 φtj = 1 ∀t.

Each row of Φ defines a vector of weights φt· = (φt1, ..., φtN )⊤ that is used to scale
the emission probability

b̃j(Yt) = φtjbj(Yt) ∀t, j. (2)

For example, if Yt is strongly believed to originate from state j, it can be assigned a
higher weight, with lower weights distributed across the other states. If
φtj ∈ {0, 1} ∀t, j, we recover the original approach.

How to construct weight matrix?
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Constrained Temporal fuzzy C-Means (CT-FCM)

We propose to derive weights from the Fuzzy C-Means (FCM) membership matrix.
However, two issues are identified with the vanilla FCM

Partial label information is not utilized,
Temporal dependencies within the data are ignored.

Therefore, we propose a constrained temporal FCM (CT-FCM), with an objective:

J(m,λTS,λPS)(U, V ) =
c∑

j=1


T∑

t=1

um
tj ||xt − vj ||22︸ ︷︷ ︸

Vanilla (FCM)

+λTS

T−1∑
t=1

||u(t+1)j − utj ||22︸ ︷︷ ︸
Temporal smoothing (TS)

+
λPS

|TX |
∑
t∈TX

||utj −Mtj ||22︸ ︷︷ ︸
Partial supervision (PS)

 .

Here, TX is a set of time points with known labels.
For each t ∈ TX , the row (Mt1, ...,MtN ) is a one-hot vector indicating the known label
Xt = j, i.e., Mtj = 1 and Mti = 0 for all i ̸= j. If t /∈ TX , then Mtj = 0 for each j.
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Constrained Temporal Fuzzy C-Means (CT-FCM)

Therefore, the goal is to find (U, V ) such that for given (m,λTS, λPS)

J(m,λTS,λPS)(U, V ) s.t.
c∑

i=1

uti = 1 (3)

is minimized. Using Lagrange multipliers yields a

L(m,λ1,λ2)(U, V, λ) = J(m,λ1,λ2)(U, V ) +

T∑
t=1

λt

(
c∑

i=1

uti − 1

)
(4)

∂L(m,λ1,λ2)(U, V, λ)

∂λt
=

c∑
i=1

uit − 1 = 0 (5)

∂L(m,λ1,λ2)(U, V, λ)

∂vi
= −2

T∑
t=1

umti (xt − vi) = 0 (6)
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Constrained Temporal Fuzzy C-Means (CT-FCM)

Further

∂L(m,λ1,λ2)(U, V, λ)

∂uit
=

∂ FCM(U, V )

∂uit
+

∂ TS(U)

∂uit
+

∂ PS(U, V )

∂uit
+ λt (7)

Then

∂ FCM(U, V )

∂uit
= mum−1

it ||xt − vi||2 + λt (8)

∂ TS(U)

∂uit
= 2λ1


u1i − u2i, t = 1

2uti − u(t+1)i − u(t−1)i, 1 < t < T

uT i − u(T−1)i, t = T

(9)

∂ PS(U)

∂uit
= 2λ2(uti −Mti)1{t ∈ T } (10)

For convenience assume m = 2.
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Constrained Temporal Fuzzy C-Means (CT-FCM)

Let’s put

di = [||x1 − vi||2, ..., ||xT − vi||2]⊤,
ui = [ui1, ..., uiT ]

⊤,

λ = [λ1, ..., λT ]
⊤,

τ = [τ1, ..., τT ]
⊤, τt = 1 iff t ∈ TX , else 0.

For a given i = 1, ..., c, we have

2 (diag(di) + λ1L+ λ2 diag(τ))︸ ︷︷ ︸
A

ui + λ− 2λ2 diag(Mi)τ︸ ︷︷ ︸
−B

= 0 (11)

where

L =


1 −1
−1 2 −1

. . . . . . . . .
−1 1

 Mi =

M1i

. . .
MT i

 (12)
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Constrained Temporal Fuzzy C-Means (CT-FCM)

For each centroid i = 1, ..., c, we have:

2 (diag(di) + λ1L+ λ2 diag(τ))︸ ︷︷ ︸
A

ui + λ− 2λ2 diag(Mi)τ︸ ︷︷ ︸
−B

= 0 (13)

Aui = B (14)

Since A is tridiagonal (banded and positive-semidefinite), it is invertible.

Obviously, a solution to (13) must satisfy, for each t, a stochastic constraint. Therefore,
it is either projected onto a probability simplex or a dual-elimination is used to satisfy
KKT conditions for constrained optimization.
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Let’s pause and ponder

To summarise: the membership matrix U derived from CT-FCM is used as a weight
matrix Φ (that encodes partial soft labels) to train a hidden Markov model.

Partial labels + observations → CT-FCM → U → Φ → HMM
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Simulation example

(1) Generate a sequence of hidden labels {Xt}Tt=1, where each Xt ∈ {green, red}, and
conditionally generate observations {Yt}Tt=1, according to

Yt | Xt = red ∼ N (−µ, 0.75),

Yt | Xt = green ∼ N (+µ, 0.75).

with µ ∈ {0.25, 0.35, 0.45}.
(2) Remove a fixed proportion of labels from X uniformly at random to get partial labels X∗.

(3) Define a grid G of parameters (λTS, λPS); here, G = {0, 1, 5, 10} × {0, 1, 10, 102, 103}.
(4) Choose an optimal tuple (λTS, λPS) leveraging a walk-forward validation, as random CV

breaks the temporal structure of the data:
(a) using first ti observations, i = 1, ..., n, fit CT-FCM(λTS, λPS) and then fit HMM,

(b) calculate log-likelihood ℓi on the last T − ti observations,

(c) calculate weighted log-likelihood (
∑t

i=1 tiℓi)/(
∑t

i=1 ti),

(d) proceed with (λ∗
TS, λ

∗
PS) that maximizes (c).
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Simulation example

(5) Fit the model: using the whole training data, get the membership matrix from
CT-FCM(λ∗

TS, λ
∗
PS) and use it as a weight matrix to train a hidden Markov model

CT-FCM+HMM.

(6) Test the model: generate data (Xt, Y t), predict labels (Viterbi decoding), calculate
Adjusted Rand Index (ARI) for CT-FCM+HMM. Repeat 50 times.

(7) Repeat steps (1)− (6) 50 times to get the distribution of ARI values.
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Simulation example

Figure 2: Visualization of hidden labels X and observations Y . Top panel: true labels X. The duration
of each block is drawn from Poiss(20). Middle panel: true labels X with corresponding observations
Y . Here, Y | red ∼ N (0.3, 1) and Y | green ∼ N (−0.3, 1). Bottom panel: partial labels after
randomly removing 90% of the original labels.
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Simulation example

Figure 3: CT-FCM membership values for green state. Top panel: (λTS, λPS) = (0, 0). Middle panel:
(λTS, λPS) = (1, 10). Bottom panel: (λTS, λPS) = (10, 100). Only the first 100 observations are
shown for clarity.
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Conclusions

More experiments are necessary!

Fuzzy pre-clustering might enhance the performance of a hidden Markov model,
potentially not only in the sparse labels setting.
A systematic and structured approach for selecting optimal values for λTS and λPS

is crucial (e.g. walk-forward validation or blocked corss-validation).
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Thank you!

The project ExplainMe: Explainable Artificial Intelligence for Monitoring Acoustic Features extracted from
Speech (FENG.02.02-IP.05-0302/23) is carried out within the First Team programme of the Foundation for
Polish Science co-financed by the European Union under the European Funds for Smart Economy 2021-2027
(FENG).
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