

SEMINARIUM INSTYTUTOWE

13 marca 2024 r., środa, godz. 12:00 Sala 200

Shape optimization of blood flows in moving domains

Valentin Calisti and Šárka Nečasová

Institute of Mathematics, Czech Academy of Sciences

We consider the problem of shape optimization of 3D blood flows in moving domains, governed by generalized Navier-Stokes equations. To this end, we show the shape continuity of the associated solutions for a sequence of converging moving domains. After a presentation of the framework, we start showing the shape continuity of the blood velocity u, for which the non-Newtonian stress is defined by:

 $\mathbf{S}(\mathbf{D}\boldsymbol{u}) := (1 + |\mathbf{D}\boldsymbol{u}|)^{q-2}\mathbf{D}\boldsymbol{u},$

where $D\mathbf{u} := \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$, and q < 2. Such fluids are called shear-thinning fluids. In [1], an existence result is provided for the case of q > 6/5 in moving domains, by means of the study of Generalized Bochner spaces and the Lipschitz truncation method. Thus, these techniques are used in the present case of a sequence of converging moving domains. This extends the continuity result given in [2] for $q \ge 11/5$ to the case of $q \ge 6/5$.

Using the classical method of calculus of variations, these results allow to show the existence of minima for a class of shape optimization problems of blood flows.

In particular, this can apply to a hemolysis minimization problem (minimization of the destruction of red blood cells).

The lack of uniqueness of shear-thinning fluids solutions prevents the study of shape sensitivity from being pursued, so that an extension of this work with computation of a shape gradient must somehow consider a regularization of the present model.

Concluding remarks will be made in this regard.

References:

- [1] Philipp Nägele and Michael Ružička. Generalized Newtonian fluids in moving domains. J. Differential Equations, **264**(2):835–866, 2018.
- [2] Jan Sokolowski and Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. *Evol. Equ. Control Theory*, **3**(2):331–348, 2014