AgentPlanner — agent-based timetabling system — preliminary design
and evaluation

Rafat Tkaczyk
is with Systems Research Institute
of the Polish Academy of Sciences,
Warsaw, Poland
and Institute of Informatics,

rafal.tkaczyk88@gmail.com

Streszczenie—The aim of this note is to present the initial
design and preliminary evaluation of the AgentPlanner, an agent-
based timetabling system. The primary advantage of the agent
approach is the relative ease of schedule modification. This is
particularly important in the proposed application area: sche-
duling university courses. Experimental results, comparing the
performance of the AgentPlanner with a state-of-the-art genetic
algorithms based software, obtained for a single department and
a single building, are presented and analyzed.

I. INTRODUCTION

Creating a timetable is an interesting and challenging
problem. On the one hand, timetables are widely used in many
application areas. On the other, timetabling is an NP-hard
problem. As a result, many methods that solve this problem
have been proposed. For example: graph coloring [1], simplex
method [2], and genetic algorithms (GA; [3]). Since we will
compare the proposed approach with the one using the GA,
let us recognize that application of GA’s in scheduling was
discussed in detail in [4].

Regardless of how successful they are, all these methods
have a major disadvantage. Namely, it is practically impossible
to change an existing schedule. Observe that, when scheduling
courses at a university (which is our application area) it is
necessary to provide mechanisms that would allow one to
to shift an individual class, add a new one into an existing
schedule, (ex)change rooms, etc. Since methods like the AG
treat the schedule from a “holistic” perspective, re-scheduling
a single class for a teacher got sick during the semester, is
not what the GA was created for. Obviously, such changes
can be accomplished manually, or by using extra software,
but this means that multiple approaches have to be combined.
One to generate the “initial” schedule, and one to manage it.
Moreover, the larger the input data set (and the more links
between items in this set) the more complex is the problem.
As a result the algorithms that can solve the timetabling
problem need more computational power and take more time
to complete. Note that, due to the holistic approach, in each
“step” they treat the complete problem at once.

Interestingly, it can be stipulated that software agents can
handle both schedule preparation and management; as they are
characterized by autonomy, reactiveness, and ability to com-
municate / negotiate (see, [S], [6], for discussion of application

978-1-4799-2228-4/13/$31.00 (© 2013 IEEE

795

Maria Ganzha
is with Systems Research Institute
of the Polish Academy of Sciences,
Warsaw, Poland
and Institute of Informatics,
University of Gdarnisk, Gdansk, Poland University of Gdarsk, Gdansk, Poland

Marcin Paprzycki
is with Systems Research Institute
of the Polish Academy of Sciences
and Warsaw Management Academy,
Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

maria.ganzha@ibspan.waw.pl

of agents in timetabling). Furthermore, as will be shown, they
allow to “divide” the problem into smaller subproblems that are
solved in each step; thus reducing its complexity. Therefore,
we have developed a prototype of the AgentPlanner; an agent-
based timetabling system, which uses agent negotiations to
create and maintain (modify) the schedule. In what follows,
we describe the AgentPlanner and discuss results of its initial
experimental evaluation, when applied to scheduling university
courses.

II. AGENT PLANNER — PRELIMINARY CONSIDERATIONS

Let us start from discussing the requirements that have
driven the development of the AgentPlanner system, which was
created: (1) to develop a timetable, in accordance with speci-
fied restrictions, and (2) to manage it (be capable of making
requested changes / modifications in the existing schedule).
Note that the selected application area is scheduling of courses
at a university, and this selection guided us in specifying
functional and non-functional requirements. University course
scheduling means that, in addition to creation of an initial
course schedule for a given semester, the AgentPlanner has
to be able to deal, among others, with: change of location(s)
of selected laboratory groups / lectures, sickness of a teacher
(i.e. rescheduling missed classes for a later date), adding new
activities (e.g. an unscheduled examination caused by multiple
students failing the first attempt), etc.

After analyzing the actual scheduling process that takes
place at the University of Gdansk, it was decided that only
the planner (system administrator) will be able to run the
AgentPlanner to create the timetable. In addition, the planner
is going to be the only person who will be authorized to make
schedule changes in the database (in particular, during the
schedule maintenance phase).

In the initial version of the AgentPlanner we have in-
troduced some restrictions on the implemented functions. In
this way we were able to focus on core functionality and
complete preliminary evaluation of our approach. Therefore,
after the initial course schedule is created, both the planner
and the feacher can send two types of requests: (a) to insert a
new activity (group exercises, laboratory, lecture), requiring
reorganization of the plan, and (b) to change location of,
already scheduled, activity(ies). Observe that both types of
requests may impact other teachers. Hence, the proposed

rescheduling (resulting from the work of the AgentPlanner)
has to be negotiated with those teachers that are affected
by the changes. In the current version of the AgentPlanner,
to complete a change of the existing timetable, all affected
teachers have to agree. Here, for the time being, we do not
take into account the fact that the teacher may be forced to
accept a change (e.g. by the Dean), and assume benevolence
of teachers.

Analysis of the actual course scheduling process lead to
the following extra requirements for any system similar to
our AgentPlanner. (1) Scheduling should be completed in
a reasonable time. (2) Used algorithms must be designed
so that the system can be used on computers with limited
power (i.e. personal computers). (3) The timetabling system
should be easy to install (use well-known and well-documented
software). (4) Ease of use (simplicity of the interface) is very
important. (5) Timetable requires visualization both in the
printed form, as well as in a form that can be sent to the
website (to be displayed). Therefore, the system should have
various data converters; from the database representation of the
schedule, to the appropriate file formats. (6) The scheduling
system should be reliable and resilient to possible errors.
(7) For obvious reasons, data security is extremely important.
Finally, (8) the timetabling system should be portable between
various operating systems. It this context let us stress, again,
that the aim of our current work was not to develop a
full-blown system. Therefore, the above “extra requirements”
have been mostly omitted. For similar reasons, we have not
considered the possibility of implementing the AgentPlanner
on mobile devices (which may be a very useful functionality
for an actual system).

Based on conversations with faculty members of the Uni-
versity of Gdarisk, we have formulated the initial “scheduling
goals” for the AgentPlanner. As a result, the system aims at
minimizing the number of days of teaching, and at locating
activities as close as possible to each other (i.e. no big gaps
between activities, with some classes in the morning and the
remaining ones in the evening). However, it is also possible
to control this process by incorporating teachers’ preferences
(for both teaching days, and selected time-slots). Specifically,
the teacher can rank days of the week by assigning natural
numbers from the interval [0,4], where 0O is considered to
be “unacceptable” and 4 represents “the best option.” Similar
approach applies to ranking time-slots (each of them can be
ranked individually; in this way we can capture preferences
such as: I like to teach in the morning vs. I have to wake
up early). It has to be noted that in the current design there
is no restrictions on the number of teaching activities during
a single day. Therefore it is possible for a teacher to have
classes “all day long” (e.g. 5 courses at a given day). While
seemingly unreasonable, this reflects actual preferences of
faculty members.

As far as representation of interests of students, the prototy-
pe takes into account (what we believe to be) the key aspects of
a plan: minimization of collisions of courses, number of days
of instruction, and gaps during the day. However, we have to
admit that the current version of the AgentPlanner has been
implemented with focus of teacher satisfaction.

Finally, in the first version of the AgentPlanner system the
timetable is created for a single department, located in a single

796

building.

A. AgentPlanner as an agent-based system

Recall that our decision was to develop the AgentPlanner
as an agent system. On the basis of the requirements analysis,
we have conceptualized it as depicted in Figure 1.

)

/ AgentPlanner \

C.Zreation of new Initiation of agents
B timetable

ootAgent

/TeacherAgent
Change course
location

DatabaseAgent
Reporting

Database
preferences of time management

N v

Administrator

Create anew
course

T
% <<exte[nd>>
\ 1

ScheduleAgent

%/’

Teacher

\

Timetable
management

y

<<exténd>>

RoomAgent

\

Rysunek 1. AgentPlanner use case diagram

Here, we recognize the two main functions of the system,
the Creation of a new timetable, and Timetable management,
as well as a number of additional functions needed to complete
the two main ones. The current design of the system has only
two “external” actors: the planner and the teacher. In the future
we may need to include in the design also the student actor,
but this would lead to a problem much more complex than
our current design. Analyzing functional and non-functional
requirements of the AgentPlanner system, have came to the
conclusion that it should consist of the following agents:

e BootAgent, with the only task to create and start other
agents that are required in the AgentPlanner system.

o DatabaseAgent, responsible for communication be-
tween in the system and the timetable database.

e RoomAgents represent rooms in the scheduling pro-
cess. They download (from the database), filter and
store data about room(s) that they represent (e.g. type
of the room, seating capacity, etc.). This is done to
speed up the matching of activities to room(s) (data
is available, instead of being continuously requested
from the database).

o TeacherAgent acts on behalf of a teacher (both during
creation and management of the timetable). It stores:
information about the teacher (including personal data
that has to be protected), list of activities (courses /
groups taught by the teacher), list of rooms (meeting
the requirements of each group; obtained from the
RoomAgents), results of the evaluation function (for
each group), and teachers’ current timetable.

o ScheduleAgent is the central agent of the negotiation
algorithm. It “knows” teachers involved in current
negotiations (ZTeacherAgents that represent them). It
has access to the timetable database (via the Databa-
seAgent). Note that, all data concerning the currently
considered timetable, is systematically saved in the
database. This allows the ScheduleAgent to effectively
issue verdicts, which room should be assigned to
which requesting teacher (as it knows which rooms
are already occupied and which are still available).
Note that we are aware of the fact that, in a large
scheduling problem, the ScheduleAgent may become
a bottleneck. We have some ideas how to solve this
problem. However, solving it is out of scope of the
current contribution.

III. IMPLEMENTATION OF THE AGENTPLANNER

Based on the above considerations, we have decided that
the AgentPlanner should be implemented as a client-server
system, where all operations concerning generation and ma-
intenance of the timetable are going to be executed as an
agent-based server application, while the client component will
handle only sending requests and reviewing / accessing results.
This decision was based on the fact that, our software of
choice, JADE agent platform does not provide a robust GUI
for user interfaces. Therefore, following advice found in [9]
we have decided to clearly separate the agent and non-agent
functionality. Furthermore, in the initial prototype, the client
application was simplified to a “line interface,” while the server
application has only basic functionality needed for the two
timetabling operations (schedule creation and reorganization).
All data needed for the tests was inserted manually to the
database via SQL scripts, or other scripts written for this

purpose.

A. Evaluation algorithm

The core of the timetabling mechanism is the evaluation
algorithm. Here, TeacherAgents evaluate locations (room in-
formation received from the RoomAgents) that best match the
need of their teachers. The evaluation algorithm takes into
account: priority of course and lecture, teacher preferences,
and the current state of the timetable. Overall, every activity
has an assigned priority, which describes how important it is
for the teacher (e.g. a lecture may have higher scheduling
priority than a laboratory). Furthermore, some courses are
“more important” than others, e.g. a core course may have
a higher rank than an elective (all students have to take the
core course, while they may sometimes be “forced” to take
a different elective). Moreover, courses related to the major
(e.g. in our case CS courses) have higher rank than non-major
ones (e.g. psychology ones). Separately, when considering the
current timetable, priority is given to activities that can be
assigned in the time-vicinity of the already scheduled ones.
In this way the total number of gaps can be minimized. The
evaluation algorithm works as follows:

B. Timetable planning algorithm

Let us now consider the scheduling of a new timetable.
The approach is based on the existence of a single “judge”
(the ScheduleAgent), having access to the current timetable

797

Data: S = priority of the course
if day_priority or time_slot_priority is equal 0 then
do not add rooms from this time slot to the list
else
S =S * day_priority * tiem_slot_priority;
if there are other lessons in this day then

S:= S+5

end

if there are other lessons around time_slot then
S:= S+5

end

end
Result: S := S + random(5)

(which initially is empty). The ScheduleAgent negotiates the
timetable with the TeacherAgent(s), using information obtained
from the RoomAgent(s). The negotiations are divided into
rounds (their number is not larger than the total number of
all “activities” — courses / exercise groups / laboratories —
of all teachers). During a single round, every TeacherAgent
(with still unscheduled activities; note that, in a given semester,
different teachers may have different number of activities),
sends to the ScheduleAgent a message requesting a room for
a selected activity. The ScheduleAgent considers all received
requests and accepts some of them (placing these activities
into the current timetable), while rejecting others (and awaiting
new proposals). The decision depends on two aspects (1) is
the requested location already occupied by another activity,
(2) does a given request involve course collisions. Obviously,
it is possible that multiple TeacherAgents ask for the same
location. In this case, the ScheduleAgent selects the one with
the best value returned by the evaluation algorithm. The round
ends when the list of received requests is empty (all activities
were scheduled), or when the unscheduled requests cannot be
satisfied. At the end of a round, the ScheduleAgent informs
involved TeacherAgents about its decisions. Note that, in a
single round, the total number of evaluated requests is equal
to the number of teachers with unscheduled activities and thus
relatively small.

Observe that this approach guarantees that all teachers
have the same chances, because in a single round every
TeacherAgent can reserve one permanent place for one of its
activities. For example, if a professor has two seminar lectures,
while an assistant has two exercise groups, then in the first
round each one of them will “book™ a room for one of their
activities. Otherwise, it could be possible that all requests from
professors would be processed before these of the assistants.
However, it is not clear if such democratic approach will be
sustainable in real-life course scheduling.

Before beginning of a next round, the ScheduleAgent rece-
ives messages from the TeacherAgents with rejected proposals.
In response it pauses the main thread of negotiations, and runs
the timetable reorganization algorithm (see, the next section)
to deploy the rejected activities in the current schedule. After
the schedule is reorganized and, previously rejected, proposals
added, the ScheduleAgent returns to the main thread. Thus,
the timetabling algorithm continues from reception of the next
group of proposals form those TeacherAgents that still have
unscheduled activities. The sequence diagram of the timetable
planning process is depicted in figure 2.

sd Timetable planning algoritm)

ScheduleAgent TeacherAgent

| 1. Beginning of negotiation round() Pl

1.1: Picking next group from tasks list()

<<create>>

| 1.2 Creating locations listfor the activity)_ | | ocationsList

ot empty) |

1.3 Get the best location()
Next location
K————— — — Nedlocation 0 _______ jj

loop - While |proposal contains collisions and LocatiosLisf

Sending proposal()

alt: IF LocaffonsListis empty
Sporting reject group()

T
5: Set activity from proposél into the timetable()
|
|

T 6: Accept proposalf) > !

6.1: Set activity in teacher's current timetable()

1l

|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
4.1: Timetable reorganization algorithrh(|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Rysunek 2. Timetable planning algorithm sequence diagram

C. Timetable reorganization algorithm

The timetable reorganization algorithm is used in two
situations. First, when the proposal of some TeacherAgent
(submitted during a given schedule negotiation round) was
rejected by the ScheduleAgent. In that situation, the Sche-
duleAgent, will find a place for such activity in the current
timetable. The list of activities that require adding through
application of the timetable reorganization algorithm is based
on messages received from the TeacherAgents and stored (by
the ScheduleAgent) in the rejected activity list (and ordered
according to their priority). Next, they are considered one
by one. Second case for use of the timetable reorganization
algorithm, is when an actual “runtime” timetable adjustment
has to take place.

In both cases, the same timetable reorganization algorithm
is applied, since it deals with an existing schedule, that has
to be reorganized to find / adjust location / time slot of an
activity. The only difference is that when a new timetable is
created no human “intervention” is needed. Specifically, the
timetable creation process involves agents only. For example,
when TeacherAgent T1 wants to take location that is occupied
by the TeacherAgent T2, then the ScheduleAgent sends to the
T2 a message with a proposal of release this location. Then,
the TeacherAgent T2 requests a new place for its activity. If
it succeeds, the TeacherAgent T2 accepts the proposal and the
TeacherAgent T1 can book the requested room for its activity.
If not, the TeacherAgent T1 has to find another place. Here,
it is assumed that all TeacherAgents are cooperating and all

798

have a chance to put all activities in the timetable, even in
a “conflict situation.” Furthermore, a simple mechanism that
prevents this phase from reaching a deadlock (when all agents
depend on others releasing their rooms, “in a loop”) is applied
by the ScheduleAgent.

On the other hand, when making changes in the existing
plan (during the semester) owner of the TeacherAgent T2 wo-
uld receive a request to accept the proposed change. Obviously,
in this case, success of the schedule adjustment depends on the
benevolence of the involved teachers.

D. Technologies used in the implementation

The following technologies were used to implement the
AgentPlanner:

e Agent platform: JADE (version 4.3.0) [7]
e MySQL database 5.1.69
e NetBeans 7.0.1

IV. SYSTEM TESTING AND ANALYSIS OF RESULTS
A. Test data

The test data used in our experiments was prepared on
the basis of the actual organizational structure and room base
of the Mathematics, Physics and Informatics Department of
the University of Gdanisk. To evaluate the efficiency of the
proposed method, the results obtained by the AgentPlanner
were compared with these produced by the Free Timetabling
Software (FET) [8], which uses the GA. Each software solved
the same timetabling problem. The problem involved five days,
each consisting of 5 time slots, and the building with 21
rooms, which results in a “grid” that contains 525 locations.
The task was to allocate 91 courses, consisting of 214 groups
(comprising total of 628 students), taught by 67 teachers.

B. Comparison metrics

Note that the AgentPlanner is being designed with focus
on the “human factor” (convenience of teachers and students).
Therefore, we have constructed a teacher and a student satis-

faction functions. Teacher satisfaction function has the form:
s * 100
axnxm

Sy =

where: a is the number of activities of a teacher in a given
semester, n is highest rank assigned to any day, m is the
highest rank assigned to any time slot. Furthermore, s is the
sum of evaluations of all time units of all activities of teacher,
obtained by using the following formula:

1
S =

M

I
=)

S Dl « Tl

(3

Here, D[i] represents the evaluation of each day of the sche-

dule, while T'[i][j] represents evaluation of each of time slots

assigned in the schedule of that day:

e <0,m> teacher’s evaluation of time unit
=0 when teacher has no activity

In other words, in the numerator we represent the actual
time slots assigned by the planing software, while in the
denominator we represent the best potential schedule. Obtained
results are the percent of satisfaction of the most desired
timetable.

The student satisfaction is assessed as follows. We start
from 100% satisfaction and subtract: (1) 10% for one collision
between the desired activities, (2) 10% for two collisions, (3)
20% for more than two collisions, (4) 10% for one extra gap
between activities (we allow for one gap during a day), (5) 10%
for two extra gaps, (6) 20% for more than two extra gaps, (7)
10% for one additional day (the situation when there is more
days than necessary), (8) 10% for more than one additional
day. Assessment of student satisfaction was conceptualized in
this way, as it is impossible (at least in the current version
of the AgentPlanner) to include in the process (and aggregate
in some way) individual preferences of each student. While
somewhat artificial, we believe that this function gives a way
of assessing student satisfaction.

C. Testing timetable creation

To test the AgentPlanner, and to compare it with the FET
software, a total of 100 runs was completed, and in what
follows we report averages for both teachers and students.

100
20
&0
40
20

0

Evaluations

Teachers

W AgentPlanner W FET

Rysunek 3. Average satisfaction evaluations of all teachers

In Figure 3 we depict the average schedule satisfaction
results of the AgentPlanner and the FET for all 67 teachers.
Here, the schedule satisfaction obtained using the AgentPlan-
ner was as high as 97.06%, while that obtained by the FET
reached 57.32%. The smallest average value of satisfaction of
a teacher was 80.6% for the AgentPlanner and 33.33% for the
FET. The smallest score (the lowest satisfaction) from all trials
of all teachers was 6.25% for both systems. This was caused by
the schedule of the same teacher (for both scheduling systems),
who had only a single activity, and had a badly assigned
schedule in a specific run. Overall, an average satisfaction
measure for this teacher was 99.06% for the AgentPlanner,
and 60.63% for the FET.

The diagram in Figure 4 shows the average student schedu-
le satisfaction. Here, the largest group of students (56,69% of
all students, in both systems) belongs to the interval (70%,
80%] for the AgentPlanner, and (60%, 70%] for the FET.
Observe also that, in the case of the AgentPlanner, more than
13.06% of students belong to the interval (90%, 100%], while
in the case of the FET only 3.19% students are satisfied to this
extent. Furthermore, for the FET, no student belongs to the

799

504

40 4

304

201

104

Number of students (%)

=%00T '"%06)
<%06 '%08)
<%08 '%0L)
<%0L '%09)
<%09 '%0S)
=%05 "%0F)

Sets of student's satisfaction

W AgentPlanner W FET

Rysunek 4. Average satisfaction evaluations of students

interval (80%, 90%], while 25.16% of students are satisfied
to this extent as a result of scheduling completed by the
AgentPlanner. The biggest disadvantage of the AgentPlanner
is in the fact that 2.39% of students belong to the interval
(40%, 50%], while none of them are so dissatisfied in the case
of the FET.

£

. 801

=]

2 60

2

= 40 b

¥
T 204

=

ih 0

0 1 2
Collisions
W AgentPlanner W FET
Rysunek 5. Collisions in student schedules

Let us now look into activity collisions generated by both
systems. In Figure 5 we represent number of collisions genera-
ted by each software. It is clearly visible in Figure 5) that both
the AgentPlanner and the FET generated some collisions in the
students timetables. In the case of the FET, this is primarily due
to the fact that each activity is assigned to a group that contains
a set of students. In other words, there is no way to involve
individual students and their plans in the process (when using
the FET software). Note that not all students have to take the
same courses (e.g. in the case of electives, groups of students
taking them do not correspond to the “standard” groups). In the
case of the AgentPlanner, students are individually assigned to
groups and thus collisions can be recognized on the individual
level. This shows that it is very important to judiciously create
groups and assign them to activities, because one student can
be in many groups.

Let us note that the situation can be even more complicated
in situations, which are very natural at most universities.

Consider, for instance, elective courses, which can be chosen
by students from various specialties, years, and even different
majors. From the get go, the AgentPlanner approaches this
situation in a more flexible way. Since the timetable is stored
in the database, there is possibility of an easy (and fast) way
of checking course collisions for each student (using SQL
requests). Furthermore, in our approach, we can introduce the
notion of collision threshold. In other words, we can specify
what percentage of collisions is acceptable. Specifically, when
the tolerance threshold is exceeded, a proposal to take a given
slot could be reject by the ScheduleAgent. This notion should
be very useful, particularly in the case of very complicated
and difficult to schedule timetables. However, in the reported
tests, this approach was not applied.

The experimental results show that the AgentPlanner copes
better with collisions, but is not able to completely avoid them.
This is because, during the negotiations, student collisions
are checked against groups that were already inserted into
the timetable, but not against the remaining groups that are
involved in the given negotiation step. It is difficult to solve
it in easy way, because it is hard to specify where each group
will ultimately be located. Some of groups can immediately
get a location, which they are applying for, but some of them
can be rejected multiple times and sometimes it is necessary
to reorganize the timetable for them.

This problem has to be solved in the future, and this will
contribute to further increase in the efficiency of the system.

D. Testing modification of an existing plan

To test the AgentPlanner modifying an existing timetable,
we have experimented with insertion of an extra teacher, who is
leading five activities. Note that the timetable reorganization
using the FET would involve creation of a completely new
schedule. Obviously, this would be impossible in the real-
world.

In general, the AgentPlanner worked well. Specifically, the
timetable reorganization, caused by the insertion of a new
teacher, marginally affected the average satisfaction of all
teachers. The average satisfaction after the reorganization was
96,56% (compared to the original 97.06%; the difference of
1.01%). The average students satisfaction after the reorgani-
zation, was 79.69% (compared with 80.01%; the difference of
0.32%). Note that this difference was caused by a 6% increase
in the number of gaps in the schedule. It is worthy to stress
that no additional collisions between activities were generated.

V. FLEXIBILITY OF THE AGENTPLANNER

The big advantage of the AgentPlanner is the possibility
of its easy modification to use in other cases of planning,
e.g. business meeting, booking of meeting rooms in company,
etc. The most laborious aspect would be creation of a new
database that describes the environment of system (however,
its structure will be quite similar). Furthermore, it is very
likely that the locations evaluation algorithm would have to be
adjusted (according to the problem). After that modifications
IndividualAgents (instead of TeacherAgents) would negotiate
for locations in the timetable. It may be also possible that a
different database could be used (but this would require only
modification of the interface). Note that, the current (modular)

800

implementation is would allow relatively easy modification of
the system.

VI. CONCLUDING REMARKS

The aim of this note was to discuss development and preli-
minary experimental evaluation of an agent-based timetabling
system (AgentPlanner). The proposed system was based on
assumptions originating from actual academic settings (class
scheduling at a department at the University of Gdaisk).
The results are quite encouraging. First, the AgentPlanner
outperformed the state-of-the-art timetabling software based
on genetic algorithms. Second, it is capable of satisfactorily
solving the problem of schedule adjustment. Here, it is worthy
to note that even though our application area was precisely
defined, we believe that our encouraging results indicate that
agent systems may be successfully applied to other timetabling
problems. In the near future we plan to address research
questions outlined above.

LITERATURA

[1] Timothy A. Redl, On Using Graph Coloring to Create
University Timetables with Essential and Preferential Conditions,
http://cms.uhd.edu/faculty/redlt/iccisO9proc.pdf.

[2] Karl Nachtigall, Jens Opitz, A Modulo Network Simplex Method for
Solving Periodic Timetable Optimisation Problems, In: Operations Re-
search Proceedings 2007, 2007, p. 461-466.

[3] Maciej Norberciak, Przeglad metod automatycznego planowania — przy-
ktad wykorzystania algorytmu genetycznego w rozwigzaniu prostego
problemu planowania, In: , 2002, p. 45-67.

[4] Marek Jaszuk, Zastosowanie algorytméw genetycznych do ukladania
planu zajeé, http://www.kmis.pwsz.chelm.pl/publikacje/Ill/Jaszuk.pdf.

[5] Marcin Paprzycki, Agenci programowi jako metodologia tworzenia opro-
gramowania, 2003.

[6] Roxana A. Belecheanu, Steve Munroe, Michael Luck, Terry Payne, Tim
Miller, Peter McBurney, Michal Pechoucek, Commercial Applications of
Agents: Lessons, Experiences and Challenges, http://www.dcs.kcl.ac.uk/
staff/mml/publications/assets/aamas06.pdf.

[7] Fabio Bellifemine, Giovanni Caire, Giovanni Rimassa, Agostino Poggi,
Tiziana Trucco, Elisabetta Cortese, Filippo Quarta, Giosue Vitaglione,
Nicolas Lhuillier, Jereme Picault, Java Agent DEvelopment Framework,
http://jade.tilab.com/.

[8] Liviu Lalescu, Volker Dirr, FET Free Timetabling Software, http://www.
lalescu.ro/liviu/fet/.

[91 Maciej Gawinecki, Minor Gordon, Pawel Kaczmarek, Marcin Paprzycki,
The Problem of Agent-Client Communication on the Internet, Scalable
Computing Practice and Experience, 6(1), 2005, 111-123

