
Information Sciences 176 (2006) 1175–1189

www.elsevier.com/locate/ins
Performance evaluation of SDIAGENT,
a multi-agent system for distributed fuzzy

geospatial data conflation

Shahram Rahimi a,*, Johan Bjursell b, Marcin Paprzycki c,
Maria Cobb d, Dia Ali d

a Department of Computer Science, Southern Illinois University, Carbondale, IL 62901, USA
b School of Computational Sciences, George Mason University, Fairfax, VA 22015, USA

c Institute of Computer Science, SWPS, 03-815 Warsaw, Poland
d Department of Computer Science, University of Southern Mississippi, Hattiesburg,

MS 39406, USA
Abstract

A rapid growth of available geospatial data requires development of systems capable
of autonomous data retrieval, integration and validation. Mobile agents may provide
the suitable framework for developing such systems since this technology, in a natural
way, can deal with the distributed heterogeneous nature of such data. In this paper, we
evaluate SDIAGENT our, recently introduced, multi-agent architecture for geospatial
data integration and conflation, and compare its model performance with that of cli-
ent/server and single-agent approaches. Experimental results for several realistic scenar-
ios, under varying conditions, are presented for these three system architectures. We
analyze the performance alteration for various numbers of participating nodes, varying
amount of database accesses, processing loads, and network loads.
� 2005 Elsevier Inc. All rights reserved.
0020-0255/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2005.07.009

* Corresponding author. Tel.: +1 618 453 6033; fax: +1 618 453 6044.
E-mail addresses: rahimi.@cs.siu.edu (S. Rahimi), cbjursel@gmu.edu (J. Bjursell), marcin@

cs.okstate.edu (M. Paprzycki), maria.cobb@usm.edu (M. Cobb), dia.ali@usm.edu (D. Ali).

mailto:rahimi.@cs.siu.edu
mailto:cbjursel@gmu.edu
mailto:marcin@ cs.okstate.edu
mailto:marcin@ cs.okstate.edu
mailto:maria.cobb@usm.edu
mailto:dia.ali@usm.edu


1176 S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189
Keywords: Agents; Multi-agent systems; SDIAGENT; Performance evaluation; Geospatial data;
Conflation
1. Introduction

The aim of our current long-term research project is to develop an autono-
mous updating system that will be able to retrieve, filter, integrate, conflate and
validate geospatial data from multiple heterogeneous sources, including Web-
based repositories, into a single database system for subsequent access and re-
trieval.1 Here, the geospatial data can be understood broadly to include vector,
raster, text, pictorial, as well as multimedia. The sources of the input data are
multiple governmental and private agencies with quality data. Autonomous
updating subsumes several issues that must be resolved for a successful system
implementation. Among these are integration of heterogeneous geospatial data
formats and resolution of multiple representations (conflation), which are the
most time consuming and complex tasks in this process.

At this stage of the project, we only consider vector-based geospatial data
formats (but this is only a technical restriction of the GIS technology employed
and does not affect the results presented in subsequent sections). Therefore, for
the purpose of integration, the system converts different geospatial vector
formats to a consistent object-oriented data format understandable for the
system. Conflation is a higher-level concept than integration because it implies
a deeper (semantic and intelligent) knowledge about the data. Conflation
results in a state of agreement among various data sources in which a single,
‘‘best’’ view of multiple data representations for similar data types is presented
to the user. Thus, conflation logically can occur only if integration as defined
earlier has already been resolved. Integration and conflation are time consum-
ing tasks that need significant amount of data manipulation and may generate
heavy network traffic.

Automated conflation of maps is a complex process that must utilize work
from a wide range of subjects and has presented several computational chal-
lenges for two decades. However, since the first successful implementation of
a system based on geostatistical techniques nearly 20 years ago, very little pro-
gress has been made [5]. More recently, researchers have turned to fuzzy logic,
rough sets and other methods for handling reasoning abilities under conditions
of uncertainty to help solve general conflation problems [4]. These approaches
1 Intelligent Database Agents for Geospatial Knowledge Integration and Management; BAA
#NMA202-99-BAA-02 NIMA, Department of Defense; Research Area: Geospatial Information
Sciences Concentration Area 4: Knowledge Development.



S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189 1177
certainly show greater promise for producing a wider range of acceptable re-
sults; however, models for implementation have still been limited in their abil-
ity to provide a true, workable solution. Since the nature of the problem of
integration and conflation is distributed, it requires a distributed model.

A client/server-based distributed model was introduced by the authors, how-
ever it turned out that in real-world applications it lacked a satisfactory perfor-
mance [3]. This was due to the increase of the network traffic during the
integration and conflation process.Moreover, the concentration of the conflation
process in a central computer further adversely affected the performance of this
model. The need for improving the performance led us to investigate the use of
software agents for the implementation of such a system. In [9], we introduced
SDIAGENT, an autonomous multi-agent-based application that retrieves, inte-
grates and conflates geospatial data from multiple heterogeneous sources.

In this paper, we briefly describe SDIAGENT architecture and then concen-
trate on the performance of its conflation process. We compare the perfor-
mance of our conflation model with the client/server approach. Moreover,
we consider a single mobile agent-based conflation to illustrate the positive ef-
fect of dividing the tasks among multiple agents. We observe crucial parame-
ters in the model that may affect the performance of the conflation process
and compare the different approaches for a variety of settings. In this perfor-
mance study, we show how our multi-agent architecture improves the confla-
tion by reducing the size of the data transfer, distributing the actual process,
and improving scalability of data manipulation and integration.

Let us note that this paper follows [8] and is in line with related works such
as in [1,2,6,7,11]. In the later three articles, the issue of agent platform scalabil-
ity is considered to be a very practical one, rather than a source of general
reflection. Thus, we study performance empirically in the context of the real-
world problem that we have to solve. Finally, let us note that a slightly different
approach to analysis of the performance of the SDIAGENT can be found in
[2]. There the details of the conflation process were disregarded and the confla-
tion scenario (agents, their mobility and interactions) was used to show that it
is possible to linearly scale system like SDIAGENT to more than 2000 agents
implemented using JADE agent platform.

The remaining parts of this paper are organized as follows. First, we de-
scribe the architecture, as well as the parameters that are heavily relied upon
by the model. Thereafter, the results for numerous tests are presented and dis-
cussed. Finally, we conclude the paper with a short summary.
2. Architecture overview

Fig. 1 depicts the general multi-agent architecture of SDIAGENT. Before
proceeding to the conflation process, we list the types of agents (together with



(1) 

 

RA CM QM 

WA 

CDA 

CA 

WA 

CDA 
WA 

CDA 

CA 

CA 

QA 

QA 

QA 

CA 

Database 1 

Central Database 1 

(1) 

(1) 
(2) (2) 

(2) 
(3) 

(4) 
(5) 

(6) 

Database 3 

Database 2 

Fig. 1. The general multi-agent architecture of SDIAGENT.

1178 S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189
a brief description of each) that currently are used in the system. Detailed
information can be found in [9]. We begin with the agents that reside in the cen-
tralized database:

• ROI Agents (RA): Each RA is responsible for managing updates for a par-
ticular Region of Interest (ROI). For instance, the United Nation divides
the world into 10 such regions. In our design, we follow this strategy.
RAs are static and remain on the central database during the entire process.

• Queue Manager (QM): The QM is responsible for supervising a priority
queue of updates generated by the RAs. The QM plays two roles. First,
in case of an emergency, such as a natural disaster or political/military
action, the agent assures that the pertinent information is promptly updated.
Second, in the case of standard operational mode, it assures that all infor-
mation sooner-or-later becomes updated (no starvation).

• Conflation Manager (CM): This is a static agent, which is located in the cen-
tral database and is responsible for generating a conflation agent for each
update request entry in the queue and initiating the conflation process.

• Conflation Agents (CA): Each CA, generated by the CM, is responsible for
a single update request. The CA is a superclass of many specialized agent
classes that have extensive knowledge about their domain relevant to the
conflation process (Fig. 2). CAs are intelligent mobile agents, traveling to
the data repositories (feeder databases) to perform conflation in a round
robin fashion (described below).



Spatial Conflation Object 

Point Agent Line Agent Polygon Agent 

Building Agent Railroad Agent Lake Agent 

Fig. 2. The type of feature to be updated and its class determine the type of conflation agent to be
generated.

S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189 1179
• Query Agents (QA): These are released from the central database by the
conflation agents (CA) to gather information for conflation-related queries.
Prior to the CA, the QAs arrive in all pertinent databases (for each request,
a sub-set of all feeder databases), perform initial queries and post the result
to be used in the conflation process by the CA. The query agent cooperates
with the wrapper agent (below) to translate the data into the common data
format of the system.

Next, we list the agents that reside on the feeder databases:

• Change Detection Agents (CDA): These are relatively small and unintelli-
gent agents that simply log changes to the database, query for necessary
information and interact with the wrapper agents to create an update object
for transfer to the region of interest agent (RA) on the central database.

• Wrapper Agents (WA): These agents are responsible for translating different
geospatial data formats to the common data model of the system. At this
time, we have two versions of WAs, for VPF (Vector Product Format-
NIMA) and for ARCGIS Map data model.

We now describe a typical scenario that utilizes the above-described agents
for autonomous management of geospatial data. Before we proceed, we will
assume that at initial time the data in the feeder databases is almost synchro-
nized with the central database. This means that only a very small amount of
new information is available in the feeders. Suppose, from Fig. 1, that an up-
date to an attribute value of a spatial feature is performed on database 1
(DB1). The resident CDA notes the change and queries the database for the
information needed for an update object, namely, the database identifier, the
feature ID and type information, bounding box coordinates, and type of up-
date performed (metadata, attribute, topology, geometry or unknown). This



1180 S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189
information is given to the WA to create the update object, which is then sent
to the proper RA on the centralized database (flow 1, Fig. 1). At this moment,
the WA can self-suspend, while the CDA returns to watch the database
updates.

When the update object arrives at the central database, it is placed in a spe-
cial data structure known as a ROI-tree. The ROI-tree is a quad-tree that con-
tains predefined region objects represented by the RAs. For more information
on the topic of spatial indexing, the reader is referred to [10]. Each RA man-
ages updates for a particular area of the earth, represented by bounding box
coordinates, and each RA has knowledge of all feeder databases that contain
information within its domain. The update object is placed in the ROI-tree at a
place under the domain of the RA for the region in which the update occurred.
In our approach, as a default, we pursue 10 regional divisions of the world;
however, other spatial arrangements are also possible. The hierarchical concept
of sub-regions is also supported, and users can define their own regions of
interest.

When the timing/frequency of updates is considered, users are allowed to set
priorities for selected regions and sub-regions, or may use system-generated de-
faults. These specified priorities dictate the rate at which the gathered updates
must be conflated and incorporated into the centralized database. As an exam-
ple, an update for a low-priority region may be allowed to remain in the tree
for several hours or even days, while high-priority region updates may be pro-
cessed several times an hour, or even immediately upon arrival.

Whenever the priority scheme of the supervising RA determines that it is
time to check for updates, a traversal of the sub-tree below the RA is per-
formed, and all the update objects are placed in a conflation queue in order
of their respective priorities. The QM is responsible for supervising this priority
queue. The QM has two main responsibilities; first, for standard operation, it
assures that all information sooner-or-later is processed (no starvation condi-
tion) while the priorities are observed. Second, in emergency cases, when a
given region becomes a ‘‘hot spot’’, it will assure that the pertinent information
is promptly updated by moving its request to the top of the queue.

The CM agent removes the highest priority update request from the queue
and initiates the conflation process by generating an appropriate CA, based on
the information in the update request object related to the feature type (point/
line/area) and its class (e.g., building, railroad, vegetation). The CM agent also
directly accesses the ROI-tree to retrieve other required information to com-
plete the CA generation process. Now, the CA is ready to carry out the confla-
tion process on the object. The CA uses its specialized knowledge to generate
QAs to retrieve all available data needed for performing conflation on that ob-
ject. The QAs are sent in parallel to all the feeder databases in which a potential
conflict with the update exists (flow 2, Fig. 1), and begin the data extraction
process. The QA communicates with the wrapper agent to translate the data



S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189 1181
to the common data format of the system. After this step, the data in all the
participating databases are ready for CA to start the conflation process.

The CA first moves to the database from which the update originated (flow
3, Fig. 1). The QA then passes the already-collected/prepared conflation data
to it. The CA traverses all of the relevant databases, collecting the information
and executing the knowledge-based conflation algorithm described in the fol-
lowing section (flow 4 and 5, Fig. 1). It assembles the conflated data in a Round
Robin fashion and then brings the results back to the central database for up-
dates (flow 6, Fig. 1). A detailed discussion of this process is presented in the
following section.

We now briefly describe a typical conflation scenario. Conflation Agents are
the most intelligent agents in this system. The type of the feature to be updated
(point, line or area) and its class (i.e., railroad, highway, building) have a direct
effect on the type of the CA to be generated (Fig. 2). For instance, if the feature
is a point, a Point Conflation Agent (PCA), which contains a knowledge-based
conflation algorithm for point features, will be generated.

Moreover, the type of the update performed on the feature is a significant
factor in the conflation process. There may be five types of updates: metadata,
attribute, topology, geometry, or some combination of these. In this system, we
have a special CA for each one of these types. If just one of these updates
occurs, then a CA for that particular type will be released. If more than one
of these types of updates takes place then a team of CAs, one for each type,
will be generated and launched. In the latter case, the combination of informa-
tion is managed by the lowest-level common ancestor to all CAs spawned.

The customized CA travels to the feeder databases one by one, receives the
already-collected conflation data from QAs, and places the data in a matching
feature set. Each object in the matching feature set is given a similarity score.
The similarity score is a weighted combination of various criteria, which repre-
sents the degree of similarity between an object in the matching feature set and
the feature for which the conflation process is taking place. All the scores for
different criteria range from 0 to 1, and the total similarity score is the weighted
average of the scores. The features with a similarity score higher than a thresh-
old will be considered for the conflation process.

The conflation algorithm design incorporates both fuzzy logic and a rule-
based programming paradigm. Feature matching, one of the most substantive
components of conflation, is a problem particularly well-suited to modeling
through such human decision-making techniques. Rules based both on objec-
tive criteria, which incorporate constraint relaxation, and intelligent techniques
based on subject matter expert input are part of the overall conflation process-
ing scheme.

Since feature matching is an inexact process, we selected a fuzzy set para-
digm for modeling the matched results. While a significant number of objective
criteria are used to determine matches, the actual results are membership



1182 S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189
values for fuzzy sets. For example, consider a railroad line feature that is a cur-
rent candidate for matching with the original feature. The railroad line�s spatial
proximity to the original feature, its degree of matching on a feature type code,
and equivalence of attribute sets and corresponding values all play a role in the
determination of a match/non-match, which is presented as a fuzzy value.

The rule sets for conflation are based on a hierarchical classification of
feature data. Because of our desire to keep the mobile agents� load as light
as possible, we concentrate the bulk of the rules at the central database, and
distribute with the mobile agents only the necessary ‘‘screening’’ rules to return
potentially viable results. It is beyond the scope of this paper to detail the ac-
tual conflation process; however, it is important to note that the length of the
conflation process varies for different cases. For more information please refer
to [3].
3. Performance evaluation

Before reviewing the results, we briefly describe the client/server and the sin-
gle-agent approaches. For the client/server system we use RMI and multi-
threading where each thread is responsible for the queries of a single database
server. The client initiates the conflation process by accessing the servers and
requesting data. After receiving the query results from every server, the confla-
tion process takes place locally on the client computer (for more information
on the details of this design, please refer to [3]). In the single-agent architecture,
an agent is sent out from the central site to the data repositories with an itin-
erary of IP-addresses. On each node, the agent first queries the database and,
thereafter, conflates the data. Subsequently, the agent proceeds to the next
node along its route where the process is repeated. After completing its itiner-
ary, the agent returns to the central site and reports the result.

All three approaches are implemented in Java. The two agent architectures
are implemented using the Grasshopper Agent Platform distributed by the
IKV++ Technologies AG. In our benchmark, the number of participating
database servers is four unless otherwise specified (and the fifth computer is
the client). The number of queries per database server fluctuates from 1 to
100, and the total size of the retrieved data ranges between 0 to 400 kilobytes.
The data (on each server) is stored in Microsoft Access databases. We run our
tests on an Ethernet LAN with 100 Mbps bandwidth.

The parameters we consider in our experiments are the number of queries per
server, the size of the retrieved data, and the complexity of a conflation task.
Different conflation tasks require varying numbers of queries per database;
thus, studying the performance as a function of queries is crucial since the
client/server approach accesses the databases remotely, while the agents interact
locally with the databases. Similar reasoning motivates us to consider the size of



S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189 1183
the retrieved data from a query. Furthermore, the impact on the performance
based on the complexity of the actual conflation process is analyzed. Since
the intricacy of a conflation task relies on the category of features as well as type
of update involved, the length of the conflation process varies significantly. To
model such settings, we introduce conflation units, where a unit has a fixed pro-
cessing time, and run scenarios with a varying number of conflation units.
Therefore for the purpose of performance evaluation, we measure the total con-
flation time for various settings. Let us stress that in the experiments performed
for the purpose of this paper no actual conflation took place. Instead, we have
selected a number of parameters that were used to model variety of conflation
scenarios.

Properties listed above are first observed exclusively, i.e., we set the remain-
ing parameters as constants. However, since the parameters are likely to impact
each other differently depending on particular conflation tasks, comparisons
where only one parameter is variable do not offer as much information as
necessary to thoroughly evaluate the three approaches. Therefore, to obtain
a better overview of how the performance is affected when altering more than
one variable, we include three-dimensional plots. Finally, speedup charts depict
the performance of the agent architectures compared to the client/server
approach.

In Figs. 3–5 we evaluate the conflation process as a function of one variable
while keeping the remaining parameters constant and set to such values that
will not dominate the performance. Fig. 3 presents the timing results for an
Fig. 3. Performance as a function of the number of conflation units.



Fig. 4. Performance as a function of the number of database connections.

Fig. 5. Performance as a function of the size of retrieved data per query.

1184 S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189
increasing number of conflation units. A single query is executed on each of the
four databases, and the size of the retrieved data is fixed to 10 kilobytes.
Consequently, only a small amount of data is conveyed over the network.
As a result, the gain of local communication in the agent architectures is



S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189 1185
minimal, and the overhead of code mobility slows down their overall perfor-
mance. Furthermore, since only one query is executed per database, the over-
head of utilizing query agents causes the multi-agent approach to be slightly
less efficient than the single-agent approach.

Next we vary the number of queries per database (Fig. 4); 10 conflation
units are executed on each server, and 10 kilobytes of data is returned per
query. Since in SDIAGENT, query agents (QAs) are sent out prior to the
conflation agent (CA), the conflation agent is able to start processing nearly
instantly upon its arrival; thus, the processing time is almost constant. The
slight increase in time originates from the situation when the CA arrives to
the first node where it may have to stay idle waiting for the QA to complete
its task. However, as the CA arrives to subsequent nodes, the querying is
concluded (or just about to be concluded), allowing the CA to immediately
process the information. Conversely, in the single-agent solution, the same
agent is responsible for both querying and conflating data. Hence, the single-
agent�s processing time increases linearly with the number of queries. For the
same reason, the client/server approach increases by the same rate as the
single-agent solution.

In Fig. 5, we depict the situation when we incrementally increase the size of
the retrieved data per each query from 0 to 200 kilobytes. Again, 10 conflation
units are processed per server; and each server is queried 10 times. Both agent
architectures stay essentially constant by processing the data locally on the
data servers, in contrast to the client/server application, which transfers the
data over the network and processes the data on the client. As discussed pre-
viously, compared to the single-agent solution, SDIAGENT�s approach does
not gain much from sending out the query agents, since there are only 10 que-
ries per server; the gain is subdued by the additional overhead.

So far, we have seen how the number of database connections and the size of
the retrieved data, independently of each other, impact the performance. Figs.
6–8 combine these properties by plotting the total processing times for the three
architectures with the number of queries executed on each server on the x-axis
and the size of the retrieved data retrieved for each query on the y-axis.

For small values of the parameters, i.e., for 10 queries or fewer and where
the retrieved data size is less than 50 kilobytes per query, all architectures per-
form similarly. However, apart from this special (and for all practical purposes
not very interesting) case, SDIAGENT performs significantly better, as the
processing times for the two other architectures increase considerably faster.
The single-agent application loses in efficiency to SDIAGENT when the num-
ber of queries increases since, in the single-agent approach, only one agent per-
forms the querying and conflation sequentially. In the case of the client/server
approach, the remote communication becomes the liability factor as the size of
the data increases. This is even further intensified as the number of database
accesses grows. While the client/server quickly reaches timings over 100 s,



Fig. 6. Performance of the client/server architecture as a function of the number of queries and the
size of retrieved data.

Fig. 7. Performance of the single-agent architecture as a function of the number of queries and the
size of retrieved data.

1186 S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189
SDIAGENT stays below 90 s even for 100 database hits and a retrieved data of
size 400 kilobytes. Moreover, the single-agent architecture is significantly faster
than the client/server, yet substantially slower than SDIAGENT.

Figs. 9–11 show the speedup of the agent architectures compared to the cli-
ent/server approach as a function of the size of retrieved data. We ran the tests
for 5, 50, and 100 for database accesses and processed 10 conflation units on



Fig. 8. Performance of SDIAGENT as a function of the number of queries and the size of retrieved
data.

Fig. 9. The speedup of the agent approaches compared to the client/server approach as a function
of the size of retrieved data with 5 database accesses per server.

S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189 1187
each server. For five database accesses, the client/server outperformed the
agent architectures for query results of size less than about 300 kilobytes. How-
ever, a larger amount of retrieved data and more database accesses favored the
agent approaches, and especially the SDIAGENT system.



Fig. 10. The speedup of the agent approaches compared to the client/server approach as a function
of the size of retrieved data with 50 database accesses per server.

Fig. 11. The speedup of the agent approaches compared to the client/server approach as a function
of the size of retrieved data with 100 database accesses per server.

1188 S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189
4. Conclusion

In this paper, we have studied performance characteristics of the SDI-
AGENT, a new multi-agent-based geospatial data conflation system, and



S. Rahimi et al. / Information Sciences 176 (2006) 1175–1189 1189
compared it with a client/server-based and a single-agent-based approaches.
Only for a very small amount of data, the client/server performs better. This
is due to the overhead of managing the agents, as well as the time of transfer-
ring the agents with their data state, knowledge base, and functionality from
one node to another. In all the remaining (and practically interesting) cases
the SDIAGENT demonstrates a substantial advantage over the two other
system architectures, especially when the total amount of computations and
data transfers increases significantly (which is what is to be expected in realistic
applications). From the results presented, we have demonstrated how our
multi-agent architecture can decrease the network traffic, divide the tasks
efficiently and, thus, increase the performance of the system.
References

[1] K. Chmiel, D. Tomiak, M. Gawiniecki, P. Kaczmarek, M. Szymczak, M. Paprzycki, Testing
the efficiency of JADE agent platform, in: Proceedings of the ISPDC 2004 Conference, IEEE
Computer Society Press, Los Alamitos, CA, 2004, pp. 49–57.

[2] K. Chmiel, M. Gawiniecki, P. Kaczmarek, M. Szymczak, M. Paprzycki, Efficiency of JADE
agent platform, Scientific Programming, in press.

[3] M. Cobb, F. Petry, K. Shaw, Uncertainty issues of conflation in a distributed environment, in:
Proceedings of the GIS/LIS, 1998.

[4] M. Cobb, M. Chung, V. Miller, H. Foley, F. Petry, A rule-based approach for the conflation
of attributed vector data, GeoInformatica 2 (1998) 7–35.

[5] M. Cobb, F. Petry, Modeling spatial relationships within a fuzzy framework, Journal of the
American Society for Information Science 49 (1998) 253–266.

[6] L. Ismail, D. Hagimont, A performance evaluation of the mobile agent paradigm, ACM
SIGPLAN Notices, 1999.

[7] S. Rahimi, J. Bjursell, R. Angryk, M. Paprzycki, D. Ali, M. Cobb, M. Gibutowski, An
evaluation of mobile agent environments for geospatial knowledge integration and manage-
ment system, in: S. Niwinski (Ed.), Proceedings of the PIONIER, 2001.

[8] S. Rahimi, J. Bjursell, D. Ali, M. Cobb, Preliminary performance evaluation of an agent-based
geospatial data conflation system, in: Proceedings of the IEEE International Conference on
Intelligent Agent Technology (IEEE-IAT 2003), Halifax, Canada, 2003, pp. 550–553.

[9] S. Rahimi, M. Cobb, D. Ali, M. Paprzycki, F. Petry, A knowledge-based multi-agent system
for geospatial data conflation, Journal of Geographic Information and Decision Analysis,
1480-8943 6 (2002) 67–81.

[10] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading,
MA, 1989.

[11] G. Vitaglione, F. Quarta, E. Cortese, Scalability and performance of JADE message transport
system, AAMAS Workshop on AgentCities, Bologna, 2002. Available from: <http://sharon.
cselt.it/projects/jade/papers/Final-ScalPerfMessJADE.pdf>.

http://sharon.cselt.it/projects/jade/papers/Final-ScalPerfMessJADE.pdf
http://sharon.cselt.it/projects/jade/papers/Final-ScalPerfMessJADE.pdf

	Performance evaluation of SDIAGENT, a multi-agent system for distributed fuzzy geospatial data conflation
	Introduction
	Architecture overview
	Performance evaluation
	Conclusion
	References


