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Abstract—This paper proposes a multi-agent simulation of
simple core spatial Susceptible-Infected-Recovered models for
epidemics spread in a population. The paper introduces the
mathematical model of the system and then it proceeds by
developing its multi-agent representation. The resulting multi-
agent model is simulated using the GAMA multi-agent platform.
The implementation and results are discussed in detail.

Index Terms—modeling and simulation, multi-agent system,
epidemics spread

I. INTRODUCTION

Mathematical modeling of the spreading of infectious and
contagious diseases dates back to the beginning of the 20th
century [1]. The goal of such models is to account for the
various factors that affect the magnitude and span of the
disease in a community of individuals.

One striking example that threatened humanity at the be-
ginning of the previous century is the “1918 Flu Pandemic”,
also known as the “Spanish Flu”, that lasted for more than
2 years causing death of more than 500 million people [2].
Another clearly more actual and very well-known example
that the whole humanity is nowadays experiencing is the case
of “Coronavirus disease 2019” or “COVID 19” contagious
respiratory and vascular disease, also known as “Severe Acute
Respiratory Syndrome Coronavirus 2” or “SARS-CoV-2” [3].

Agent-based modeling and simulation – ABMS is a well
established modeling and simulation technique with multiple
application possibilities in human systems including, among
others, simulation of diffusion processes [4]. With ABMS,
the designer can choose between various levels of granularity
of the modelings, including macroscopic, mesoscopic and
microscopic models, thus allowing him to focus on various
levels of detail of the target system, as well as to trade off
detail and efficiency of the modeling.

In this paper we propose a multi-agent simulation of sim-
ple spatial Susceptible-Infected-Recovered – SIR models for
epidemics spread in a population. This type of models are at
the core of modeling the spreading of contagious diseases in
a population. The paper introduces the mathematical model of

the system and then it proceeds by developing its multi-agent
representation. The resulting multi-agent model is simulated
using the GAMA multi-agent platform [5]. The implementa-
tion and results are discussed in detail.

II. BACKGROUND AND RELATED WORKS

A. Epidemic and Related Models

Compartmental models are used in epidemiology to simplify
the mathematical analysis of the spreading of infectious dis-
eases. These models originate from the early work of Kermack
and McKendrick [1]. The idea is to structure the spread of the
epidemics within the population by compartments. Examples
of compartments are: Susceptible, Infectious, and Recovered
labeled as S, I and R. Compartmental models capture the
dynamics of population transfer between compartments, ac-
cording to the degree / stage of infection. Such a model can
be used to study the spread of the epidemic both in time and
in (geo)space.

Compartmental models can be classified according to sev-
eral criteria:

• Depending on spatial and temporal characteristics of the
model: temporal and spatio-temporal.

• Depending on the nature of modeling: discrete and con-
tinuous.

• Depending on model uncertainty: deterministic and
stochastic.

• Depending on granularity of modeling: microscopic,
mesoscopic and macroscopic.

Related models of diffusion processes were also investigated
using multi-agent simulation, including agent-based emotion
contagion [6], information propagation in large teams [7] and
BDI models for predator-prey systems [8].

B. Agent-Based Modeling and Simulation

Agent technologies are providing new tools and platforms
for software development, modeling and simulation [9], [10],
[11]. Multi-agent systems are capable to capture emergent
phenomena, provide a natural description of a system and



are flexible. ABMS has been traditionally applied in the
following areas of human and social systems: flow simulation,
organizational simulation, market simulation, and diffusion
simulation [4]. A recent survey of ABMS tools is provided
by [12].

III. MULTI-AGENT SIR MODEL

A. Core Spatial SIR Model

Let us consider a core spatial SIR model with the following
compartments:

• S compartment, here denoting the set of susceptible
individuals. They are not infected. When they enter in
contact with infectious individuals, they can become
infected. The population of susceptible individuals at time
t is denoted by S(t).

• I compartment, here denoting the set of infected individ-
uals. They are infected and capable to infect other suscep-
tible individuals. The population of infected individuals
at time t is denoted by I(t).

• R compartment, here denoting the set of “removed”
individuals. In this set we include all the individuals that
either recovered, became resistant or died. The population
of removed individuals at time t is denoted by R(t).

Our model aims to capture the dynamics of individuals in
space and time. Let us denote with:

∆S = S(t+ ∆t)− S(t)

∆I = I(t+ ∆t)− I(t)

∆R = R(t+ ∆t)−R(t)

(1)

The total population of individuals at time t is denoted with
N(t) and it is defined by:

N(t) = S(t) + I(t) +R(t) (2)

The spread of the disease is modeled by a factor F rep-
resenting the “force of infection”. So, in each step, a frac-
tion F of susceptible individuals from set S(t) get infected.
Obviously the set F depends on the current population of
susceptible individuals S(t), as well as on the current set of
infections I(t). So the amount of susceptible individuals that
get infected in the current step can be written as F (S(t), I(t)).
The infected individuals will be “transferred” from the S
compartment to the I compartment. It follows that:

∆S = −F (S(t), I(t)) (3)

The specification of F depends on the model in hand.
We have chosen a spatial model in which each individual
has a certain physical location. Moreover, our individuals are
“mobile”, i.e. they are allowed to change their location in each
step. This allows us to consider the local spread of the disease
in which a certain amount of individuals in the spatial vicinity
of an infected individual, will get infected. Thus, “locality”
of infection propagation and “mobility” of individuals enable
our simple model to capture both the spatial and the temporal
dimensions of the spread of the disease.

Let us denote with i.x the physical coordinate of an individ-
ual i and let d be a distance function on the space of physical
locations (for example the Euclidean distance). We denote with
V (x) a vicinity of x, i.e. the set of physical locations that are
“close” to x according to some specific rule. One possibility is
to define V (x) as the set of locations inside the ball of radius
ε centered at x, i.e:

B(x, ε) = {y|d(x, y) ≤ ε} (4)

Let p ∈ [0, 1] be the probability of infection of a certain
individual located in the vicinity of an infected individual.
We can now easily define the selection of individuals that get
infected in each step, using a stochastic selection process: for
each infected individual i ∈ S(t) with location i.x we add to
I(t) each individual j such that j.x ∈ V (i.x) to F (S(t), I(t))
with probability p.

Let us also assume that a proportion γ ∈ (0, 1) of infected
individuals (denoted in what follows with γ ·I(t)) are removed,
for example, either because they became resistant or they died.
Adding also equation (3) to this system, it follows that:

∆S = −F (S(t), I(t))

∆I = F (S(t), I(t))− γ · I(t)

∆R = γ · I(t)

(5)

Observe that summing up equations (5) we obtain:

∆N = ∆S + ∆I + ∆R = 0 (6)

This clearly shows that for all t the total population of
individuals in our model (5) does not change, i.e.:

N(t) = S(t) + I(t) +R(t) = const. (7)

Note that in our model we omit the modelling of the vital
aspects, i.e. the explicit birth and death of the individuals.
Birth and death processes can be understood as introducing
new individuals into the system and respectively discarding
individuals from the system. Omitting the modeling of vital
aspects can be motivated by the fact that the dynamics of the
infection spread process is much faster than the usual birth
and death processes and thus it can be neglected. Moreover,
omitting birth and death processes can intuitively explain the
conservation of the number of individuals (equation (7)).

Let us assume that on average each individual has α
individuals in its vicinity. However, the infection will affect
only susceptible individuals from the population, so we should
weight α with the fraction S(t)

N(t) of susceptible individuals from
the whole population. Then we could estimate F (S(t), I(t))
as:

F (S(t), I(t)) = α · p · S(t)

N(t)
· I(t) (8)

Replacing (8) into the second equation of (5) we obtain:

∆I =

(
α · p
γ
· S(t)

N(t)
− 1

)
· γ · I(t) (9)

A simple mathematical analysis of equation (9) shows that
the ratio: α · p

γ
(10)



plays a role in our model similar to the “reproduction rate”
(i.e. R0 = β/γ) from the classical SIR model defined using
differential equations (with α · p playing the role of parameter
β) [1]. The difference between the two models is however that
here we indirectly control β by the spatial definition of what is
meant by “vicinity” of an individual. For example, if we adopt
the “ball model”, its radius ε will determine α thus indirectly
controlling β and consequently the reproduction rate of the
model.

Before concluding this section it worth mentioning that
our model is “agnostic” to the underlying “topology” of the
population environment. Several possibilities are envisioned
including for example 2D or 3D Euclidean space, grid / lattice
model, as well as arbitrary graph model.

B. Multi-Agent Representation

The mapping of our model onto a multi-agent representation
is quite straightforward. Basically, each individual becomes an
agent. The compartment to which each individual is assigned
is captured in our model as the agent state, one of S, I or R.
Initially most of the agents are in state S, few of them are in
state I , and neither of them is in state R. At the end of the
simulation, when the process stabilizes, each agent is either
in state S or in state R. So state I is a “transitory state” of
the agents. Moreover, if after the stabilization process all the
agents are in state R it means that the epidemic reached the
whole population.

S
I

R

step[infect]

step[¬infect]

step[remove]

step[¬remove]

Fig. 1. State transition diagram of an individual.

The state transition diagram of each individual is modeled as
a finite state automaton, as shown in Figure 1. Transitions are
triggered synchronously for all the agents, at each simulation
step. Note that actually state transitions are stochastic, with
exact transition probabilities determined by the parameters of
the system model. So in fact the behavior of our agents can
be captured by a Markov chain.

Infection propagation from an agent representing an infected
individual to an agent representing a susceptible individual
is achieved by means of agent interaction. Basically, each

agent representing an infected individual sends an “infection
message” to all the susceptible agents in its vicinity with the
given probability p.

The transition of an agent from state I to state R is simply
achieved by letting the agent itself update its state from I to
R with probability γ.

Our agents are mobile, as they also model the mobility
of the individuals in the population. So be design they are
endowed with a spatial mobility behavior.

IV. RESULTS AND DISCUSSION

A. GAMA Implementation

According to [5], GAMA1 “is a modeling and simulation
development environment for building spatially explicit agent-
based simulations.”

In GAMA, models are specifications of simulations that
can be executed and controlled using experiments defined by
experiment plans. Experiments facilitate the intuitive visualiza-
tion of simulation results, as well as the extraction of useful
simulation results.

Our implementation contains:
• The global section representing the agent environment.

Here we included the definitions of all the model param-
eters, as well as other implementation-dependent parame-
ters that were needed for the model visualization, like for
example visual attributes used for agents visualization.

• The initialization section for setting up the initial pop-
ulation of agents representing the initial populations of
susceptible and infected individuals.

• The class defining the agents that capture the individuals
of our model, together with their internal state and
behavior.

• Two sections defining our experiments for visualizing
the results and extracting the simulation information.
We have implemented a “gui” experiment to allow the
graphical visualization and animation of the simulation,
as well as a “batch” experiment for extracting simulation
information as CSV files.

Each individual is modeled by an agent of Host species that
contains the following attributes and behaviors:

• Boolean attributes is susceptible, is infected, and
is immune such that at most one of them is true,
for representing agent states S, I and R. Initially
susceptible individuals have is susceptible=true and
infected individuals have is infected=true.

• Mobility is achieved by endowing our agents with moving
skill. It defines the required actions for spatially mobile
agents. In particular we have used the wander action
for moving the agent forward to a random location at
the distance computed based on its speed in a random
direction (an angle, in degrees) determined using its
amplitude attribute, as follows. If the current value of the
direction is h and the value of the amplitude is a then the

1https://gama-platform.github.io/



new value of h is chosen in the interval [h−a/2, h+a/2].
We have set a = 360 to allow full coverage of all the
possible directions.

• State transitions are achieved by the user-defined skills
infect and remove that define the transition of an agent
from state S to state I and respectively from state I to
state R. The agents vulnerable for getting the infection
were determined by enumerating all the agents located at
a given maximum distance from an infected agent, using
the at distance operator.

• Initially, our agents are randomly distributed on a square-
bounded 2D space of default size 100× 100.

Our implementation provides two basic visualizations of the
simulation results:

• The spatial visualization of the agents distribution onto
the 2D space. Susceptible agents are shown in green,
infected agents are shown in red, while removed agents
are shown in blue.

• The dynamics of susceptible, infected and removed indi-
viduals along simulation time using the same color code.

B. Experiments and Results

Our multi-agent simulation is controlled by the following
parameters that dictate the speed and magnitude of the epi-
demics spread in a population:

• Population size n, including initial number of susceptible
individuals s0 and of infected individuals i0. Note that
n = s0 + i0 and i0 � s0. To keep things simple and
observable we have considered that i0 = 2. This made
possible to observe the epidemics spread starting from
two distinct source points. Note that we kept fixed the
size of our 2D space, so the population size actually
dictates the population density that is expected to directly
influence the spatio–temporal dynamics of the epidemics.

• The radius r of the ball defining the vicinity of an infected
agent.

• The probability p that an agent in the vicinity of an
infected agent will get infected; we set p = 0.5 in all
experiments.

• The speed v of the wandering process. Note that the angle
that gives the range of the direction of the wandering
process was kept constant and equal to 360 degrees.

• The proportion γ of infected individuals that are removed
at each step; we set γ = 0.05 in all experiments.

1) Experiment 1: We set n = 10000, r = 1.0 and v = 1.0.
The results are shown in Figure 2. Analyzing the dynamics of
population size shown in the right-hand side chart we observe
that the infection reached the whole population quite fast, in
approximately 140 cycles. The left-hand side figure displays
the status of the population of agents during the first part of
the simulation, at the 23rd cycle. We can observe how the
infection progressed starting from and developing around the
two source infected individuals.

2) Experiment 2: We set n = 3000, r = 1.0 and v =
1.0. The results are shown in Figure 3. First observe that the

density of the individuals is considerably lower than in the first
experiment. The results of the population dynamics show that
the process stabilized after 365 cycles with 110 susceptible
individuals not reached by the epidemic. We conclude that
in this scenario the epidemic progressed considerably slower
than in the first experiment, and with a smaller magnitude, as
it did not reach the whole population of individuals before the
situation stabilized.

3) Experiment 3: We set n = 10000, r = 1.0 and v = 0.2.
The results are shown in Figure 4. Comparing the results with
those obtained in the first experiment, we observe that the
magnitude of the epidemic spread is considerably lower (as
the mobility of the individuals is lower), although the radius
of the region defining the vulnerable individuals in the vicinity
of an infected individual is the same. Similarly with second
experiment, the epidemic did not reach the whole population
before the process stabilized, leaving 537 untouched suscep-
tible individuals. The process stabilized at the 481-th cycle.

4) Experiment 4: We set n = 10000, r = 1.0 and v = 10.
The results are shown in Figure 5. The process stabilized
somewhere after 230-th iteration leaving untouched by the
infection slightly more than 1000 susceptible individuals. An-
alyzing the distribution of susceptible, infected and removed
individuals after the 78-th iteration shown in the left-hand side
of the figure, we observe that, differently from all the other
experiments, individuals independently of their state tend to
be much more uniformly distributed throughout the whole
available space. This can be explained by the higher mobility
of the individuals in this experiment, compared to experiment
1. However, comparing the magnitudes of the epidemic spread
from experiments 1 and 4, it was surprising to observe that,
although the mobility of agents was an order of magnitude
higher in the latter case, the impact appeared to be lower (note
that more than 10% of the population was not touched by the
epidemic in experiment 4).

5) Experiment 5: We set n = 10000, r = 0.3 and v = 1.0.
The results are shown in Figure 6. In this experiment the
situation appears to be somehow similar with the results of
experiment 3. We kept agent mobility similar to experiment
1 and decreased the impact of the spread by diminishing the
radius of the region of vulnerable individuals in the vicinity of
an infected individual. The process stabilized somewhere after
the 60-th iteration leaving slightly more than 2000 susceptible
individuals untouched by the epidemic. Comparing with the
other experiments, we can conclude that in this case the
magnitude of the epidemic was the lowest, leaving uninfected
more than 20% of the population.

V. CONCLUSION

We have developed a multi-agent simulation of core spatial
SIR models for epidemics spread in a population using the
GAMA platform. We have used the simulation system to
experimentally investigate a number of scenarios. We can con-
clude that population density, local strength of the epidemics
and mobility of the individuals strongly impact the span and
magnitude of the infection spread.



a. Population of agents after 23 cycles. b. Dynamics of population size during 137 cycles.

Fig. 2. Results of simulation for n = 10000, r = 1.0 and v = 1.0.

a. Population of agents after 31 cycles. b. Dynamics of population size during 369 cycles.

Fig. 3. Results of simulation for n = 3000, r = 1.0 and v = 1.0.

a. Population of agents after 154 cycles. b. Dynamics of population size during 518 cycles.

Fig. 4. Results of simulation for n = 10000, r = 1.0 and v = 0.2.



a. Population of agents after 78 cycles. b. Dynamics of population size during 237 cycles.

Fig. 5. Results of simulation for n = 10000, r = 1.0 and v = 10.0.

a. Population of agents after 154 cycles. b. Dynamics of population size during 632 cycles.

Fig. 6. Results of simulation for n = 10000, r = 0.3 and v = 1.0.
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