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Abstract. This paper proposes a multi-agent system for modeling and simulation
of epidemics spread management strategies. The core of the proposed approach is
a generic spatial Susceptible-Infected-Recovered stochastic discrete system. Our
model aims at evaluating the effect of prophylactic and mobility limitation mea-
sures on the impact and magnitude of the epidemics spread. The paper introduces
the modeling approach and, next, it proceeds to the development of a multi-agent
simulation system. The proposed system is implemented and evaluated using the
GAMA multi-agent platform, using several simulation scenarios, while the ex-
perimental results are discussed in detail. Our model is abstract and well defined,
making it very suitable as a starting point for extension and application to more
detailed models of the specific problems.
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1 Introduction

Research concerning mathematical modeling of the spread of infectious and contagious
diseases has started almost one century ago [16]. The goal was the development of dy-
namic models that are able to capture and explain the various factors that can influence
the intensity and span of the disease, in a given population of individuals.

A well known case that threatened humanity at the beginning of the twentieth cen-
tury is the “1918 Flu Pandemic”, also known as the “Spanish Flu”. It lasted for more
than 2 years causing the death of more than 500 million people [19]. Another very actual
case, experienced nowadays by the whole humanity is “Coronavirus disease 2019” or
“COVID 19” contagious respiratory and vascular disease, also known as “Severe Acute
Respiratory Syndrome Coronavirus 2” or “SARS-CoV-2” [14]. It triggered a huge re-
search interest in biomedical and computing sciences, and the need of development of
detailed simulation models of the dynamics of the spread of the disease, including the
design and analysis of various mitigation strategies and policies [2, 10].

Agent-based modeling and simulation (ABMS), is a well established approach that
provides multiple application opportunities in natural systems including, among oth-
ers, the simulation of stochastic diffusion processes in continuous and nonlinear envi-
ronments [3]. ABMS enables the domain experts to choose between various levels of
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granularity of modeling at the macroscopic, mesoscopic or microscopic level. This flex-
ibility allows focusing on various elements of the target system, by trading-off capturing
of details and exploiting of efficiency of the modeling. It worth noting that the ABMS
techniques and tools played a crucial role in the development of virus spread simula-
tions using novel ABMS platforms, like GAMA, MESA and JS-son [2,8,10,12,13,15].

The core of our proposal is a generic spatial Susceptible-Infected-Recovered (SIR)
model of epidemics spread in a population. In particular we exploit our initial results
in ABMS of core spatial SIR models for epidemics spread in a population, presented
in [5]. Here we expand our work by adding an infection spread mitigation control agent
and modeling the effects of its mitigation strategies and policies. Our proposal follows
a control system approach representing the “intelligence” of the system. Various deci-
sions and strategies, for limiting the epidemics, are conceptualized as dynamic controls
that are defined based on the status information, acquired from the system using avail-
able social sensors. The upgraded multi-agent model is simulated using the GAMA
multi-agent platform [20], following the methodology proposed in [5].

The paper is structured as follows. Section 2 contains an overview of relevant related
works. Section 3 generalizes the generic SIR model from [5] by adding a spatial atten-
uation function to the infection propagation part. We propose and model the strategy
of infection mitigation and management, modeling the behavior of the control agent
supporting this strategy. Section 4 contains experimental results for the baseline sys-
tem (without infection mitigation and management, considering a scenario with 15000
rather than 10000 agents, as in [5]), as well as for the same system including the control
part. Section 5 presents the conclusions and points to future works.

2 Related Works

Compartmental models originate from the early work of Kermack and McKendrick [16].
They are used by epidemiologists and mathematicians to abstract the spreading pro-
cess of infectious diseases, and to simplify their mathematical analysis. These models
propose to structure the spreading process of the epidemics within the population by
compartments, depending on the state of the population individuals. Examples of com-
partments are: Susceptible, Infectious, and Recovered, usually labeled as S, I and R.
These models are defined as differential or difference equations that capture the dy-
namics of the population transfer between compartments, according to the degree, or
stage, of the infection. Such a model can be utilized to theoretically, or experimentally,
investigate the spread of the epidemic both in time and in (geo)space [21].

Compartmental models can be classified according to several criteria: i) depending
on spatial and temporal characteristics of the model: temporal and spatial-temporal; ii)
depending on the nature of modeling: discrete and continuous; iii) depending on model
uncertainty: deterministic and stochastic; iv) depending on granularity of modeling:
microscopic, mesoscopic and macroscopic.

Related models of diffusion processes were investigated using multi-agent simu-
lation, including agent-based emotion contagion [4], information propagation in large
teams [11] and BDI models for predator-prey systems [6].
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Agent technologies include tools and platforms for software development, model-
ing and simulation [7,17,18]. Multi-agent systems can model emergent phenomena, and
provide a natural representation of the system under observation. They are flexible, al-
lowing the development of dynamic models and simulations. ABMS were traditionally
employed for modeling and simulation of diverse human and social systems, combining
strategic thinking with flow and diffusion processes, in many areas of business, society,
biology, and physics [3]. A recent survey of modern ABMS tools is given in [1].

In the context of the recent COVID pandemic, several multi-agent simulations have
been proposed, some of them based on GAMA platform [2, 10, 22]. Moreover, con-
trol system approaches have been found useful to theoretically investigate the control
dynamic of a computer virus [9].

3 Multi-Agent SIR Model

3.1 Core Spatial SIR Model

Let us consider the general core spatial SIR model introduced in [5] that contains:

– S compartment, denoting the set of susceptible individuals. They are not infected.
When they enter in contact with infectious individuals, they can become infected.
The population of susceptible individuals, at time t, is denoted by S t.

– I compartment, denoting the set of infected individuals. They are infected and ca-
pable of infecting other susceptible individuals. The population of infected individ-
uals, at time t, is denoted by It.

– R compartment, denoting the set of “removed” individuals. This set includes all
individuals that either recovered, became resistant, or died. The population of re-
moved individuals at time t is denoted by Rt.

The aim of the model is to capture the population dynamics in space and time. Here:

∆S = S t+∆t − S t

∆I = It+∆t − It

∆R = Rt+∆t − Rt

(1)

Moreover, the total population of individuals at time t, denoted with Nt, is defined by:

Nt = S t + It + Rt (2)

The spread of the disease is modeled by function F, representing the “force of in-
fection”. In each step, a fraction F of susceptible individuals, from set S t, gets infected.
Obviously, the set F depends on the current population of susceptible individuals S t, as
well as on the current set of infections It. Hence, the amount of susceptible individuals
that get infected, in the current step, can be written as F(S t, It). The infected individuals
will be “transferred” from the S compartment to the I compartment. Hence:

∆S = −F(S t, It) (3)
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Let us also assume that a proportion γ ∈ (0, 1) of infected individuals (denoted in
what follows with γ · It) is removed (either because they became resistant or they died).
Adding equation (3) to this system, it follows that:

∆S = −F(S t, It)
∆I = F(S t, It) − γ · It

∆R = γ · It

(4)

This system is discrete, so time has a discrete variation t0 = 0, t1 = h, . . . , tn =

n ·h, . . . , where h > 0 is the constant time step. In what follows, we denote the values of
model variables at time tn simply with subscript n, where n is the current step number.
For example, the number of infected individuals at step n is In.

3.2 Modeling Infection Spread

The specification of F depends on the considered model. We have chosen a spatial
model, in which each individual has a certain physical location. This allows capturing
the local spread of the disease, in which a certain amount of individuals, in the spa-
tial vicinity of an infected individual, will get infected. Moreover, our individuals are
“mobile”, i.e. they are allowed to change their location in each step. Thus, “locality”
of infection propagation, and “mobility” of individuals, enable our simple model to
capture both the spatial and the temporal dimensions of the spread of the disease.

Let us denote with i.x the physical coordinate of an individual i and let d be a dis-
tance function, in the space of physical locations (for example the Euclidean distance).
We denote with V(x) a vicinity of x, i.e. the set of physical locations that are “close” to
x, according to some specific rule. Here, one possibility is to define V(x) as the set of
locations inside the ball of radius ε, centered at x, i.e:

B(x, ε) = {y|d(x, y) ≤ ε} (5)

Let us now consider an individual j and let I( j) be the set of all infected individuals
from the vicinity of j, defined as:

I( j) = {i|i.x ∈ B( j.x, ε)} (6)

Let pi, qi ∈ (0, 1) be the probabilities that a certain individual i will transmit the
infection in its vicinity and, respectively, will be infected if is present nearby. Let us
assume that the transmission of the disease from an infected individual i to an individual
j located at a distance x from i is also affected by a spatial attenuation function φ(x)
defined as:

φ(x) : R+ −→ [0, 1]
φ(0) = 1
lim
x→∞

φ(x) = 0

x ≤ y⇒ φ(x) ≥ φ(y)

(7)

Let us denote by di j the distance between individuals i and j, defined as:

di j = d(i.x, j.x) (8)
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Following simple probabilistic reasoning, it is easy to see that the probability that a
susceptible individual j will get infected is defined by:

q j · (1 −
∏
i∈I( j)

(1 − pi · φ(di j)) (9)

Note that equation (9) generalizes the simple interaction model introduced in [5], where
it was considered that the probability of infection of a susceptible individual, in the
vicinity of an infected individual, is constant.

Observe that (9) is a well-defined probability value, in the interval [0, qi], and that
this value is 0 when I( j) = ∅. This corresponds to the intuition that there is no infection
propagation to a susceptible individual when there are no infected peers in its vicinity.

3.3 Discussion

Let us denote with β the average infection probability, determined by equation (9). This
value depends on the average number of individuals in the vicinity of the considered
individual, as well as on probabilities p and q. Moreover, the infection will affect only
the susceptible individuals from the population. Hence, β should be weighted with the
fraction S t

Nt
. Then we could estimate F(S t, It) as:

F(S t, It) = β ·
S t

Nt
· It (10)

Replacing (10) in the second equation of (4) it can be established that:

∆I =

(
β

γ
·

S t

Nt
− 1

)
· γ · It (11)

A simple mathematical analysis of equation (11) shows that the ratio β
γ

is the “re-
production rate” (i.e. R0 = β/γ) from the classical SIR model, defined using differential
equations [16]. The difference between the two models is that, here, β is a random
variable that is determined by the spatial definition of what is meant by the “vicinity”
of an individual. Moreover, the dynamic model is discrete and stochastic, rather than
continuous and deterministic.

Note also that the value of parameter γ determines the average duration of the in-
fection of an individual (removal time), i.e. the number of steps from the moment it
became infected until it is removed. The expected value of this random variable is:

Tr = 1 · γ + 2 · γ · (1 − γ) + 3 · γ · (1 − γ)2 + . . .

= γ · (1 + 2 · (1 − γ) + 3 · (1 − γ)2 + . . . ) = γ · Q

However:

Q = (1 + (1 − γ) + (1 − γ)2 + . . . ) + (1 − γ) · Q = 1/γ + (1 − γ) · Q

Solving the equation we obtain Q = 1/γ2 and substituting it in expression of Tr results:

Tr = 1/γ (12)
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3.4 Infection Management

The proposed approach for infection spread management assumes three steps: situation
assessment, detection and mitigation. The system block diagram is shown in Figure 1.

In, ∆In, . . . , ∆In−k+1, ∆I

δin, δout

Controller

Spatial SIR Model ∆I

E/N

Fig. 1. Block diagram of infection management system.

Situation assessment is based on the information obtained from social sensors.
Basically, individuals with symptoms and their peers, determined for example using
techniques of contact tracing, are tested. Hence, the system monitors the variation of
the number of infections, and is able to estimate the rate of infection spread. Obviously,
the accuracy of obtained estimators depends on the capacity and precision of the testing.

In the stochastic system, the moving average of the last k ≥ 1 steps can be used to
estimate the infection rate, i.e.:

∆In = In − In−1 for n ≥ 1

∆In =

∑k
i=1 ∆In+i−1

k
for a given k ≥ 1

(13)

Note that ∆In can be computed iteratively as follows:

∆In+1 = ∆In +
∆In+1 − ∆In−k+1

k
(14)

Equation (14) can be implemented in O(1) time, and with O(k) memory, using a
circular queue represented as an array Q of size k, and its pointer l to store the last k val-
ues of ∆I; as shown in (15). The new value of ∆I, determined in the current simulation
step, is ∆Inew. The update of Q is done as follows (here, ← denotes the programming
assignment):

m← (l + 1) mod k

∆I ← ∆I +
∆Inew − Qm

k
Qm ← ∆Inew

l← m

(15)
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The value of k is set as proportional to Tr, using a constant kmem > 0, as follows:

k = kmem · Tr (16)

Detection is achieved by comparing, in each simulation step, the infection rate (per
1000 individuals) with a given threshold. Initially, the threshold δin > 0 is used. So, if
the condition ∆I > δin holds, the process enters the emergency (mitigation) stage.

Mitigation is achieved by declaring an “emergency situation” that assumes adop-
tion of special measures, involving the self-protection of individuals, and limitation of
their mobility (up to its prohibition). The situation is also continuously monitored in the
mitigation stage, by comparing, in each step, the infection rate (per 1000 individuals)
with the second threshold value δout. If the condition ∆I < δout holds, the process reen-
ters the normal stage. Note that, in order to be sure that the infection is decreasing when
reentering the normal state, a negative threshold is used, i.e. δout < 0. Additionally,
the “emergency situation” is kept for a minimum number of steps Te that is defined as
proportional (using given parameter k1

e > 1) with removal time Tr defined by (12):

Te = k1
e · Tr (17)

Note that the values of the thresholds are updated each time the system leaves the
“emergency situation”, using a preset coefficient 0 < k2

e < 1 as follows:

δin ← δin · k2
e

δout ← δout/k2
e

(18)

The initial values of δin and δout are defined as follows (kin and kout are two positive
constants such that kout is smaller than kin):

δin = kin · (N/1000)
δout = −kout · (N/1000)

(19)

3.5 Multi-Agent Representation

The mapping of the model onto a multi-agent representation is straightforward. Ba-
sically, each individual is represented as an agent. The compartment, to which each
individual is assigned, is captured as the agent state, i.e. S , I or R. Initially most of the
agents are in state S , few of them are in state I, and neither is in state R. At the end of
the simulation, when the process stabilizes, each agent is either in state S or in state R.
So state I is a “transitory state” of the agents. Moreover, if after the stabilization process
all the agents are in state R, it means that the epidemic reached the whole population.

The state transition diagram of each individual is modeled as a finite state automaton
(see, left part of Figure 2). Transitions are triggered synchronously for all the agents, at
each simulation step. Note that state transitions are stochastic, with exact probabilities
determined by the parameters of the model. Hence, in fact, the behavior of the agents
can be captured by a Markov chain.

Infection propagation (from an agent representing an infected individual, to an agent
representing a susceptible individual) is achieved by agent interaction. Basically, each
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S I

R

step[in f ect]

step[¬in f ect]

step[remove]

step[¬remove]

N

E

step[∆I > δin]
t ← 1

step[∆I ≤ δin]

step[t < Te ∨ ∆I ≥ δout]
t ← t + 1

step[t ≥ Te ∧ ∆I < δout]

Fig. 2. State transition diagram of individual (left). State transition diagram of controller (right)

agent representing an infected individual sends an “infection message” to all susceptible
agents in its vicinity, with the computed probability, according to equation (9).

The transition of an agent, from state I to state R, is achieved by letting the agent
itself update its state from I to R with probability γ.

Agents in the system are mobile, as they represent also mobility of the individuals
in the population. Hence, by design, they are endowed with a spatial mobility behavior.

Similarly, the state transition diagram of the controller is modeled as a finite state
automaton (see, right part of Figure 2). State N models the normal situation of the
system, while E models the “emergency situation”. The transitioning back and forth
between these two states can take place at each simulation step, being triggered by
conditions ∆I > δout and, respectively, t ≥ Te∧∆I < δout. Note that variable t represents
the time (in number of steps) elapsed since the triggering of the “emergency situation”.
Variable t is initialized to 1, during the transition from state N to state E, and it is
incremented for each step performed while system is in state E.

4 Results and Discussion

4.1 GAMA Implementation

In GAMA [20], models are specifications of simulations that can be executed and con-
trolled using “experiments”, defined by experiment plans. Experiments facilitate the
intuitive visualization, as well as the extraction of useful simulation results.

Implementation of the, above proposed, pandemic model contains:

– The global section representing the agent environment. Here the definitions of all
the model parameters, as well as other implementation-dependent parameters that
were needed for the model visualization, like for example visual attributes used for
agents visualization, have been included.
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– The initialization section for setting up the initial population of agents, representing
the initial populations of susceptible and infected individuals.

– The class defining the agents that instantiate the individuals of our model, together
with their internal state and behavior.

– The section defining our experiment, visualizing the results, and extracting the sim-
ulation information. Here, a “gui” experiment has been implemented, -to allow the
graphical visualization and animation of the simulation.

Each individual is modeled by an agent of Host species that contains the following
attributes and behaviors:

– Boolean attributes is susceptible, is infected, and is immune such that exactly one
of them is true, for representing agent states S , I and R. Susceptible individuals
have is susceptible=true, while infected individuals have is infected=true.

– Mobility is achieved by endowing agents with moving skill. It defines the required
actions for spatially mobile agents. In particular, the wander action, for moving the
agent forward to a random location at the distance computed based on its speed in
a random direction (an angle, in degrees) determined using its amplitude attribute,
has been used. Here, if the current value of the direction is h and the value of the
amplitude is a, the new value of h is chosen from the interval [h − a/2, h + a/2].
Moreover, a = 360 was used, to allow full coverage of all directions.

– State transitions are achieved by the user-defined skills infect and remove that define
the transition of an agent from state S to I, and from state I to R. Agents vulnerable
for getting the infection were determined by enumerating all agents located at a
given maximum distance, from an infected agent, using the at distance operator.

– Initially, agents representing susceptible individuals are randomly distributed on a
square-bounded 2D space.

Controller parameters are maintained as global attributes of the simulation environment,
as follows:

– Boolean attribute is emergency is used to distinguish between the normal (N) and
the emergency state (E) of the controller.

– Values of kin and kout to compute initial values of thresholds δin and δout using
equations (19) are defined as: kin = 0.40 and kout = 0.02.

– Values of k1
e and k2

e used in equations (17) and (18) that control the span of the
emergency situation are defined as: k1

e = 1.1 and k2
e = 0.9.

– The value of parameter kmem that defines the memory of the moving average ∆I
using equation (16) was set to kmem = 0.5. This produces a value k = 10 for the
“memory” of computing the moving average ∆I.

– The queue representing the “memory” of computing the moving average ∆I, im-
plemented as a list of k values.

Overall, three visualizations of the simulation results are provided (see, Figure 3):

– 2D spatial visualization of the agents. Susceptible agents are shown in green, in-
fected agents are shown in red, while removed agents are shown in blue.

– The dynamics of susceptible, infected and removed individuals, the simulation
time-line using the same color code.

– The dynamics of the instantaneous and moving averages of the infection rate.
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Fig. 3. System GUI.

4.2 Experimental Setup

The simulation is controlled by the following parameters that dictate the speed and
magnitude of the epidemics spread:

– Size d of the agents’ environment (a d × d rectangle); d = 120 was used in experi-
ments.

– Population size N, including initial number of susceptible individuals S 0, and in-
fected individuals I0. Note that N = S 0 + I0 and I0 � S 0. To keep things simple
and observable I0 = 2 was set. This made possible to observe the epidemics spread
starting from two distinct source points that define two independent infection out-
breaks. Note that the size of the 2D space was kept constant. Hence, the population
size dictates the population density that is expected to directly influence the spatial-
temporal dynamics of the epidemics. In all experiments S 0 = 15000 was used.

– Since the considered model is a stochastic system, each simulation was repeated
multiple times, while keeping fixed the initial locations of the infection outbreaks,
at: (0.25 · d, 0.25 · d) and (0.75 · d, 0.75 · d).

– The radius ε defining “active vicinity” of an infected agent was set to ε = 0.8.
– The probabilities that an agent will transmit, respectively will get the infection (see

equation (9)), pi and qi were constant for all individuals. However, note that: i)
before the outbreak these probabilities have high values pH = qH = 0.90; ii) during
the emergency situation these probabilities have low values PL = qL = 0.30, and
iii) after the first emergency situation, as people got to know about the danger of the
infection, these probabilities have average values pM = qM = 0.75 (many people
are likely to proactively take into account protection measures).

– The speed v of the wandering process was set to vH = 1.0 during the normal sit-
uation and to vL = 0.1 during the emergency situation. Note that the angle that
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gives the range of the direction of the wandering was kept constant and equal to
360 degrees.

– Coefficient γ, defining number of infected individuals removed at each iteration;
was set to γ = 0.05.

– Spatial attenuation function φ(x) (see equation (7)) was chosen as follows:

φ(x) =

{
1 − log(1+α·x)

log(1+α·ε) 0 ≤ x ≤ ε
0 x > ε

with constant parameter α defined as α = 10.0.

4.3 Experimental Results

Due to space limitation we report results of a representative experiment evaluating the
effect of managing the infection spread, using the proposed mechanisms. Initially we
ran the simulation without the controls. Here, probabilities for transmitting and getting
the infection were set to pH = qH = 0.90, and then to pL = qL = 0.75. The results for
the first case are shown in Figure 4. Quite similar results have been observed also in the
second case. In both cases, the infection propagated to almost entire population. Only a
few individuals remained untouched (456 in the first case and 1003 in the second case;
from the total of 15002 individuals).

a. Agent population after 104 cycles. b. Dynamics of population size at the end of
the simulation after 469 cycles.

Fig. 4. Results of simulation without control system.

In the second part of the experiment, the control subsystem was turned on. The sim-
ulation was repeated 6 times to observe the effect of the controls under the uncertainties
of the model. Note that among multiple simulations that were executed, we have re-
tained 6 simulations that are characterized by 2 outbreaks (not all runs generated two
outbreaks, corresponding to the 2 initially infected individuals).
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The results of a single simulation run that included the control system are presented
in Figure 5. Here, 5 emergency situations were determined between cycles 32–92, 147–
213, 278–350, 429–510 and 661–762. These situations can be observed as a decreasing
slope of the thick curve in Figure 5d, representing the variation of the moving average
∆I. The number of susceptible individuals, that were not touched by the infection was
12899 for this simulation, and this value can be roughly observed in Figure 5c.

a. Agent population after 515 cycles. b. Agent population after 665 cycles.

c. Dynamics of population size at the end of
the simulation after 763 cycles.

d. Dynamics of moving average of infection
rate.

Fig. 5. Results of simulation with control system.

Figures 5a and 5b depict the agent population immediately after the end of the
4th emergency situation and immediately after the start of the 5th emergency situation.
Interestingly, one of the outbreaks was extinguished, while the second remains active.

The simulation finished after an of 619.66 cycles (minimum 444 and maximum
874) with an average number of 13465 susceptible individuals (minimum 12080 and
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maximum 14156), not touched by the infection. The average number of “emergency
situations” that were determined by the control system, during the simulation, was 4.16
(minimum 3 and maximum 6).

5 Concluding remarks

We have developed a multi-agent simulation of the spatial SIR model for epidemics
spread management in a population, using the GAMA agent-platform. We have used
the simulation system to experimentally investigate a scenario, in which the spread
of the infection is mitigated by mobility limitation and by enforcement of protection.
While the simulation revealed the usefulness of the approach, we also noticed that it
is very sensible to the settings of the parameters of the control system. The approach
also depends on the accuracy of the social sensors, used for monitoring and detecting
the speed of the infection. We plan to extend our simulation by relaxing the rationality
and caution assumptions of the agents and adding different agent profiles, as well as by
refining the parameters that control the virus transmission.
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