
A Consensus-based Multi-agent Approach for
Information Retrieval in Internet

Ngoc Thanh Nguyen1), Maria Ganzha2), Marcin Paprzycki3)

1) Institute of Information Science and Engineering, Wroclaw University of Technology, Poland
E-mail: thanh@pwr.wroc.pl

2) Department of Management, Elbląg University of Humanities and Economy, Poland
E-mail: ganzha@euh-e.edu.pl

3) Computer Science Institute, Warsaw School of Social Psychology, Poland
E-mail: marcin.paprzycki@swps.edu.pl

Abstract. This paper presents a consensus-based approach utilized within a
multi-agent system which assists users in retrieving information from the Inter-
net. In this system consensus methods are applied for reconciling inconsisten-
cies among independent answers generated by agents (using different search
engines) for a given query. Proposed agent system has been implemented and
initial experimental results are presented.

1 Introduction

Information retrieval is one of tasks, which are the most often realized by computer
users and a large number of methods, technologies and search engines have been pro-
posed for aiding them in this task. However, most users utilize only a single search
engine. They trust it that the obtained answer is relevant and complete. But an inter-
esting question arises: with so many existing search engines – why to use only one? It
is quite possible that different search engines provide “best” responses to different
queries.

Consensus methods, based on the consensus theory that states that if the same task
is entrusted to several experts (and their credibility is approximately the same) then
their reconciled solution (the consensus answer or the consensus – we use these terms
interchangeably in what follows) should be more credible than those generated by
them individually, have been proved to be useful in dealing with data originating from
multiple sources [1], [4], [6]. Similarly, consensus based on responses generated by
multiple search engines should be more relevant than each of individual responses.
This fact motivates usage of multiple search engines in retrieving information form
the Internet.

The initial predicted role of agent systems was in the area of information manage-
ment [12]. In this context agent autonomy and communication have been particularly
useful [5]. These features make them also natural candidates for realization of “con-
sensus computing systems,” created with the goal of improving quality of information
retrieval. At the same time, there are very few such systems in existence. Menczer [9]
has designed and implemented Myspiders, a multi-agent system for information dis-

covery in the Internet and has shown that augmenting search engines with adaptive
intelligent search agents can lead to significant competitive advantages. Another ap-
proach was realized in the www.metacrawler.com, which utilizes multiple search en-
gines.

In this paper we present a novel agent system designed to assist information re-
trieval from the Internet. Our system differs from the one of Menczer in using consen-
sus methods [10, 11] for resolving differences in response sets and using multiple
agents for the retrieval task. The advantage of this approach is that agents use differ-
ent search engines (among themselves and for subsequent queries). To create the final
answer we use the consensus method to select URLs’ that are ranked as minimally
distant from those provided by other agents. The consensus answer is displayed to the
user and, due to the way it was obtained, it is expected to be more complete and rele-
vant. Furthermore, each agent has its knowledge base containing information about
results of past searches and used to select the search engine to be utilized in subse-
quent searches. Let us now describe in more details the proposed approach, followed
by the set of initial experimental results.

2 Multi-agent System Design

2.1 Motivation

The aim of the project is to create a consensus-based multi-agent system to aid users
in information retrieval from the Internet. This approach enables to solve the follow-
ing two problems often occurring in the information retrieval processes:

• Low relevance of answers generated by a search engine – caused by non-
effective work of filters. As a consequence, many non-related pages (e.g. advertise-
ments, but also pages loosely associated with the subject of the query) may be dis-
played. For instance, for the query „Wroclaw University of Technology” Yahoo as the
most relevant gives http://www.pwr.wroc.pl/~promocja/eng/main2.html which can be consid-
ered a “correct” answer. However, Google classifies this URL on the 2nd position,
while Onet does not include it within first 60 displayed URLs.

• Displaying repeating URLs – which are identical or very similar to each other.
This is a burden for the user because he loses a lot of time to scroll many screens to
find information of interest.

The proposed system exploits answers generated by multiple search engines. Util-
izing the consensus algorithm, their optimal combination is determined and displayed
to the user. Answer-sets (and thus search engines) are evaluated on the basis of their
differences from the consensus answer. This information is fed-back to search agents,
stored and utilized in subsequent queries to select the search engine to be used.

2.2 System Design

The general structure of the system is represented in Figure 1 as a UseCase diagram.
Within the system we can see two types of agents: (1) Search Agent (SA) and
(2) Manager Agent (MA). We assume that for each user there will be a single MA,

while multiple SAs will be created to utilize multiple search engines. For the time
being we assume also that the number of agents is smaller than the total number of
available search engines. As can be seen the SA obtains a query form the MA and
after selecting the search engine (which is based on the information stored in the
knowledge base (KDB) and coordinated by the MA) it queries it and prepares the
report for the MA (this function involves removal of multiple URLs and selecting n
best answers). On the basis of evaluation of its work, performed by the MA, the SA
updates its KDB. The MA, on the other hand, receives a query from the user and
sends it to the SAs. It oversees the process of search engine selection (each SA is to
utilize a different one). Upon reception of the search results from all agents it deter-
mines the consensus answer which will be presented to the user [11]. However, be-
fore the answer is presented its consistency is established. If consistency is high (re-
sults were similar), then the results are used immediately to rank SAs (results close to
the consensus are ranked higher than these that are not). If consistency is low (search
engines did not agree on the answer set) then user is asked to pick relevant answers.
These picks are then used to rank answers and provide feedback to SAs. If the user
does not pick any answers (for whatever reason, as she is not forced to do so), no
feedbacks is send.

Figure 1. System Use Case diagram.

Thus far we have omitted a number of administrative functions that are involved in,
among others, system start-up and system shut-down. These functions are: (1) Upon
system start-up all necessary agents are created (first the MA, that creates a specific
number of SAs) and the SAs load information about search engines (e.g. location,
interface, etc.) from a shared database. (2) Each SA loads, from the KDB, individual
information that is used in search engine selection. (3) Upon system shut-down each
SA stores content of its KDB for use during the next system run.

Let us now assume that the system is running (all agents have been initialized and
information about at least some searches is stored in each SA’s KDB). In Figure 2 we
present a complete UML Action Diagram of interactions between the MA and an SA
during servicing a user query. Let us note that the selection of the search engine in-
volves both the information stored in the KDB and interactions with the MA. To pre-
vent all SAs from converging on a single search engine we force each SA to use a
different one to process each query. This process is completely asynchronous; e.g. the
first SA to select Google and contact the MA will be able to use it, while the remain-
ing SAs interested in Googe will have to select a different search engine. The MA

oversees this process until all SAs have selected a different search engine. To simplify
this process we have decided to utilize smaller number of agents than the number of
available search engines and allow them to select randomly the next search engine (in
the case when they have to use one that is not their favorite).

Figure 2. Servicing user query – UML activity diagram

2.3 Main Algorithms Used in the System

Let us now describe key computational processes that take place in the system. First
the MA finds the consensus answer using a version of the branch-and-bound algo-
rithm [2] (we assume that there are m SAs and they report n results each):

Input: results provided by m SAs – r(1), r(2), ..., r(m) each in the form r(i) = <d(i)

1, d
(i)

2,
..., d(i)

n> where d(i)
1, d

(i)
2, ..., d

(i)
n are URLs representing documents for i = 1, 2, ..., n.

Output: consensus answer C = <d1, d2, ..., dn>
BEGIN

1. create set D of all documents from all results (without repetitions)

2. for each d∈D

- create vector <t1, t2, ..., tn> where tj is the position on which d appears in
r(j); if d does not appear in r(j) then set ti as the length of the longest rank-
ing increased by 1

- calculate average t(d) of values t1, t2, ..., tn

3. consensus answer C is obtained by ordering elements of D according to val-
ues t(d)

4. since size of D can be large one can utilize only a few top results.

END.

The resulting consensus answer represents a combined view on what the search
engines believe the final answer should be. Unfortunately such a final answer is not
always reliable. We can say that it is reliable only when all search engines have a very
similar view as to what the final answer should be. To be able to establish how similar
obtained answers are we calculate the consistency of the consensus. This is achieved
by applying the following algorithm (see also [11]):

Input: Set X consisting of n binary matrices A(k) (for k=1,...,n) of size m×m represent-

ing individual rankings (result sets)
Output: YES if consensus is consistent; NO otherwise

BEGIN
1. For all rankings calculate consensus C

2. Calculate
)1(

),(

)(ˆ ,

+
=
∑
∈

mm

yxd

Xd Xyx ;

3. Calculate
m

yCd
Xd Xy∑ ∈=

),(
)(ˆ

min ;

4. If)(ˆ Xdx ≥)(ˆ
min Xd then YES; NO otherwise

END.

In the case when the consistency of the consensus is low (below a threshold; and
the above algorithm responds with a NO) results are shown to the user and she is re-
quested to provide explicit feedback by selecting responses that she finds to be rele-

vant to the query. These responses are then used to rant the search engines. This is
done in the similar way to what happens when consistency is high enough. Then the
following operations take place (C is the consensus answer calculated as above):

+ distance d(C,A(j)) for j = 1, …, m is calculated
+ such k that d(C,A(k)) is minimal is found
+ weight for agent k is then assumed to be W[k] = 100%;
+ for each remaining agents SA its weight is equal to:

W[j]:=
)}(),(max{

)(

ji

ji

qdlpdl

qpld ∩
 100%

where)(ji qpld ∩ is the length of common part of strings pi and qj starting from their

beginning, and j = 1,…, m, j ≠ k.
Weights W[j] are then sent back to each SA and will be used to update its KDB

and thus utilized when the search engine for the next query is to be selected.
The following other algorithms are utilized in the system (their detailed descrip-

tions are given in report [3]):
• Algorithm for eliminating repeating URLs,
• Algorithm for transferring a binary matrix into a ranking,
• Algorithm for calculating distances between rankings,
• Three algorithms for calculating three types of distances between queries.

Let us now describe in some more detail finding distances between queries. User can
express queries using logical forms with conjunctions “∧” and “¬”, in the form (a∧b)
∧ (¬c), where a, b and c are terms. For example,

(consensus ∧ conflict) ∧ (¬ voting).
This query is extracted form the interface by the MA and passed to the SA which re-
formulates it for the selected search engine (e.g. interia.pl) as an HTTP statement:

http://szukaj.interia.pl/id/query?mss=search&q=consensus+conflict+voting&eng=dc.
Before this step takes place, the SA has to select which search engine it would like to
use. In its KDB it stores past queries and success achieved in responding to them us-
ing various search engines. New queries are compared to the old ones, among others,
using the following algorithm (see also [10, 11]):

Input: queries p and q in the form p=(p1∨p2)∧(¬p3) and q=(q1∨q2)∧(¬q3),
Output: distance d(p,q).

BEGIN

1. Calculate d(pi,qj)=
)}(),(max{

)(

ji

ji

qdlpdl

qpld ∩
 for i,j=1,2, where dl(x) is the length of

string x;
2. Calculate d=max{d(pi,qj) for i,j=1,2};
3. Calculate d'=d(p3,q3) using the pattern in step 1;
4. Calculate d(p,q)=(1/2)(d+d')

END

3 Initial Experimental Results

The proposed system has been implemented using Aglets agent environment [7, 8].
Specifically, we used JDK 1.1.6, Swing 1.0.1, JBCL 2.0 and IBM Aglets 1.1b3. For
response sets generated by each search engine we have removed URL’s that were
more than 80% similar, assuming that they point to the same answer, and left only
one. Then we have used best responses. In experiments described below 20 search
engines and 6 SAs were used. Finally, an SA was allowed to try to assign a search
engine to the query only if its accuracy in the KDB was above 50%. Otherwise it was
forced to select a random search engine.

We performed two tests. At the beginning of each test KDBs of all SAs were
empty. The first test involved query „głosowanie ∧ wybory” („voting ∧ election”, in
Polish). Table 1 contains the information about the search engines used by SAs and
resulting weights informing about the similarity degree between the URLs’ rankings
provided by SA agents and the consensus answer. In all samples the consistency level
of response sets was high enough to not to involve the user.

Sample Agent 1 Agent 2 Agent 3 Agent 4 Agent 5 Agent 6

Sample I. Onet
84%

Ahoj
100%

ICM
65%

Hoga
51%

Interia
56%

Google
43%

Sample II Onet
51%

Ahoj
100%

ICM
21%

Hoga
25%

Interia
27%

WP
36%

Sample III Onet
100%

Ahoj
52%

Arena
21%

WP
28%

Google
49%

Poland
45%

Sample IV Onet
100%

Ahoj
52%

Hoga
21%

ICM
18%

Poland
19%

Google
33%

Sample V Onet
100%

Ahoj
52%

ICM
21%

Hoga
18%

Interia
19%

WP
44%

Sample VI Onet
100%

Ahoj
72%

Poland
56%

ICM
25%

Arena
32%

Hoga
14%

Table 1. Results of 6 samples for query: „głosowanie ∧ wybory”

From Table 1 follows that the best search engines turned out to be Onet and Ahoj
(both search engines focused on Polish web sites). We can also notice that in the first
retrieval majority of weights for search engines are high enough (more than 50%).
This means that rankings generated by SAs are consistent to the large degree. There-
fore, in the second sample agents 1-5 used the same search engines while agent 6 had
to draw a new one. This was the reason of change of weights to the disadvantage of
agents 3, 4 and 5. In the next samples only agents 1 and 2 have good enough accuracy
and can use the same search engines (Onet and Ahoj) while other agents had to draw.
It is worth noting that because the query was in Polish, therefore agents draw only
from Polish search engines. After checking by an expert it turned out that all re-
sponses were relevant.

In the second test the system performed retrieval for 50 different queries related to
“holidays.” On the basis of results obtained in these tests we can draw the following
conclusions:

• Utilization of KDBs caused SAs to less and less often draw search engines, rather
these selections have been determined on the basis of previous queries.

• Growth of information stored in KDBs resulted in results being more and more
relevant (e.g. number of „pushy” URLs has been smaller and smaller). In the final
rankings for the last query „pushy” URLs have not occurred.

5. Conclusions

While utilization of several search engines for the same query is not novel, method for
reconciling the results presented here is. Its advantage is that it does not need the in-
formation about the user (her preferences, profiles etc.). It works on the basis of an
assumption that if several experts (search engines) solve the same problem, then the
reconciled solution should be more credible than those proposed by individual ex-
perts. Future work should concern using advanced inconsistency measures to evaluat-
ing conflict situations and making decision for consensus determination [11]. We also
plan to utilize the proposed approach for content collection within the agent-based
travel support system described in [13].

References

1. Barthelemy, J.P., Janowitz M.F.: A Formal Theory of Consensus. SIAM J. Discrete Math. 4
(1991) 305-322

2. Barthelemy, J.P., Guenoche, A., Hudry, O.: Median linear orders: Heuristics and a branch
and bound algorithm. European Journal of Operational Research 42 (1989) 313-325

3. Błażowski, A, Nguyen, N.T.: AGWI- Multi-agent System Aiding Information Retrieval in
Internet. In: Proceedings of SOFSEM 2005. Lecture Notes in Computer Science 3381
(2005) 399-403.

4. Day, W.H.E.: Consensus Methods as Tools for Data Analysis. In: Bock, H.H. (ed.): Classifi-
cation and Related Methods for Data Analysis. North-Holland (1988) 312-324

5. Ferber, J.: Multi-Agent Systems. Addison Wesley, New York (1999)
6. Katarzyniak R.P., Pieczynska-Kuchtiak A.: A consensus based algorithm for grounding be-

lief formulas in internally stored perceptions. Neural Network World 5 (2002) 461-472
7. Lange, D., Oshima, M.: Programming and Developing JavaTM Mobile Agents with Aglets,

Longman (1998)
8. Lange, D., Oshima, M.: Java agent API: Programming and deploying aglets with Java. Ag-

lets Web page: http://www.ibm.co.jp/trl/projects/aglets/
9. Menczer, F.: Complementing Search Engines with Online Web Mining Agents. Decision

Support Systems 35 (2003) 195-212
10. Nguyen, N.T.: Consensus System for Solving Conflicts in Distributed Systems. Journal of

Information Sciences 147 (2002) 91-122
11. Nguyen, N.T., Malowiecki, M.: Consistency Measures for Conflict Profiles. LNCS Trans-

actions on Rough Sets 1 (2004) 169-186.
12. Maes P.: Agents that Reduce Work and Information Overload. Communications of the

ACM, 37, 7 (1994) 31-40
13. Ganzha M., Gawinecki M., Paprzycki M., Gąsiorowski R., Hyska W., Pisarek S.: Utilizing

Semantic Web and Software Agents in a Travel Support System, Idea Publishing (to appear)

