
Agent system for energy consumption scheduling in
an intelligent neighborhood – preliminary

considerations
Karol Bocian∗ Maria Ganzha∗†, Marcin Paprzycki†‡
∗ Warsaw University of Technology, Warsaw, Poland

† Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
‡ Warsaw Management Academy, Warsaw, Poland

Abstract—It is extremely likely that, in the near future, a
living community (consisting of multiple households) will be
able to contract electricity according to its predicted needs. In
this context, it is usually assumed that energy purchased within
a (long-term) contract will be cheaper than energy purchased
from the market (whenever needed). Hence, over-use of energy
(going over the energy consumption limit, established in the
contract), will result in purchase of additional energy and thus
should be avoided. In this context, let us also assume that, in
a smart home, devices are turned on and off by a centralized
control mechanism. Furthermore, individual households can
express preferences when each of their devices is to be used.
In this case, the question that needs to be answered is: how to
schedule devices in a way that will be satisfactory to the users
(households) and match the parameters of the contract. The aim
of this text is to describe an agent system that was developed
to schedule device operation according to the contract-imposed
limitations. Experimental results, illustrating its operation, in
various scenarios, are presented.

I. INTRODUCTION

Recent years bring many trends that are likely to shape
future of energy management. Let us summarize some of them.
(1) Growing popularity of renewable energy sources. Locally
owned and operated solar panels, wind turbines, energy storage
systems, etc., lead to the situation when (slowly, but system-
atically increasing) part of energy is produced “locally” (and
stored, as needed, for a limited time, e.g. using electric vehicle
batteries). Furthermore, energy production, based on some
forms of renewable sources, depends on “outside conditions”,
and its availability can be rather volatile (e.g. due to the
dependency on wind / sunshine and clouds). This, in turn,
makes the problem of stabilizing the power grid substantially
more complex. (2) Advances in computer hardware and soft-
ware, as well as theory and practice of pertinent areas of
computer science, facilitated development of new methods of:
(a) control of electricity consuming devices (creation of “smart
devices”) [1], (b) autonomous negotiations (including price
negotiations) realized using software agents [2], (c) precise,
real-time metering of use of energy for the households and,
possibly, even on the level of individual devices [3], (d)
trend prediction (e.g. using time series analysis) [4], etc. (3)
Group purchases, as a way to reduce prices [5], [6]. (4) New
generation of batteries (stationary and in electric cars), which
lead to scenarios, in which energy is collected ; stored when

cheap (e.g. at night) and used when expensive (e.g. during peak
hours of the day) [7], [8], (5) learning of user behaviours (to
develop a schedule matching their preferences, to increase the
comfort of life) [9], (6) weather prediction (to schedule use
and generation of energy) [10].

Combination of these trends results in novel ideas concern-
ing energy management (on the level of individual households,
which is the focus of this work). (A) Communities of houses
/ apartments; will be able to form groups to negotiate with
energy providers contracts for volume purchases of energy.
Here, it is assumed that energy purchased within the contract
will be substantially cheaper than buying (additional) energy
directly from the market. (B) Majority of energy consuming
devices, in every household, will be controlled by a central
controller, which will be capable of turning them on and off, in
order to minimize energy use and/or to match the profile of the
energy contract. Observe that, already today, in Poland there
exist energy contracts with two prices “day” (expensive) and
“night” (cheap). Hence, devices such as washing machines,
should be turned on during cheap energy times. (C) With
proliferation of “smart home assistants” (e.g. Alexa1, Google
Home2, Lenovo Smart Assistant3) it is easy to envision that
these software entities will be able to communicate with each
other. One of possible topics of communication could be
forming a group to jointly negotiate energy contracts (as in
(A), above, see, also [11]), (D) Raspberry Pi4, Arduino [12]
and similar solutions give opportunity to build cheap home
management systems.

Obviously, ideas mentioned here are limited in their scope.
They do not include, among others, use of renewable energy
sources, prosumer behaviors, etc. Nevertheless, they provide
an initial set of issues that are worthy considering. Here, the
assumption is that, as work continues, these (and other) aspects
will be added to the developed simulator.

Based on presented ideas, in what follows, we focus our
attention on scheduling of use of smart devices in a way
that would, on the one hand, satisfy demands / preferences of

1https://www.alexa.com
2https://madeby.google.com/home/
3http://www3.lenovo.com/us/en/new-products/Lenovo-Smart-Assistant/p/9

9SD9EI1SA1
4https://www.raspberrypi.org



individual households; while, on the other, keep the total use of
energy, of a group of households, below the threshold specified
in a (hypothetical) contract. Here, it is easy to notice (see,
also (C), above) that a very natural way of conceptualizing
the considered problem would be to use software agents [13],
[14], [15]. In this case, a separate agent could represent each
individual household (and attempt at satisfying preferences of
its owner(s)) and communicate with other agents (representing
other households) to develop a joint schedule of energy use.

Following this line of reasoning, we have implemented a
prototype agent system for management of energy use in an
“intelligent community”. The aim of this paper is to report
on the creation of the system and on initial experiments that
illustrate its potential. To this effect we proceed as follows.
In the next Section we make explicit the assumptions and
research questions addressed in this paper. We follow with
a brief description of the AgentPlanner software and its
modifications applied to adjust it to the energy management.
Next, we summarize the experimental setup and present results
of experiments for selected use case scenarios. Some observa-
tions concerning further development of the system complete
this contribution.

II. ASSUMPTIONS AND RESEARCH QUESTIONS

Let us now make explicit the assumptions underlying the use
case scenario that has been modeled. (1) We consider a “smart
neighborhood” consisting of N households. Note that these
households can be placed within a single compound (physical
community), or can consist of any group of households that
used some Internet-based infrastructure to form a virtual com-
munity. (2) These households have reached an agreement to
group purchase electricity (to save money). (3) We assume that
the contract is a static one (a specific upper limit of electricity
consumption throughout the whole day has been contracted).
Obviously, implicitly, we assume that it is possible to arrange
such contract between a community and an energy provider.
Here, let us note that the developed software can be modified
to support different assumptions, e.g. to specify (differentiate)
allowed electricity consumption for each hour of the day. (4)
While the energy purchased within the contract is “cheap”, use
of additional energy / going above the limit is “expensive”.
However, no specific “price difference” is introduced (this
can also be considered in the future, to make a more precise
quantitative assessment of effects of various parameters of
the model). Furthermore, there are no mechanisms that would
allow the community to “sell back” unused energy. (5) Each
household h has a certain number (Mh) of smart energy
consuming devices, which are “centrally controlled”. In other
words, there exists a mechanism that can turn them on and
off. Here, we do not consider “small devices” that are often
turned on and off, and that use relatively small amount of
electricity (e.g. an electric tooth brush, or a cappuccino making
machine). (6) Each of modeled (large) devices uses different
amount of electricity (from a pre-specified interval), and is
turned on for a specific amount of time. (7) Owners of each
household can express their preferences concerning (a) when

a given device should be turned on, and (b) how important it
is that this device is turned on at a given time. Preferences
are represented as integers from the interval [1, 5] (here, 1
represents a weak preference, while 5 means that a given
device has to be turned on at a given time. (8) There is
no “prosuming” in the system (i.e. there are no solar panels,
wind turbines, batteries, etc.). Similarly, there are no electric
cars (which can be used in prosuming scenarios). On the one
hand, we admit that this is an important limitation, on the
other, adding prosumer behaviors to the considered scenario
introduces level of complexity that should not be dealt with at
this stage of the project. (9) Special class of devices, that must
run at specific time periods (or always be available), e.g. light
system within the physical community, has been introduced.
However, for the time being, effects of their existence are not
fully accounted for (see, below).

To model the smart community guided by these assump-
tions, we have decided to use software agents. Specifically,
software agents are to be used to manage (negotiate) the
schedule of use of devices in each household. Furthermore,
software agents should be capable of adapting the schedule
in case, for instance, of new device joining the mix, or one
of the households resigns from turning on one (or more)
of its devices at a given time. However, discussion of this
capability is out of scope of current contribution. The main,
initial, questions that we have decided to address were: (i)
are software agents, actually, a good approach to deal with
issues brought about in the outlined use case scenario? (ii)
can they facilitate a robust scheduling approach that will
allow devices to be used in a way that will assure that the
total energy consumption is below the threshold, while user
preferences remain satisfied? (iii) what can be done if it is
impossible to obtain a “preferred / optimal schedule”? what
will be the characteristics of a non-optimal schedule? how will
such schedule affect individual preferences?

III. AGENTPLANNER AND ITS ADAPTATION

Recently, software agents have been used to schedule uni-
versity courses (lectures / laboratories / etc.), taking into
account, among others: (a) maximal fulfillment of (explicitly
defined) preferences of both, teachers and students, (b) neces-
sary satisfaction of “logistics requirements” (i.e. total number
of existing / available lecture halls / laboratory rooms cannot
be exceed). Furthermore, the developed software took into ac-
count the following restrictions: (c) teacher / student can have
only one activity in a single time unit, (d) only one activity can
be scheduled in a single time unit in a given room, and (e) there
is a limited number of “activity slots” per day (in other words,
teaching activities should not start before 8:00 AM, and should
end by about 8:00 PM). Complete description of this system
(named AgentPlanner) can be found in [16], [17]. There, one
can also find encouraging experimental comparison between
the performance of the AgentPlanner and other timetabling
systems.

Even a superficial comparison between the scenario, to
which the AgentPlanner has been applied, and the needs of



scheduling energy use in the smart community, considered
here, shows that there are important parallels between them.
In both cases, there is a specific number of participants
and activities (teachers / classes vs. devices and their use).
Limited number of “slots” can be “filled with activities”, due
to the “natural restrictions” (number of available rooms vs.
bound imposed by the contract). Activities have preferences
assigned to them (some teachers prefer to teach in the evening
vs. some inhabitants prefer to do laundry in the morning).
Teacher preferences have two “aspects”: day and hour and
these preferences have “strength” associated with. The same
concerns household preferences concerning day and time when
a given device is to be turned on.

Obviously, there are also important differences. For in-
stance, while the total number of rooms cannot be changed,
if necessary; it is possible to go beyond the limit of energy
consumption, stipulated in the contract, and pay the price of
use of “expensive electricity”. Nevertheless, we have decided
to adapt the AgentPlanner software to work in the considered
use case. To start, we have conceptualized the system that was
to be developed (as a result of adaptation of the AgentPlanner),
in the form of a use case diagram, presented in Figure 1.

In the diagram (Figure 1), on the “left hand side” we see
the outside users of the system: Administrator and Resident (of
the community). On the “right hand side” the “internal users”
(i.e. agents) are represented. External users can add devices to
the ecosystem. As a result, the scheduling algorithm will be
started. Its result will be either a schedule, or information that
the device was “rejected” (it cannot be added without breaking
constraints). Scheduling algorithm starts from initialization of
a Creator Agent, which, in turn, initializes all the remaining
agents. Both, the Administrator and the Resident can provide
input data that will be used by the scheduling algorithm. Input
data is transferred to the database, managed by the Databa-
seInitAgent. The Administrator and the Residens can also add
information concerning: new buildings, devices, power outlets,
and preferences related to use of existing devices. This data
is sent to the DatabaseAgent that places them in the database.
Process of schedule creation is run by the ScheduleAgent. In
what follows we are interested in the process of Creation of a
new timetable, while we omit the Reorganization of timetable
use case (understood on the level of the whole community).

A. Modified AgentPlanner

Let us now present a brief description of the way that the
original AgentPlanner created class schedule. Note that, here,
only its key aspects (from the point of view of this paper) are
described; for a complete description, see [16], [17].

The original AgentPlanner can be used in two situations.
First, to build a schedule. Second, to reorganize an existing
schedule. In the schedule building algorithm, which proceeds
in rounds, the Judge Agent receives requests (concerning
placing a specific activity in the plan) from agents representing
teachers. Next, the Judge Agent puts into the schedule requests
that are not in conflict, while for the remaining ones, the

Fig. 1. Use case diagram for the developed system (foundation for modifi-
cation of the AgentPlanner software)

evaluation function is applied to select the “winners” (while
the “losers” are rejected; in that round).

If, in a given round, there are rejected requests, the Judge
Agent starts the schedule reorganization process. This proceeds
as follows: (First agent), with (a) rejected request(s), sends the
most important of them to obtain a spot in the plan. The Judge
Agent checks who occupies this spot in the schedule (e.g. the
Second agent). Then, it asks this agent to move its activity. If
Second agent finds a new spot for its activity, then it accepts
the change request, and Judge Agent moves activity of the
Second agent to the new spot, and adds the activity belonging
to the First agent to the requested spot. If the Second Agent
rejects the Judge Agent request, then the First agent sends its
next proposal (which spot this activity could occupy). If all
its proposal(s) (concerning selected activity) are rejected, then
this activity is placed in the Rejected Activities set.

Process continues until all activities are placed in the



schedule, or some of them cannot be scheduled at all (due to
the conflicts and strength of preferences of individual agents).
All such activities constitute the Final Rejected Activities set.

To match the needs of the smart community scenario, the
AgentPlanner has been modified as follows:

• For representation of power consumption of individual
devices, an appropriate table in the database has been
augmented, by including objects representing devices
and information about power consumption of each one
of them. The fact that each device can have different
power consumption is being taken into account when the
assessment function is calculated.

• The assumption that there is threshold of allowable power
consumption (above which cost increases considerably)
had to be taken into account. This information is used
in the planning / scheduling algorithm in the following
way: each hour has its own limit of power consumption
and the algorithm does not allow to turn on device, which
can use energy above the limit. Limit is also used in the
evaluation function of each device that is to be placed
in the schedule. Here, note that, for obvious reasons, the
order (round number), in which devices are submitted to
the Judge Agent matters. It is particularly important when
each device has different power consumption level.

• Let us recall that, within the community, there are devices
that have to work non-stop. A simple example would
be various life-supporting devices (e.g. in an ambient
assisted living type situations [18]). These devices should
have “priority” above all other devices (and have to be
powered-up as long as there is available electricity, and
regardless of the cost). Furthermore, if the community
is a physical one (e.g. it is a “gated community”),
then running its infrastructure (or, at last, a part of it)
has priority higher than household devices, other than
these that support life. Hence, emergency lights, or the
mechanism that opens and closes the gate(s) have to work
(they are more important than the possibility of drying
hair at 9:15PM, in household 34B). To represent such
situations – devices that have to be on, “unconditionally”,
at specified times – a non-negotiable priority (with value
6) was added.

• Division into time-slots had to be modified. Instead of a
limited number of blocks every hour, during a certain time
interval, day was divided into 24 time-slots (periods). As
a result, the developed schedule is always completed for
the whole day.

• The evaluation function had to be adjusted, to take into
account representation of power consumption of individ-
ual devices, contract-imposed energy consumption limit,
and the non-negotiable priority. The new function (ECAL)
has the following form:

ECAL (Day, T ime, Socket) = (A×B × C

+E + F × 5 +G× 5)× (1 + L) (1)

Here, note that, depending on the specific scenario that
is to be realized, some of these terms may be equal to
zero – be absent from the formula:

– Day – day for which the plan is created,
– Time – time interval (one hour blocks are used in

the current version of the system), for which the
schedule is being constructed, Socket – socket, to
which a number of specific devices is connected, it is
represented by the SocketAgent; SocketAgents com-
municate with DeviceAgents representing individual
devices (DeviceAgents turn devices on and off),

– A – building priority – it is possible to set different
priority for individual buildings,

– B – preference of a given device to be turned on at
a given day,

– C – preference of a given device to be turned on at
a given hour,

– E – number of devices that, during specific Day, are
plugged in a particular Socket,

– F – term that is equal 1 if a device that is plugged to
the given Socket, was scheduled to work during the
previous Time, else it is equal 0; in this way conti-
nuity of usage of electricity associated with a given
Socket is preferred (this is a somewhat controversial
decision, following the ideas underlying the original
AgentPlanner that may be removed in the future),

– G – term that is equal 1 if a device that is plugged
to the given Socket is scheduled to work during the
next Time, else it is equal 0 (another parameter that
originates from the original AgentPlanner that may
be removed in the future),

– L – is a function that establishes the “usefulness” of
a given device “being turned on” during given Time;
in other words, the role of this parameter is to favor
situations when there are no gaps caused by lack of
devices that could fit them; the function has the form:

L = bECALMAX ∗Kc, (2)

where K represents how well a device “fills the
gap”; specifically, the better the power consumption
of a given device fits into the “left-over gap” in a
given time slot, the higher the score; (if it does fill
it completely, the maximum score is granted). K
belong to the interval [0, 1],

K =
used

limit(Day, T ime)
, (3)

– ECALMAX – maximum value of the ECAL func-
tion, before addition of the device under considera-
tion

– Used – power consumption of a given device
– limit(Day, Time) – limit of energy consumption

established in the contract for a specific Day and
Time

– “Softening” user preferences – a modification that
allows the system to “soften” user preferences; this is



achieved by adding “imposed preferences” according
to the argument Fr; this functionality was added
to see the effect of residents being more flexible
(benevolent) in setting their preferences); it works as
follows: if user sets his preference to 000005000000
(device has to definitely be turned on at a given
hour and no other preferences are specified) and
Fr = 1, then the softened preference has the form
000045400000 (i.e. while the user-selected hour has
the strongest preference, it is also possible to turn the
device on before or after, with a slightly lesser pref-
erence), if user sets her preference to 000005000000
and Fr = 5 then the softened preference has the
form 012345432100, making the requested schedule
quite flexible.

The scheduling and rescheduling code and processes, from
the original AgentPlanner, had to be only slightly modified:

• Agents with changed names and roles: TeacherAgent
became DeviceAgent and now it represents devices;
RoomsAgent became SocketAgent and represent sockets
in buildings. These changes allow also to connect specific
devices to correct households in specific buildings.

• While the evaluation function was modified (see, above),
its results are used like in the original algorithm.

The whole process remained practically unchanged. During
schedule creation, the Judge Agent receives propositions from
the Device Agents (via the Socket Agents) and gives them
answers: permissions and rejections. The rescheduling process
works as before. The Jugde Agent asks agents to start their
device at another time slot and informs about success or failure
of attempted rescheduling process.

B. Implementation details

The modified AgentPlanner has been implemented in using
JADE agent platform (version 4.3.0;5). The database compo-
nent was MySQL database (version 5.1.69;6). NetBeans (ver-
sion 7.0.1;7) have been used as a programming environment.
Finally, as in the original AgentPlanner, GUI has not been
developed, a simple line interface, CSV files, and set of images
remained as the way to run experiments.

IV. EXPERIMENTAL SETUP

To test the developed solution, we have run multiple exper-
iments. Let us list parameters common for them:

• contract-based energy limit was set at 2000 (this is an
arbitrary value that does not have any practical / real-
world counterpart),

• number of buildings in the community was set to N =
20 (running experiments with “granularity” at the level
of individual buildings, rather than experimenting with
multi-household buildings, does not make difference for
the results presented in this contribution),

5http://jade.tilab.com/
6https://www.mysql.com/
7https://netbeans.org/

• each simulation of energy consumption dealt with a single
day (24 hours),

• all devices started working on the hour, and were turned
on for one hour; in other words, for each device, the day
was divided into 24 available time-slots.

• each experimental scenario was completed 10 times for
random values; presented results are averages of these 10
runs

The two main scenarios were as follows.
• Scenario 1 – all devices have power consumption equal

to 250 (again, this is an arbitrary value).
• Scenario 2 – power consumption, for individual devices,

was set at a random number, a multiple of 10, from the
interval [200, 400].

For each scenario two situations have been considered. First,
all device preferences were set at 5 and each device had only
a single specific time of the day that it was to be turned
on. Second, it was assumed that the system will soften user
preferences (using the Fr parameter, defined above).

V. EXPERIMENTAL RESULTS

Let us now describe the results of completed simulations.
Depending on the specific scenario we have recorded and
analyzed the following “performance measures”:

1) Total (for the one day schedule) number of violated time
preferences (e.g. user has set time for 10AM, while the
device was turned on at 11AM).

2) How large was the scheduled energy use, vis-a-vis the
contract.

3) Number of devices that did not fit into the constructed
schedule.

To illustrate the way that the modified AgentPlanner works,
in Figures 2,3 and 4, we show examples of calculated sched-
ules. In these Figures, the vertical axis presents scheduled
energy, while the horizontal axis presents time of the day,
divided into 1-hour intervals. Horizontal red line demarcates
the energy consumption limit for that day (recall, that we
assume that there is a single energy limit for a given day).
Small rectangles represent energy consumption of individual
devices. Presented schedules were calculated for Scenario 1.
Similar results have been obtained also for Scenario 2.

Figure 2 shows schedule for the buildings having 5 devices
each, and Fr = 0. Here, we can see that all devices have been
fitted into the schedule (none of them exceed the limit of the
contract). This means that all 20 ∗ 5 = 100 devices have been
scheduled for times, which were specified by their owners.
Obviously, the number of devices scheduled at different hours
varies, representing user preferences one to one. Here, let us
note that for all 10 experiments, with random preferences of
20 households, and possibility of scheduling 2000/250 = 8
devices per time slot, each time we were able to schedule all
requests.

Figure 3 shows a sample schedule for the buildings having
6 devices and Fr = 0. Here, we can see that it was impossible
to build the schedule without exceeding the limit. Here, going



Fig. 2. Example of calculated schedule for: Scenario 1, 5 devices per building, Fr = 0

Fig. 3. Example of calculated schedule for: Scenario 1, 6 devices per building, Fr = 0

above the limit was necessary to avoid violation of user
preferences. For the time period between 8:00 and 9:00AM,
9 devices had to be scheduled and thus the contract has been
violated. This example was selected deliberately, to illustrate
the situation of violation of contract. Obviously, there is space
available, and it would have been possible to fulfill the contract
by violating one user preference and moving one of the devices
that were scheduled for the offending time slot to another one.

Figure 4 shows a sample schedule for buildings having 9
devices and Fr = 5. Here, it would be impossible to build
a satisfactory schedule for all devices (without violating the
contract). Hence, we have decided try softening user prefer-
ences” (see, above). Once we have set Fr = 5, which means

that all requests for all devices had the form 123454321, we
were able to schedule all devices. Observe that the “available
space” is almost completely filled by scheduled devices (only
12 slots remain unused). However, let us stress it again, using
this approach means that user preferences have been violated
multiple times (see, next).

A. Increasing number of devices until threshold has been
reached

Let us look now into the results of experiments from a
“quantitative perspective”. In the first series of experiments
we have observed how “good” is the proposed approach in
scheduling devices for the increasing number of devices per
building. We have done this for both scenarios (the simplistic



Fig. 4. Example of calculated schedule for: Scenario 1, 9 devices per building, Fr = 5

one, with all devices having the same power consumption,
and for the mixed power consumption levels). Furthermore,
we have considered the effect of parameter Fr.

The results are presented in Tables I, II, and III, illustrating
various aspects of produced schedules. In the Tables, in
columns number of devices per building varies from 6 to 11
(as mentioned above, for 5 devices per building the proposed
approach was able to schedule all devices. For both scenarios,
cases of Fr = 0 and Fr = 5 are presented.

TABLE I
AVERAGE NUMBER OF DEVICES THAT WERE NOT SCHEDULED

Number of devices per building
6 7 8 9 10 11

Scenario 1 Fr = 0 02.4 06.6 13.6 20.6 31.2 43.5
Fr = 5 00.0 00.0 00.4 03.3 14.0 28.9

Scenario 2 Fr = 0 10.9 19.7 31.7 47.2 61.8 82.6
Fr = 5 00.0 02.3 10.5 29.8 51.1 74.0

Table I illustrates fast growing average number of devices
that were not scheduled in case of assuring that the preferences
of residents are upheld. This is particularly visible in the case
of Scenario 2, showing (once more) that packing schedule
consisting of uneven size requests is more complex than pack-
aging equal sized requests. This illustrates one of important
directions of possible improvements of the proposed approach.
Softening (at level Fr = 5) owner preferences has definite
positive effect on the results of scheduling. Here, for 6 devices
it is possible to make the algorithm work in both Scenarios.
Moreover, in the case of even power consumption, it is still
possible to make the schedule work for up to 8 devices (here,
only very few cases were “unschedulable”). Again, focusing
on the contract, while violating user preferences had more
positive effect in the case of even-sized power requests.

Table II shows average number of violated Time preferences;
in other words, in how many user requests have not been

TABLE II
AVERAGES NUMBER OF VIOLATED Time PREFERENCES

Number of devices per building
6 7 8 9 10 11

Scenario 1 Fr = 0 00.0 00.0 00.0 00.0 00.0 00.0
Fr = 5 02.4 06.6 13.2 17.3 17.2 14.6

Scenario 2 Fr = 0 00.0 00.0 00.0 00.0 00.0 00.0
Fr = 5 10.9 17.4 21.2 17.4 10.7 08.6

satisfied. Conceptual difference between this Table and Table I
is that here the “spread” of contract violations is captured.
In rows with parameter Fr = 0 there are only zeros. This
is because this approach does not allow actual violation of
Time preferences. Here, the result is rejection of one, or more,
devices. These devices are not scheduled at all. Hence, while
user preferences and the contract are not violated, the price is
that some devices will not run. Obviously, this is unrealistic,
but it illustrates the nature of the problem that is being dealt
with.

For Fr = 5 we see that, in all cases, some Time preferences
have been violated. This means, for instance, that for Scenario
1, for 7 devices, on average 7 requests (out of 140) have
not been scheduled as requested. We can see, again, that
preferences in Scenario 2 were more often violated than in
Scenario 1. However, the average number of violated Time
preferences does not increase “forever”. Starting for 10 devices
in Scenario 1 and for 9 devices in Scenario 2 we can see that
these numbers decrease. The explanation is as follows: the
difficulty of a problem was getting too high; thus, increasing
number of violated Time preferences did not help solving the
problem.

Finally, Table III shows average amount energy that was
scheduled in various situations (in thousands of energy units).
Recall that the daily limit is equal 48000 (2000 × 24) en-



TABLE III
AVERAGES AMOUNT OF SCHEDULED ENERGY USE; IN THOUSANDS

Number of devices per building
6 7 8 9 10 11

Scenario 1 Fr = 0 29.4 33.3 36.6 39.8 42.2 44.1
Fr = 5 30.0 35.0 39.9 44.1 46.5 47.7

Scenario 2 Fr = 0 32.4 36.2 39.2 41.2 43.3 43.7
Fr = 5 35.2 40.6 44.5 45.7 46.1 46.0

ergy units. Results presented in this Table should be viewed
together with those presented in the remaining two Tables.
They show that “forcing users” to soften their preferences
helps developing a more efficient schedule. In Scenario 1,
for 11 devices per household, almost all allowable energy
is going to be used. Even in the case of Scenario 2, only
2000 energy units are not scheduled. These results have been
obtained for the total requested power consumption larger than
the limit (for Scenario 1, 55000 energy units vs available
48000). More realistic situation, for Scenario 1 (where the
exact number of units and their energy consumption are
known), is when 9 devices reside in each household. Here,
the total requested energy (9 × 20 × 250) is 45000 energy
units. Hence, a perfect schedule should be able to run all of
them (with 3000 power units to spare)). As can be seen, for
Fr = 0, 39800 energy units are scheduled, with approximately
20 devices rejected. However, for Fr = 5, 44100 energy
units are scheduled to be used, with approximately 3 units
rejected due to contract violations. This latter result seems
quite reasonable, if softening user preferences is possible.

VI. CONCLUDING REMARKS

In this paper we have shown that use of software agents to
schedule energy consumption in a smart community is quite
promising. We have also shown a number of areas where
the proposed approach needs improvements. Furthermore,
due to the space limitation, we have not reported on other
experiments that we have completed (that show correctness
of the developed system). For instance, we have checked
that using the “non-negotiable priority” (value 6) allows the
proposed approach to correctly schedule the required services.
Obviously, more simulations are needed to capture all factors
that are already available in the developed system. Here,
rescheduling on the fly, is the next important area, which we
will report in subsequent publications.

REFERENCES

[1] I. Koutsopoulos, V. Hatzi, and L. Tassiulas, “Optimal energy storage
control policies for the smart power grid,” in 2011 IEEE International
Conference on Smart Grid Communications (SmartGridComm), Oct
2011, pp. 475–480.

[2] I. Praa, C. Ramos, Z. Vale, and M. Cordeiro, “Intelligent agents for
negotiation and game-based decision support in electricity markets,”
Computer Science Department, Polytechnic Institute of Engineering,
Porto, Portugal, http://www.gecad.isep.ipp.pt/GECAD/Files/Reports/Re
port0307/Papers/IESJournals/Isabel paper CRL.pdf, Tech. Rep., 2015.

[3] J. E. Petersen, V. Shunturov, K. Janda, G. Platt, and K. Weinberger,
“Dormitory residents reduce electricity consumption when exposed
to realtime visual feedback and incentives,” International Journal of
Sustainability in Higher Education, vol. 8, no. 1, pp. 16–33, 2007.
[Online]. Available: \url{https://doi.org/10.1108/14676370710717562}

[4] E. Gonzlez-Romera, M. ngel Jaramillo-Morn, and D. Carmona-
Fernndez, “Forecasting of the electric energy demand trend and monthly
fluctuation with neural networks,” Computers & Industrial Engineering,
vol. 52, no. 3, pp. 336 – 343, 2007, planning and Management of
Energy and Infrasturcture Engineering Projects. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360835207000204

[5] J. Xu, L. Duan, and R. Zhang, “Energy group buying with loading
sharing for green cellular networks,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 4, pp. 786–799, April 2016.

[6] R. J. Kaufman and B. Wang, “Bid together, buy together: On the
efficacy of group-buying models in internet-based selling,” Handbook
of Electronic Commerce in Business and Society: Research Collection
School Of Information Systems, pp. 99–137, 2002.

[7] G. Berdichevsky, K. Kelty, J. Straubel, and E. Toomre, “The tesla
roadster battery system,” http://large.stanford.edu/publications/power/re
ferences/docs/tesla.pdf, Tesla Motors, August 2016.

[8] B. Dunn, H. Kamath, and J.-M. Tarascon, “Electrical energy storage
for the grid: A battery of choices,” Science, vol. 334, no. 6058, pp.
928–935, 2011. [Online]. Available: http://science.sciencemag.org/con
tent/334/6058/928

[9] R. Yang and M. W. Newman, “Living with an intelligent thermostat:
Advanced control for heating and cooling systems,” in Proceedings of
the 2012 ACM Conference on Ubiquitous Computing, ser. UbiComp
’12. New York, NY, USA: ACM, 2012, pp. 1102–1107. [Online].
Available: http://doi.acm.org/10.1145/2370216.2370449

[10] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and M. Morari, “Use of model predictive control
and weather forecasts for energy efficient building climate control,”
Energy and Buildings, vol. 45, pp. 15 – 27, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0378778811004105

[11] S. Nowak, M. Ganzha, M. Paprzycki, C. Badica, M. Ivanovic, and
S. Simionescu, “Agent-based system for highway gasoline price negoti-
ations,” in Proceedings for BCI Conference, 2017, in press.

[12] N. Saparkhojayev and A. Kanatbekkyzy, “Smart home assistant,” World
Applied Sciences Journal, vol. 28, no. 8, pp. 1075–1081, 2013.

[13] C. Carabelea and O. Boissier, “Multi-agent platforms on smart devices:
Dream or reality,” in ECCBR Workshop on Case Based Reasoning and
Personalisation, 2002.

[14] C. Carabelea, O. Boissier, and F. Ramparany, “Benefits and requirements
of using multi-agent systems on smart devices,” in Euro-Par 2003
Parallel Processing, 2003, pp. 1091–1098.

[15] V. Terziyan, “Semantic web services for smart devices based on mo-
bile agents,” Mobile Computing: Concepts, Methodologies, Tools, and
Applications, pp. 630–641, 2009.

[16] R. Tkaczyk, M. Ganzha, and M. Paprzycki, “Agentplanner - agent-based
timetabling system - preliminary design and evaluation,” in 2013 17th
International Conference on System Theory, Control and Computing
(ICSTCC), Oct 2013, pp. 795–800.

[17] ——, “Agentplanner - agent-based timetabling system,” Informatica,
vol. 40, no. 1, pp. 3–17, 2016.

[18] A. Solanas, C. Patsakis, M. Conti, I. S. Vlachos, V. Ramos, F. Falcone,
O. Postolache, P. A. Perez-martinez, R. D. Pietro, D. N. Perrea, and
A. Martinez-Balleste, “Smart health: A context-aware health paradigm
within smart cities,” IEEE Communications Magazine, vol. 52, no. 8,
pp. 74–81, Aug 2014.


