
Developing a Model Agent-based E-commerce System

Costin B̆adic̆a1, Maria Ganzha2, and Marcin Paprzycki3

1 University of Craiova, Software Engineering Department
Bvd. Decebal 107, Craiova, 200440, Romania
badica_costin@software.ucv.ro

2 Elbląg University of Humanities and Economy,
ul. Lotnicza 2, 82-300 Elbląg, Poland

ganzha@euh-e.edu.pl
3 Computer Science Institute, SWPS, 03-815 Warsaw, Poland

marcin.paprzycki@swps.edu.pl

Abstract. It is easy to realize that goals set behind a large class ofagent sys-
temsmatch these put forward for systems defined ase-service intelligence. In
this chapter we describe a model agent-based e-commerce system that utilizes
rule-based approach for price negotiations. Furthermore,the proposed system at-
tempts at mediating the apparent contradiction between agent mobility and intel-
ligence.

1 Introduction and Overview

Recently an increasing interest in combining Internet-based electronic services (e-ser-
vices) with “intelligent” functions can be observed (thesenew e-services are often
callede-service intelligence). While this particular trend is relatively new, creation of
intelligent distributed systems in form of software agentscan be traced back a least
to the seminal paper of P. Maes [29]. While her main concern was development of
an infrastructure dealing with information overload, further research concerned appli-
cations of software agents in a number of areas including e-government, e-learning,
e-shopping, e-marketing, e-banking, e-logistics etc. There, software agents are to fa-
cilitate much higher quality information, personalized recommendation, decision sup-
port, quasi-direct user participation in organizational planning, knowledge discovery
etc. When developed and implemented, agent systems are to beadaptive, personalized,
proactive and accessible from a broad variety of devices [40]. It is therefore easy to see
how software agents, and agent systems in general, can be viewed as an incarnation of
e-service intelligence.

While there exist a large number of attempts at developing agent-based systems,
they are mostly small-scale demonstrator systems—later described in academic publi-
cations. Separately, some applications utilize the agent metaphor, but not existing agent
tools and environments. Finally it is almost impossible to find out if actual agent sys-
tems exist in the industry; e.g. the true role of the Concordia agent system within the
Mitsubishi Corp. While a number of possible reasons for thissituation have been sug-
gested (for instance see [31, 32]), one of them has been recently dispelled. It was shown
that modern agent environments (e.g. JADE [21]), even when running on an antiquated

2

hardware, can scale to 2000 agents and 300,000 messages [14,15]. Thus it was exper-
imentally established thatit is possible to build and experiment with large-scale agent
systems. Therefore, it is extremely important to follow the positive program put forward
by Nwana and Ndumu [31] and focus on developing and implementing such systems.

One of the well-known applications where software agents are to play an important
role is e-commerce. Modern agent environments (such as JADE) can support implemen-
tation of quasi-realistic model e-commerce scenarios. Moreover, advances in auction
theory have produced a general methodology for describing price negotiations. Combi-
nation of these factors gave new impetus to research on automating e-commerce. In this
context, autonomous, and sometimes mobile, software agents are cited as a potentially
fruitful way of approaching e-commerce automation [25].

Sinceautonomyis a broad concept that can be defined in many ways, we would like
to narrow it down and focus onadaptabilityviewed as ability to update the negotiation
“mechanism” to engage in unknown in advance forms of price negotiations. Obviously,
another aspect of autonomy isdecision autonomythat can be understood as capability
to reason over past experiences and domain knowledge in order to maximize “utility”
(making it very closely related to “intelligence”).

Finally, the notion of agentmobility refers to its capacity to migrate from one com-
puter to another. While the goal of such a migration is typically related to acting on
behalf of some software or human entity, it does not depend onthe intelligence that
agents are possibly equipped with. However, to be able to facilitate e-service intelli-
gence, we have to be able to combine the two—as mobile agents have to be able to
dynamically adapt to situations found within visited sites. Therefore, agent mobility
requires transfer of code, data, process and authority between machines. This makes
intelligent mobile agents very heavy [40] and later in this chapter we discuss a partial
solution of this problem.

In our work we have been developing a skeleton system in whichautonomous agents
interact in a way that models realistic scenarios arising inan e-marketplace (for a sum-
mary of our early results see [19] and references available there). Here, we have two
long-term goals in mind. The first one is to broaden understanding of technical aspects
of developing agent systems, such as agent functionalities, their interactions and com-
munication, agent mobility etc. We are also concerned with the fact that without agents
systems being actually implemented using tools that are apparently designed to do this,
agent research will never be able to reach beyond academia. Success in achieving the
first goal will allow utilization of our systems as a tool-boxfor modeling processes oc-
curring in an e-marketplace. For instance, it will be possible to apply it to study: effects
of pricing strategies, of negotiation protocols and strategies, flow of commodities etc.
Due to agent flexibility it will be relatively easy to experiment with various e-commerce
scenarios.

In this chapter we proceed as follows. In the next section we provide background
information and follow with the description of our system formalized through a com-
plete set of UML diagrams. We then discuss in some detail (including implementation
specifics) how rule based engine can be used to facilitate autonomous price negotiations.

3

2 Background

2.1 Agent Systems in E-Commerce

While there exist many definitions of agents, for the purposeof this chapter we will
conceptualize them as: encapsulated computer programs, situated in an environment,
and capable of flexible, autonomous actions focused on meeting their design objectives
[40]. For such agents, e-commerce is considered to be one of the paradigmatic applica-
tion areas [25].

Proliferation of e-commerce is strongly related to the explosive growth of the Inter-
net. For example, the total number of Internet hosts with domain names was estimated
at 150 millions in 2003, while in the same year, Web content was estimated at 8000
millions of Web pages ([26]). At the same time, e-commerce revenue projections were
estimated to reach in 2006 up to $0.3 trillions for B2C e-commerce and up to $5.4
trillions for B2B e-commerce ([26]).

E-commerce utilizes (to various degrees) digital technologies to mediate commer-
cial transactions. As a part of our research we have conceptualized a commercial trans-
action as consisting of four phases:

– pre-contractual phaseincluding activities like need identification, product broker-
ing, merchant brokering, and matchmaking;

– negotiationwhere participants negotiate according to the rules of the market mech-
anism and using their private negotiation strategies;

– contract executionincluding activities like: order submission, logistics, and pay-
ment;

– post-contractual phasethat includes activities like collecting managerial informa-
tion and product or service evaluation.

While there exist many scenarios of applying agents in e-commerce, automated
trading is one of the more promising ones. In particular, we are interested in using agents
to support all the four phases of a commercial transaction, outlined above, by addressing
questions like: how is an e-shop to negotiate price with selected, what happens before
negotiations start and after they are finished, where from the purchase is actually made
etc, thus going beyond the phase of negotiation itself.

Unfortunately, our research indicates that most existing automated trading systems
are not yet ready to become the foundation of the next generation of e-commerce. For
example, the Kasbah Trading System ([12]) supports buying and selling but does not
include auctions; SILKROAD ([30]), FENAs ([23]) and Inter-Market ([24]) exist as
“frameworks” but lack an implementation (which is typical for most agent systems in
general [31]).

2.2 Automated and Agent-based Negotiations

In the context of this chapter we understand negotiations asa process by which agents
come to a mutually acceptable agreement on a price ([28]). When designing systems for
automated negotiations, we distinguish betweennegotiation mechanisms(protocols)
andnegotiation strategies. Protocol defines “rules of encounter” between negotiation

4

participants by specifying requirements that enable theirinteraction. The strategy de-
fines the behavior of participants aiming at achieving a desired outcome. This behavior
must be consistent with the negotiation protocol, and usually is specified to maximize
“gains” of each individual participant.

Auctions are one of the most popular and well-understood forms of automated ne-
gotiations ([41]). An increased interest has been manifested recently in attempts to pa-
rameterize the auction design space with the goal of facilitating more flexible automated
negotiations in multi-agent systems ([41, 28]). One of the first attempts for standardiz-
ing negotiation protocols was introduced by the Foundationfor Intelligent Physical
Agents—FIPA ([17]). FIPA defined a set of standard specifications of agent negotia-
tion protocols including English and Dutch auctions. Authors of [9, 10] analyzed the
existing approaches to formalizing negotiations (including FIPA protocols) and argued
that they do not provide enough structure for the development of truly portable systems.
Consequently, they outlined a complete framework comprising: (1) negotiation infras-
tructure, (2) a generic negotiation protocol and (3) taxonomy of declarative rules. The
negotiation infrastructuredefines roles of negotiation participants and of a host. Par-
ticipants negotiate by exchanging proposals and, depending on the negotiations type,
the host can also become a participant. Thegeneric negotiation protocoldefines the
three phases of a negotiation: admission, exchange of proposals and formation of an
agreement, in terms of how, when and what types of messages should be exchanged be-
tween the host and participants.Negotiation rulesare used for enforcing the negotiation
mechanism. Rules are organized into a taxonomy: rules for admission of participants to
negotiations, rules for checking the validity of negotiation proposals, rules for protocol
enforcement, rules for updating the negotiation status andinforming participants, rules
for agreement formation and rules for controlling the negotiation termination. Finally,
they introduce anegotiation templatethat contains parameters that distinguish one form
of negotiations from another, as well as specific values characterizing given negotiation.
In this context it should be noted that rule-based approaches have been indicated as a
very promising technique for introducing “intelligence” into negotiating agents ([9, 11,
16, 27, 37, 41, 42, 20]). Furthermore, proposals have been put forward to use rules for
describing both negotiation mechanisms ([9, 38]) and strategies ([16,37]).

With so much work already done in the area of agents and agent systems appear-
ing in the context of autonomous price negotiations, let us underline what makes our
approach unique.

– In most, if not all, papers only a “single price negotiation”is considered. Specifi-
cally, negotiations of a single item or a single collection of items is contemplated.
Once such a negotiation is over, a group of agents (agent system) that participated
in it completes its work. We are interested in a different (and a considerably more
realistic) scenario when a number of products of a given typeare placed for sale one
after another. While this situation closely resembles whathappens in any Internet
store, it is practically omitted from research considerations. In this chapter, for clar-
ity of enclosed UML diagrams, we depict situation where an almost unlimited num-
ber of items is to be sold. However, this assumption has only aesthetical reasons.

– Fact that multiple items are to be sold has also an important consequence for the
way that price negotiations are organized. In the literature it is very often assumed

5

that agents join an ongoing negotiation process as soon as they are ready (see for in-
stance [9]), while agent-actions that take place after price negotiation is completed
are disregarded. Since we sell multiple items one after another, we have decided to
treat price negotiations as a “discrete process.” Here, except of a specific case of
fixed price mechanism, buyer agents are “collected” and released in a group to par-
ticipate in a given price negotiation. While the negotiation takes place buyer agents
communicate only with the seller agent (they can be envisioned as being placed
in a closed negotiation room). At the same time the next groupof buyer agents is
collected (as they arrive) and will participate in the next negotiation.

– Fact that multiple subsequent auctions (involving the sameproduct) take place al-
lows us to go beyond one more popular “limitation” of known tous agent systems.
While sometimes they involve rather complicated price negotiations, e.g. mixed
auctions (see for instance [35, 36]), since only a single item or a single collection
of items are sold, it is only that given price negotiation mechanism that is taken into
account. In our case, since multiple negotiations are used to sell items of the same
product we conceptualize situation in which price negotiation mechanism change.
For instance, first 25 items may be sold using English Auction, while the next 37
using fixed price with a deep discount.

– Furthermore, we consider the complete e-commerce system, which means that af-
ter negotiation is completed we conceptualize subsequent actions that may, or may
not result in an actual purchase. In the case when purchase does not take place, we
specify what should happen then to all involved agents.

– While agent mobility is often considered to be important in the context of e-com-
merce, conflict between agent mobility and intelligence is rarely recognized. In our
work we address this question by designing modular agents and clearly delineating
which modules have to be send, when, by whom and where.

– Finally, the complete system is being implemented using JADE; an actual agent
environment.

3 Code Mobility in an Agent-Based E-Commerce System

Code mobility has been recognized as one of key enablers of large scale distributed
applications, while its specific technologies, design patterns and applications have been
systematically analyzed ([18]). Furthermore, recent research results suggest that blend-
ing mobility and intelligence might have important benefitsespecially in advanced e-
commerce by providing application components with automated decision-making capa-
bilities and ubiquity as required in networked environments ([25]). At the same time it
has been argued that, as a general feature, agent mobility isunnecessary. Therefore, we
asked a basic question: why, in the case of e-commerce, should one use mobile agents
instead of messaging? To answer it, let us consider someone who, behind a slow In-
ternet connection (which is not an uncommon situation), tries to participate in an eBay
auction. In this case it is almost impossible to assure that this persons bid (1) reaches
eBay server in time, (2) is sufficiently large to outbid opponents that have been bid-
ding simultaneously (information about auction progress as well as responses may not
be able to reach their destinations sufficiently fast). As a result, network-caused delays

6

may prevent purchase of the desired product. Obviously, this would not be the case if
an autonomous agent representing that user was co-located with the negotiation host.
In this context, one can obviously ask about the price of moving buyer agents across
the network. Naturally, it may happen that an agent may not beable to participate in an
auction because it does not reach the host in time. In response let us observe that: (1) if
it is a particular single auction that the user is interestedin, then agent not reaching the
host has exactly the same effect as not being able to win because of bid(s) being late
and/or too small; (2) therefore, it is only an agent that reaches the host in time that gives
its user any chance to effectively participate in price negotiations; (3) furthermore, if an
agent reaches its destination, it will be able to effectively participate in all subsequent
negotiations within that host (and we assume across this paper that multiple negotia-
tions involving items of the same product take place), whiledelays caused by network
traffic may permanently prevent user from effective participation in any of them. For an
extended discussion of the need for agent mobility in e-commerce see [7].

Let us now sketch proposed resolution of an above mentioned obvious contradiction
between agent mobility and adaptivity. In our work, we utilize the negotiation frame-
work introduced in [9, 10], where thenegotiation protocolis a generic set of rules that
describes all negotiations, while thenegotiation templateis a set of parameters that es-
tablishes the form of negotiation and its details. Finally,there is thenegotiation strategy
defining outcome optimizing actions of individual negotiation participants. It should be
obvious that thenegotiation protocolis generic and public—all agents participating in
all negotiations have to use it. Therefore buyer agent can receive it upon its arrival at
the host; similarly to the negotiation template which has tobe “local” as it describes
currently used form of negotiations (and which can change over time). It is only the
strategy that is “private” and has to be obtained from the client agent (we nameclient
agentagents representing User-Clients). At the same time, it hasto be assumed that de-
pending on the form of negotiation, different strategies will be used, and thus strategy
is not known in advance. Therefore, since the protocol and the template can be obtained
within the e-store, carrying them across the network is unnecessary. Unfortunately, it is
not possible to establish the negotiation form in advance and send buyers with the ne-
gotiation strategy pre-loaded. Recall that in our system weassume that e-stores respond
to the flow of commodities by actively changing forms of pricenegotiations. This being
the case, by the time the buyer agent reaches its destinationits strategy module may be
useless, as the form of negotiations has already changed. Wethus propose two network-
traffic minimizing approaches to agent mobility. In the first case (named thereafteragent
mobility) only an agent skeleton is send across the network and upon arrival it obtains
the negotiation protocol and the template and then requeststhe strategy module from
the client agent. In the second case (named thereaftercode mobility) buyer agents are
created by the host (on the basis of a request from the client agent) and assembled in-
cluding (1) protocol, (2) actual template, and (3) information who they represent. Then,
again, they request an appropriate strategy module from their client agent. Observe, that
since only the strategy module is “secret,” while the remaining parts of the buyer are
public and open to any scrutiny at any time, this latter solution should not directly result
in an increased security risk.

7

4 Description of the System

4.1 Conceptual Architecture

In our description of the system we utilize its almost complete UML-based formaliza-
tion. Due to lack of space we have decided to present acompleteset of UML diagrams
of the system, rather than lengthy descriptions of its features and underlying assump-
tions. Interested readers should consult ([6, 7, 19]) for more details. In Figure 1 we
present the use case diagram of our system that depicts all ofits agents and their inter-
actions. We can distinguish three major parts of the system:(1) theinformation center
where white-page and yellow-page type data is stored—this is our current solution of
the matchmaking problem [38], (2) thepurchasing sidewhere agents and activities rep-
resenting User-Client reside, and (3) theseller sidewhere the same is depicted for the
User-Seller. Let us now describe in detail each of the agents(except the CIC agent that
plays only an auxiliary role [19]) found in Figure 1.

User_Seller

Creating List of
Participants

Selling

Warehouse Agent

Maintaining
products DB

Shop Decision
Making

CIC Agent

Buyer Agent

Client Agent

Gatekeeper Agent

Seller Agent

Shop Agent

Buying

Notification
about result

Creation of
Reservation

Communication

Registration

User_Client

 Client Decision
Making

<<include>>

Negotiating
process

Admitting to
negotiations

Purchasing side Information center Seller side

Fig. 1. Use case diagram

4.2 UML Models of Agents in the System

Client agent On the purchasing side, we have two agents. TheClient agent, repre-
sented in Figures 2 and 3 exists in a complex state. On the one hand it listens for orders
from the User-Client and, to fulfill them: (1) queries theCIC agent which has access to
information which stores sell the requested product and if they createBuyeragents lo-
cally (or if such agent has to be send to them), (2) then it dispatches or requests creation
of Buyeragents to/ by each such e-store (identified by itsGatekeeperagent). At the

8

Waiting for order

[empty list] / notify User

do / Kill all BAs

Finalisation of work

User terminated interuption

new order(p)

Registration in CIC

/ create

Gathering information

/ ask(CIC,p)

recieve(CIC_list)

[not empty list]

do / Adjust(CIC_list,Info)

Adjusting list

one more address [not first address] / read next address

Creation of BAs

do / send(BA(B_ID),address)

Sending BA

[CA creates]

[GA creates]

do / create(B_ID)

Creation of BA

entry / send(B_ID)

Asking to create

1-st element of list done

[all BAs]

[else]

[1-st time]

do / send(B_ID,strategy)

Sending

[not all BAs]

Listening BA/GA

last element of list done

Purchasing process

[need strategy]

do / store(Info)

Storing information[no more product || refused] Refuse interaction

purchase complete OR
abandon purchase

Fig. 2.Client Agent Statechart diagram

same time, it directly manages the process of making purchases on behalf of the User-
Client (Figure 3), on the basis ofBuyeragent messages informing about results of price
negotiations (let us note that in the case of multiple ordersseparate groups ofBuyer
agents—corresponding to separate products—will be managed in the same fashion).
For a certain amount of time theClientcollects reports send byBuyeragents. When the
wait-time is over (or when allBuyeragents have reported back),Client agent enters a
complex state. On the one hand it continues listening for messages fromBuyeragents
(obviously, if all have reported already then none will be coming). On the other hand
it goes through a multi-criteria decision making procedure(the “MCDM” box) that has
one of three possible outcomes: (i) to attempt at completinga selected purchase, (ii) to
await better opportunity, or (iii) to declare the purchase impossible and notify the User-
Client accordingly. Note that, in a realistic system, theMCDM analysis should be truly
multi-criteria and include factors such as: price, historyof dealing with a given e-shop,
delivery conditions etc.

msgBA

Listening BAs messages

request strategy

do / send(strategy)

Sending

msgBA(GA refuse)

do / store(info)

Stroring information

do / notify(try once more)

Notifying BAs

do / send(confirm)

Confirming purchase(B_ID)
[Yes, buy]

Waiting for BA response

[trying for better price]

do / GA Send(refuse)

Cancelling purchase

no more product

negotiations result

do / store(result)

Result registration

[all result received OR time is up]

MCDM [reservation expired]

[deal] / Notify User

do / send(BAs,"stop")

Suspend BAs

Sale finalization

abandon purchase / Notify(User)

do / kill all BAs (p)

Cleaning

Fig. 3.Client Agent Statechart diagram

9

When attempt at completing a purchase is successful, theClient agent sends mes-
sages to allBuyeragents to cease to exist. The situation is slightly more complicated
when the attempt was unsuccessful. Note that it is quite possible that the firstMCDM
analysis was undertaken before allBuyeragents have complete their “first round” of
price negotiations. They could have contacted theClient while it was “thinking” which
of the existing offers to choose. Therefore, when theClient agent analyses available
reservations, they include not only reservations that havebeen already considered, but
also possibly new ones that have arrived in the meantime. As aresult another attempt at
making a purchase can be made. If none of the available offers is acceptable, but pur-
chase was not declared impossible, theClient agent undertakes the following actions:
(1) informs allBuyeragents that have already reported to cancel current reservations
and return to price negotiations (or just to return to price negotiations if they previously
failed) and (2) resets timer establishing how long it will wait before the nextMCDM
analysis. Observe that in this way, in the proposed system itis possible that some agents
make their second attempt at negotiating prices, while someagents have just finished
the first. As this process continues in an asynchronous fashion Buyeragents will make
different number of attempts at negotiating price that is acceptable to theClient agent.
This process and theClient agent will terminate when all orders submitted by the cus-
tomer have been either honored or abandoned. For the time being we assume that the
“Sale finalization” process seen in Figure 3 is always successful. In the future we plan
to remove this somewhat artificial restriction.

Let us note that it is possible that since it is theClient agent that makes the final
determination which offer to accept, and that it has to communicate with one of its
remotely locatedBuyeragents to actually complete a purchase, the request to attempt
at making that purchase could be network-delayed resultingin an expired reservation
and inability to complete the task. Unfortunately, this problem does not seem to have
a simple solution, since price comparison requires communication between agents par-
ticipating in price negotiations. In our system we have selected a central point—Client
agent—that will collect all offers, instead of all-to-all communication. Since not all sites
will conduct their price negotiations at the same time, and with the same urgency, it is
impossible to assure that the best offer will still be available, when the “remaining”
agents complete their negotiations. Therefore, our solution remains optimal in terms of
reducing total network congestion by sending only minimal-size agents and minimizing
the total number of messages send over the network.

Finally, let us note that a complete information about all events taking place during
servicing User-Client request (such as: refusal to admit tonegotiations, results of price
negotiations, length of reservation, etc.) is stored for further information extraction. For
instance, as a result of data analysis, store that is constantly selling good at very high
prices may be simply avoided.

Buyer agent Buyeragent (see Figure 4) is the only agent in the system that involves
mobility. It is either dispatched by theClient agent or created by theGatekeeperagent
on request of theClient. If it is dispatched, then upon arrival at the store it communi-
cates with theGatekeeper(see Figure 6,7) to obtain entry to negotiations (in case when
entry is not granted it informs itsClient agent and is killed). In the case ofClient re-

10

[price matching]
Requesting reservation

Negotiations process

msgSeA(start)

do / analyze template

Getting template

[re-registering]

msg(GA)(new template)

[nego] / request(strategy)

[created by GA]

entry / state=not ready

Listening GA/CA

do / get(protocol)

Registering part 2

[fixed price]

[new] [OK]

/ send(CA,result)

[price not matching] / send(CA,Result)

msgSA(Nr_Res) / send(CA,Nr_Res)
Listening CA

[confirm]

entry / send(SA,YES)

Attempting purchase

[refuse]

entry / send(SA,refuse)

Cancelling of purchase

[continue]

GA answer

entry / send(GA, RegistrationForm)

Registering part 1

[created by CA]

arrive

do / go(address)
entry / get(address)

Moving to the Host

msgGA(no more p) / send(CA, no more p)

[end]

Self-destruct

[rejection] / send(CA, GA refused)

msgGA(no more p) / send(CA,no more p)

msgCA(strategy)

entry / state=ready

Listening SeA,GA

entry / transfer(CA,info)

Completing purchase

[answer=deal][answer=expired] exit / send(CA,answer)

Waiting for SA answer

Fig. 4.Buyer Agent Statechart diagram

questing creation of theBuyer, the Gatkeepermay deny such request. In both cases,
information about refusal to cooperate is stored by theClient agent (e.g. e-stores that
do not want to cooperate may be removed from the list obtainedfrom theCIC; see box
“Adjusting list” in Figure 2). Next, the preregisteredBuyerobtains from theGatekeeper
the negotiation protocol and the current negotiation template and requests (and obtains)
an appropriate strategy module from theClient agent (see Figure 2). When all these
modules are installedBuyer informs theGatekeeperthat it is ready to negotiate (it is
then registered as such). Price negotiations start when theBuyerreceives a start message
from theSelleragent (see Figure 9; note that the “Negotiations box” appearing there
is “the same” for both theSellerand theBuyeragents); note also special treatment of
fixed-price negotiations by both theBuyerand theGatekeeperagents. Upon completion
of negotiations,Buyerinforms theClient about their result and, if necessary (when an
attempt at completing purchase is made), acts as an intermediary between theClientand
the Shopagents. In the case when purchase was not attempted or was notsuccessful,
Buyeragent awaits the decision of theClient and if requested proceeds back to partici-
pate in price negotiations (before doing so it requests permission to re-enter that may be
granted or denied; updates its negotiation template and possibly the strategy module—
if the template has changed). This process continues until theBuyeragent self-destructs
on the request of theClientagent.

Shop agent On the ”selling side” of the system, theShopagent acts as the represen-
tative of the User-Seller. We assume that after it is created, it persistently exists in the
system until the user decides that it is no longer needed. TheUML diagram repre-
senting theShopagent is presented in Figure 5. Upon its instantiation, theShopagent
creates and initializes its co-workers: aGatekeeperagent, aWarehouseagent andSeller
agents (one for each product sold). Initialization of theWarehouseagent involves pass-

11

msgBA

Creation of a WA

[OK]

/ register(CIC)
do / send(CIC,GA)

Creation of a GA

do / Analysis of situation

MCDM

do / send(BA, Nr_res)

BA notification

done(Nr_Res)

do / send(WA,p, q)

Creation of reservation

do / add to knowledge base

Registration results

msgSeA(result of neg.)

do / reply(q)

Notification GA
do / send(GA,killed Se_ID)

Cancelling

[q=0] exit / send(CIC,delete(p,Se_ID))
do / Kill (Se_ID)

Withdraw product

msgWA(p,q)

do / send(BA,Refuse)

Refusing

confirm
do / send(WA,check(Nr_res))

Sale

[expired]

do / Kill all agents

Completing work

msgUserSeller(p,q)

exit / send(CIC,p)
do / create(SeA(Se_ID,p))
entry / send(WA,add(p,q))

Creation of a SeA

do / send(GA,Se_ID,template)

Connecting

msgGA(p,q?)

do / requestWA(p,q?)

Requesting WA

[new template]
do / send(GA,new template for Se_ID)

Changing the template of negotiations

terminated by UserSeller

Listening UserSeller, WA,BA,SeA

UserSeller notification

entry / add to Knowledge DB

Sale finalization

reject

entry / send(WA,cancel(Nr_res))

Cancelling sale

msgWA(Info about reservation)

Fig. 5. Shop Agent Statechart diagram

ing information about goods that are initially available for sale (see Figure 8), while
initialization of theGatekeeperagent involves providing it with templates that are to be
used initially in price negotiations of each product sold. Furthermore, theGatekeeper
agent and the list of products available in the store are registered with theCIC agent.

After the initialization stage, theShopagent enters a complex state where it super-
vises negotiations and product flow. First, it waits for finish of any price negotiation. If
the negotiation was successful, a givenSellerinforms theShopagent, which is asking
the Warehouseagent to reserve a given quantity of a particular product fora specific
amount of time. (Currently we assume that a single item of a given product is sold each
time, but this, somewhat limiting, assumption will be removed in the future.) Events
can then proceed according to following scenarios.

1. If the winningBuyerconfirms purchase then theShopasks theWarehouseagent to
check the reservation.

– If the reservation did not expire then theShopinforms theBuyeragent about
acceptance of transaction. This event starts the final stage, named ”Sale final-
ization” which includes such actions as payment and delivery.

– In opposite case, theShopagent sends rejection to theBuyeragent
2. If the Client agent rejects purchase (and informs theShopagent about it through

theBuyeragent) then theShopagent asks theWarehouseagent to cancel the reser-
vation.

Completing one of these scenarios ”closes” this branch ofShopagent execution. Sepa-
rately, theShopagent keeps track of all negotiations and transactions and periodically
performs multi-criteria analysis (theMCDM module) that may result in changes in the
negotiation template for one or more products (e.g. minimalprice, type of price ne-
gotiation mechanism, etc.). For instance, when only a few items are left they may be
deeply-discounted, or put on sale through an auction. In this case a new template is
generated and send to theGatekeeperagent that switches it in an appropriate moment
(see below, Figures 6, 7).

12

Let us also note that, similarly to theClient agent, theShopagent stores complete
information about all events taking place in the e-store (such as: results of price nego-
tiation, information about agents that actually purchasedreserved product, information
of agents that canceled reservations, etc.). This information, when analyzed, may result
for instance in a givenClient agent being barred from entering negotiations.

[terminate]

Listening

msg(SA)

Checking registration list

msgCA,msgBA

Preparing negotiations

[new Seller] / get(S_ID)
[empty]

[Seller(S_ID) is killed] do / send(all reg. Buyers, no more product p)

Notification

exit / notify (preregistration Buyers)
do / update(template(S_ID))
entry / "close" registration list

Updating tepmlate

[new template]

do / push(registration list,template)

Buffer registration list

[not empty]

start negotiations[SeA(end negotiations)]

Waiting for end of negotiations

Fig. 6. Gatekeeper Agent Statechart diagram

Gatekeeper agent Shopagents cooperate directly with theirGatekeeperagents that
(1) either interact with incomingBuyeragents, and admit them to the negotiations (or
reject their attempt at entering the host), or interact withClient agents and, on their
request, createBuyeragents (or reject such a request), and provide admitted/ created
Buyeragents with the protocol and the current negotiation template (2) in appropriate
moments releaseBuyeragents to appropriateSellers and (3) manage updates of tem-
plate modules. The statechart diagram of theGatekeeperagent is presented in Figure
6 (the top level description ofGatekeeperfunctionality) and continued in Figure 7 (de-
picting negotiation related activities). Each created or allowed to enterBuyeragent is
put on a list of preregistered agents and provided with protocol and current template.
Buyeragents remain on that list until they receive their strategymodule and complete
self-assembling. AssembledBuyeragents are put on a list of registered agents that await
start of price negotiations. When a minimum number ofBuyeragents have registered
(minimum for a given form of negotiations) and the wait-timehas passed, theGate-
keeperpasses their identifiers and the current negotiation template to theSelleragent.
Then it cleans the current list of registeredBuyeragents and the admission/monitoring
process is restarted (assuming that theSelleragent is still alive).

As stated above, our system allowsBuyeragents that lost negotiations or that de-
cided not to make a purchase to stay at the host and try to re-enter negotiations. They
have to ask permission to be re-admitted and if allowed back they receive an updated
template (”old Buyer” path). When a new template module is delivered by theShop
agent, a list of currently registeredBuyeragents is put into a buffer (”Buffer registra-
tion list” box). These agents have to be serviced first, usingthe current template that
they have been provided with upon entering the e-store. At the same time the new in-

13

coming agents will then be given the new template. Finally, in a special case, when a
given product has been sold-off and theShopagent terminates theSellerresponsible for
selling it, theGatekeeperinforms awaitingBuyeragents about this fact.

do / createBA(B_ID)

Creation BAmsgCA(B_ID) Checking CA

msgBA(ready)

do / add_to(Reg_List,B_ID)

Registering BA

Cheking BA

msgBA(I am here)

["new" BA]

exit / add_to(Prereg_List,B_ID)
do / send(Protocol,Template)

Preregistration new BA

[not-admit] / notify CA

[OK]

[not-admit] / notify BA

["old" BA]

exit / add_to(Prereg_List,B_ID)
do / send(Template)

Preregistration old BA

[fixed price]

do / send(Protocol, Template)

Preregistration BA

[busy] / restart timer

msg

/ create new registration

do / count(time),count(BA)

Listening BA/CA

[not enough] / restart timer

time is up

Checking SeA

enough participants

Closing regestration

push(registration) [enough participant]

Checking registration list

[time is up] / pop(registration)

[enough for negotiations]

do / send(Se_ID,registration)

Transfer participants list

[enough participants] [time is up]

[empty]

[not empty]

Checking buffer

[not busy]

New registration means
that one creates
Reistration list and
preregistration list for
current template

Fig. 7. Statechart diagram for Preparing Negotiations State

msgSA()die

Finishing the work

msgSA(add product p)do / add(p,q,BD)

Adding product

Listening SA

/ create

Checking reservations

exit / send(SA,deal)
do / complete reservation

Completing confirmation
[OK][t_res over]

exit / send(SA,Refuse)
do / q+q_res

Removing reservation

msgSA(new sale)

exit / sendSA(Nr_Res)
do / Reserve(p,qRes,t_Res)
entry / get(p,qRes)

Creation of new reservation
exit / sendSA(p,new_q)

Checking quantity of p

msgSA(p,q?)

/ move(1st res for p)

do / q+q_res
entry / status res=expired

Removing reservation

[t_res over] [OK]

do / check(t_res)

Checking

msgSA(Nr_Res confirmed)

do / check(Nr_Res)
entry / get(Nr_Res)

Confirmation

/ move(Nr_res)

do / check(t_res)

Checking

Fig. 8. Warehouse Agent Statechart diagram

Warehouse agent Shopagent interacts also directly with theWarehouseagent (pre-
sented in Figure 8). In the early stages of its functioning the Warehouseagent is sup-
plied (by theShopagent) with information about products and their quantities (to be
saved in a database). Then it enters a complex state where it (a) awaits notifications
from theShopagent and (b) acts on them. TheShopagent notifies theWarehouseagent

14

about: (i) registration of new products for sale, (ii) product reservations, (iii) purchase
confirmations, and (iv) purchase terminations. Each of these notifications is followed
by an appropriate response: (i) product registration, (ii)product reservation, (iii) check-
ing status of a reservation, (iv) cancellation of a reservation. Finally, if quantity of some
product becomes 0, theWarehouseagent informs about it theShopagent, which (in
the current state of our system) terminates the correspondingSelleragent, and informs
about it both theCIC and theGatekeeperagents.

killed by SA
/ create

Waiting for start of negotiations

do / send all participants(start)

Starting negotiations

get(registration list, template)

exit / send all participants(end)

Negotiations

do / send(SA,result)

SA Notification

do / send(GA, end)

GA notification

Fig. 9. Seller Agent Statechart diagram

Seller agent Finally, the last agent working on the “selling side” of the system is the
Selleragent. It is characterized by a rather simple statechart diagram (see Figure 9). The
simplicity comes form the fact that, in the “Negotiations box,” the completenegotiation
framework proposed in [9, 10] in enclosed. Observe that not all negotiations have to end
in finding a winner and our system is able to handle such an event. At the same time, all
data about negotiations is collected and analyzed by theShopagent and, for instance, a
sequence of failures could result in a change of the negotiation template.

System activity diagram Let us now combine activities of all agents in the system
into one diagram (see Figure 10, 11). This diagram represents flow of actions presented
from the perspective of the two main agents in the system: theShopand theClient.
Obviously, to keep that diagram readable, we had to omit large number of details that
have been represented within statechart diagrams of individual agents that should be
“co-viewed” with the activity diagram.

4.3 Rule-Based Mechanism Representation

Let us now describe how we have implemented in our system rule-based mechanisms.
We start by summarizing the framework for automated negotiation introduced in [9, 10]

15

ClientShop Gatekeeper

[OK]

Checking CA

[service creation]

<<signal sending>>

NotifyWA(register,p,q)

Seller Registration

Seller

Seller(S_ID)
Seller Creation

Waiting for a User-Client order

<<signal receipt>>

Asking to create Buyer

List of paticipants

Buyer

<<signal receipt>>
BA not accepted

<<signal sending>>

I am not accepted

Starting Nego Preparations

Waiting for a User-
Merchant order

CIC Request Contact Data

<<signal sending>>
 Asking to create Buyer

<<signal receipt>>

Refuse interaction

<<signal sending>>
I am here

Creation BA

[problem]

<<signal sending>>
Reject BA

[problem]

Checking BA

<<signal receipt>>

I am here(B_ID)

[OK]

Negotiation process

<<signal receipt>>
Refuse interaction

Transfer protocol
and template

Preparing
negotiation

<<signal sending>>

Reject CA

Storing info in
Knowledge DB

Buyer CreationMoving to the host

F
ig

.1
0.

A
ct

iv
ity

D
ia

gr
am

—
be

fo
re

ne
go

tia
tio

n
pr

oc
es

s

16

ClientSA

<<signal receipt>>
Result of negotiations

Warehouse

Product
reservation

BA-winner

<<signal sending>>

CA:I won

Updating Shop's
Knowledge Base

<<signal sending>>
Cancel(Nr_res)

Canceling
reservation

Cancelling reservation

Reservation

<<signal sending>>
SeA:Finalisation of negotiations

<<signal receipt>>

Nr_res
<<signal receipt>>
Negotiations result

<<signal sending>>

Continue

<<signal sending>>

not to buy

<<signal sending>>
Deal

Sale
completion

Updating Client's
Knowledge Base

<<signal sending>>
To buy

<<signal sending>>

SA:Confirm

Updating SA
Knowledge Base

<<signal sending>>

Done

<<signal sending>>

Check reservation

MCDM(2)

MCDM

MCDM (1)

<<signal sending>>
Reserve (p for B_ID)

<<signal sending>>

Notify(B_ID,Nr_res)

Checking
reservation

<<signal sending>>
For SA: Reservation
expired

<<signal sending>>

For BA: Reservation expired

<<signal sending>>

For CA:Reservation expired

Transfer info to CA
Receiving Info
from BA

User notification

<<signal sending>>
To SA:Rejection

<<signal receipt>>

Continue

Destruction of agents

SeA begin

F
ig

.1
1.

A
ct

iv
ity

D
ia

gr
am

—
af

te
r

ne
go

tia
tio

n
pr

oc
es

s

17

which is based on an abstract negotiation process that comprises: a negotiation infras-
tructure, a generic negotiation protocol and a taxonomy of declarative rules. Here, the
negotiation infrastructuredefines roles involved in the negotiation process: participants
and a host. Participants negotiate by exchanging proposalswithin a negotiation locale
that is managed by the negotiation host. Depending on the type of negotiations, the host
can also play the role of a participant (for example in an iterative bargaining scenario).
Thegeneric negotiation protocoldefines, in terms of how and when messages should
be exchanged between the host and negotiation participants, the three main phases of
negotiations: (1) admission, (2) exchange of proposals and(3) formation of an agree-
ment.Negotiation rulesare needed for enforcing a specific negotiation mechanism.
Rules are organized into a taxonomy that contains the following categories: (a) rules
for participants admission to negotiations, (b) rules for checking the validity of negotia-
tion proposals, (c) rules for protocol enforcement, (d) rules for updating the negotiation
status and informing participants, (e) rules for agreementformation and (f) rules for
controlling the negotiation termination. Based on the categories of rules identified as
necessary to facilitate negotiations, in [9, 10] it is suggested to partition the negotia-
tion host into a number of corresponding components:Gatekeeper, Proposal Validator,
Protocol Enforcer, Information Updater, Negotiation TerminatorandAgreement Maker
(that are called sub-agents). Each component is responsible for enforcing a specific cat-
egory of rules. Host components interact with each-other via a blackboard and with
negotiation participants by direct messaging. Note that these components are conceptu-
alized as a part of the host (sub-agents), not as stand-aloneagents. This fact will have
consequences as to how they are to be implemented.

Before proceeding let us note that we have modified the proposed framework and
upgraded theGatekeeperto become a full-fledged agent [19]. In its new role, theGate-
keeperagent has also an increased scope of responsibilities (described above). Let us
now show: (i) how the negotiation host agent (Seller) is structured into components
(sub-agents); (ii) how rules are executed by the negotiation host in response to various
messages received from negotiation participants and how rule firing control is switched
between various components of the negotiation host, and (iii) how the generic nego-
tiation protocol was implemented using JADE agent behaviors and ACL message ex-
changes between host and participants.

The Negotiation Host —Seller agent Let us note that what was defined in [9, 10] as
negotiationhostbecame aSelleragent in our system. We will thus use these two terms
interchangingly. Host and negotiation participant agentsare implemented as ordinary
JADE agents and thus they extend thejade.core.Agentclass. TheSelleragent encap-
sulates the negotiation controlling sub-agents that are implemented as ordinary Java
classes (see Figure 12):Proposal Validator, Protocol Enforcer, Information Updater,
Negotiation TerminatorandAgreement Maker. Each host component defines ahandle()
method that is activated whenever the component must react to check the category of
rules it is responsible for. Note, again, that these components are not full-blown JADE
agents, but ordinary member objects within theSelleragent.

In addition to sub-agents responsible for protocol enforcement, the host encapsu-
lates two member objects representing the negotiation locale and the blackboard (see

18

Fig. 12.The class diagram showing the structure of theSelleragent

Figure 12):Negotiation LocaleandBlackboard”boxes”. TheNegotiation Localeobject
stores thenegotiation template(a structure that defines negotiation parameters; see [9])
and the list of participants that were admitted to a given negotiation (obtained from
theGatekeeperagent—see above). TheBlackboardobject is a JESS rule engine (class
jess.Rete) that is initialized with negotiation rules. Whenever the category of negotiation
rules is checked, the rule engine is activated.

The negotiation host contains handler methods that are activated byaction() meth-
ods of agent behaviors. Each handler method delegates the call to the responsible com-
ponent. Finally, that component activates the rule engine via themyAgentmember ob-
ject that points to the parent host agent (see Figure 12).

Controlling Rule Execution Rather then implementing each component of the nego-
tiation host as a separate rule engine, we are using a single JESS rule engine that is
shared by all host components. This rule engine is implemented using classjess.Rete.
The advantage is that we now have a single rule engine per negotiation host rather than 6
engines as suggested in [9]. Furthermore, this means that inthe case ofmproducts sold,
we will utilize m instances of the JESS rule engine, instead of 6m instances necessary
in [9, 10].

Rules and facts managed by the rule engine are partitioned into JESS modules. Cur-
rently we are using one JESS module for storing the blackboard facts and a separate
JESS module for storing rules used by each component. Blackboard facts are instances
of JESSdeftemplatestatements and they can represent: (1) the negotiation template; (2)
the active proposal that was validated by theProposal Validatorand theProposal En-
forcercomponents; (3) a withdrawn proposal; (4) seller reservation price (not visible to
participants); (5) negotiation participants; (6) the negotiation agreement that is eventu-
ally generated at the end of a negotiation; (7) the information digest that is visible to the
negotiation participants; (8) the maximum time interval for submitting a new bid before

19

the negotiation is declared complete; or (9) the value of thecurrent highest bid. Note
that these facts have been currently adapted to represent English auctions (and will be
appropriately modified to represent other price negotiation mechanisms).

Each category of rules for mechanism enforcement is stored in a separate JESS
module. This module is controlled by the corresponding component of theSelleragent.
Whenever the component handles a message it activates the rules for enforcing the ne-
gotiation mechanism. Taking into account that all rules pertinent to a given host are
stored internally in a single JESS rule-base (attached to a single JESS rule engine), the
JESSfocusstatement is used to control the firing of rules located only in the focus mod-
ule. This way, the JESS facility for partitioning the rule-base into disjoint JESS modules
proves very useful to efficiently control the separate activation of each category ofrules.
Note also that JADE behaviors are scheduled for execution ina non-preemptiveway and
this implies that firings of rule categories are correctly serialized and thus they do not
cause any synchronization problems. This fact also supports our decision to utilize a
single rule engine for each host.

Generic Negotiation Protocol and Agent BehaviorsThegeneric negotiation protocol
specifies a minimal set of constraints on sequences of messages exchanged between the
host and participants. As specified in [9], the negotiation process has three phases: (1)
admission, (2) proposal submission and (3) agreement formation. The admission phase
has been removed from the negotiation process described in [9], but it was implemented
in exactly the same way as suggested there. For instance, in the case ofagent mobility
it starts when a new participant (Buyeragent) requires admission to the negotiation, by
sending an ACL PROPOSE message to theGatekeeperagent. TheGatekeepergrants
(or not) the admission of the participant to the negotiationand responds accordingly
with either an ACL ACCEPT-PROPOSAL or an ACL REJECT-PROPOSAL message
(currently admission is granted by default). In the way thatthe system is currently im-
plemented, the PROPOSE message is sent by the participant agent immediately after
its initialization stage, just before itssetup()method returns. The task of receiving the
admission proposal and issuing an appropriate response is implemented as a separate
behavior of the negotiation host.

When aBuyeragent is accepted to the negotiation, it also receives from the host the
negotiation protocol and template (representing parameters of auctions: auction type,
auctioned product, minimum bid increment, termination time window, currently high-
est bid).Buyerwill enter the phase of submitting proposals after it was dispatched to
the negotiation (here, a number ofBuyeragents that were granted admission is ”simul-
taneously” released by theSeller(that sends them a start message) and they—possibly
immediately—start submitting bids according to their strategies [19]). The generic ne-
gotiation protocol states also that a participant will be notified by the negotiation host
if its proposal was either accepted (with an ACL ACCEPT-PROPOSAL) or rejected
(with an ACL REJECT-PROPOSAL). In the case when a proposal was accepted, the
protocol requires that the remaining participants will be notified accordingly with ACL
INFORM messages.

Strategies of participant agents must be defined in accordance with the constraints
stated by thegeneric negotiation protocol. Basically, the strategy defines when a ne-

20

gotiation participant will submit a proposal and what are the values of the proposal
parameters. In our system, for the time being, we opted for anextremely simple so-
lution: the participant will submit a first bid immediately after it was released to the
negotiation and subsequently, whenever it gets a notification that another participant
issued a proposal that was accepted by the host. The value of the bid is equal to the
sum of the currently highest bid and an increment value that is private to the partici-
pant. Additionally, each participant has its own valuationof the negotiated product in
terms of a reservation price. If the value of the new bid exceeds this reservation price
then the proposal submission is canceled. The implementation of the participant agent
defines two JADE agent behaviors for dealing with situationsstated above. Obviously,
as the system matures, we plan to develop, implement and experiment with a number
of negotiation strategies that can be found in the literature (e.g. see [20]).

Finally, the agreement formation phase can be triggered at any time. When the
agreement formation rules signal that an agreement was reached, the protocol states
that all participants involved in the agreement will be notified by the host with ACL IN-
FORM messages. The agreement formation check is implemented as a timer task (class
java.util.TimerTask) that is executed in the background thread of ajava.util.Timerob-
ject.

5 Consluding Remarks

In this chapter we have described an agent-based model e-commerce system that is
currently being developed and implemented in our group. This system as it is being
extended is slowly converging toward the main ideas underlying e-service intelligence
systems. After presenting background information on software agents and automatic
negotiations we have provided a description of the system, illustrated by its complete
formal UML-based definition. We have also argued that the proposed solution is able
to mediate the existing contradiction between agent mobility and intelligence, by pre-
cisely delineating which components, and when, have to be pushed across the network.
Furthermore, we have discussed in detail how the negotiation framework, utilizing a
rule-based engine is implemented in the system.

Currently, the proposed system is systematically being implemented and extended.
We have experimented with its earlier versions and were ableto see that it scales well
(on a network consisting of 22 computers). Furthermore, we were able to successfully
run it in a heterogeneous environment consisting of Windowsand Linux workstations.
The results have been reported in [4]. More recently we have implemented and success-
fully experimented with the above described rule-based engine applied to the English
auction mechanism. Additional information can be found in [1, 2].

As the next steps we envision, among others: (1) completion of integration of the
original system skeleton with the rule-based engine, (2) addition of rules for a number
of additional price negotiation protocols (e.g. Vickery auction, Dutch auction etc.), (3)
implementation of an initial set of non-trivial negotiation strategies for both buyers and
sellers, (4) conceptualization of MCDM processes, starting from the ways in which
data concerning results of price negotiations has to be stored so that it can be effectively

21

utilized in support of decision making in the system etc. We will report on the results in
subsequent publications.

References

1. Bădic̆a, C., Ganzha, M., Paprzycki M.: Rule-Based Automated PriceNegotiation: an
Overview and an Experiment. In:Proceedings of the International Conference on Artificial
Intelligence and Sost Computing, ICAISC’2006, Zakopane, Poland. Springer LNAI, 2006 (in
press)

2. Bădic̆a, C., B̆adiţ̆a, A., Ganzha, M., Iordache, A., Paprzycki M.: ImplementingRule-based
Mechanisms for Agent-based Price Negotiations. In:Proceedings of the ACM Symposyum on
Applied Computing, SAC’2006, Dijon, France. ACM Press, 2006 (in press)

3. Bădic̆a, C., Ganzha, M., Paprzycki, M., Pîrvănescu, A.: Combining Rule-Based and Plug-in
Components in Agents for Flexible Dynamic Negotiations. In: M. Pĕchoŭcek, P. Petta, and
L.Z. Varga (Eds.):Proceedings of CEEMAS’05, Budapest, Hungary. LNAI 3690, Springer-
Verlag, pp.555-558, 2005.

4. Bădic̆a, C., Ganzha, M., Paprzycki, M., Pîrvănescu, A.: Experimenting With a Multi-Agent
E-Commerce Environment. In: V. Malyshkin (Ed.):Proceedings of PaCT’2005, Krasnoyarsk,
Russia. LNCS 3606, Springer-Verlag, pp.393-402, 2005.

5. Bădic̆a, C., Ganzha, M., Paprzycki, M.: Mobile Agents in a Multi-Agent E-Commerce Sys-
tem. In:Proceedings7th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, SYNASC’05, Timişoara, Romania. IEEE Computer Society Press, Los
Alamitos, CA, pp.207-214, 2005.

6. Bădic̆a, C., Ganzha, M., Paprzycki, M.: UML Models of Agents in a Multi-Agent E-Com-
merce System. In:Proceedings of the IEEE Conference of E-Business Engineering, ICEBE
2005, Beijing, China. IEEE Computer Society Press, Los Alamitos, CA, pp.56-61, 2005.

7. Bădic̆a, C., Ganzha, M., Paprzycki, M.: Two Approaches to Code Mobility in an Agent-based
E-commerce System. In: C. Ardil (ed.):Enformatika, Volume 7, pp.101-107, 2005.

8. Bădic̆a, C., B̆adiţ̆a, A., Ganzha, M., Iordache, A., Parzycki, M.: Rule-Based Framework for
Automated Negotiation: Initial Implementation. In:Proceedings1st Conference on Rules
and Rule Markup Languages for the Semantic Web, RuleML’2005, Galway, Ireland. Lecture
Notes in Computer Science 3791, Springer-Verlag, pp.193-198, 2005.

9. Bartolini, C., Preist, C., Jennings, N.R.: Architectingfor Reuse: A Software Framework for
Automated Negotiation. In:Proceedings of AOSE’2002: Int. Workshop on Agent-Oriented
Software Engineering, Bologna, Italy, LNCS 2585, Springer Verlag, pp.88-100, 2002.

10. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotiation.
In: Proceedings of SELMAS’2004. LNCS 3390, Springer-Verlag, pp.213-235, 2005.

11. Benyoucef, M., Alj, H., Levy, K., Keller, R.K.: A Rule-Driven Approach for Defining
the Behaviour of Negotiating Software Agents. In: J.Plaiceet al. (eds.):Proceedings of
DCW’2002, LNCS 2468. Springer-Verlag, pp.165-181, 2002.

12. Chavez, V., Maes, P.: Kasbah: An Agent Marketplace for Buying and Selling Goods. In:
Proc. of the First Int. Conf. on the Practical Application ofIntelligent Agents and Multi-Agent
Technology. London, UK, 1996.

13. Chmiel, K., Czech, D., Paprzycki, M.: Agent Technology in Modelling E-commerce Pro-
cess; Sample Implementation. In: C. Danilowicz (ed.):Multimedia and Network Information
Systems, Volume 2, Wroclaw University of Technology Press, pp.13-22, 2004.

14. Chmiel, K., Tomiak, D., Gawinecki, M., Karczmarek, P., Szymczak, Paprzycki, M.: Testing
the Efficiency of JADE Agent Platform. In:Proceedings of the3rd International Symposium
on Parallel and Distributed Computing, Cork, Ireland. IEEE Computer Society Press, Los
Alamitos, CA, USA, pp.49-57, 2004.

22

15. Chmiel, K., Gawinecki, M., Kaczmarek, P., Szymczak, M.,Marcin Paprzycki: Efficiency of
JADE Agent Platform, Scientific Programming, 2005 (to appear).

16. Dumas, M., Governatori, G., ter Hofstede, A.H.M., Oaks,P.: A Formal Approach to
Negotiating Agents Development. In:Electronic Commerce Research and Applications,
Vol.1, Issue 2 Summer, Elsevier Science, pp.193-207, 2002.

17. FIPA: Foundation for Physical Agents. Seehttp://www.fipa.org.
18. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. In: IEEE Transactions

on Software Engineering, vol.24, no.5, IEEE Computer Science Press, pp.342-361, 1998.
19. Ganzha, M., Paprzycki, M., Pîrvănescu, A., B̆adic̆a, C, Abraham, A.: JADE-based Multi-

Agent E-commerce Environment: Initial Implementation, In: Analele Universităţii din
Timişoara, Seria Matematică-Informatică, Vol. XLII, Fasc. special, pp.79-100. 2004.

20. Governatori, G., Dumas, M., ter Hofstede, A.H.M., and Oaks, P.: A formal approach to
protocols and strategies for (legal) negotiation. In: Henry Prakken (ed.):Procedings of the8th

Int. Conference on Artificial Intelligence and Law, IAAIL, ACM Press, pp.168-177, 2001.
21. JADE: Java Agent Development Framework. Seehttp://jade.cselt.it.
22. JESS: Java Expert System Shell. Seehttp://herzberg.ca.sandia.gov/jess/.
23. Kowalczyk, R.: On Fuzzy e-Negotiation Agents: Autonomous negotiation with incomplete

and imprecise information, In:Proc.DEXA’2000, London, UK, pp.1034-1038, 2000.
24. Kowalczyk, R., Franczyk, B., Speck, A.: Inter-Market, towards intelligent mobile agent

E-Market places. In:Proc.9th Annual IEEE Internmational Conference and Workshop on the
Engineering of Computer-Based Systems, ECBS’2002, Lund, Sweden, pp.268–276, 2002.

25. Kowalczyk, R., Ulieru, M., Unland, R.: Integrating Mobile and Intelligent Agents in
Advanced E-commerce: A Survey. In:Agent Technologies, Infrastructures, Tools, and
Applications for E-Services, Proceedings NODe’2002 Agent-Related Workshops, Erfurt,
Germany. LNAI 2592, Springer-Verlag, pp.295-313, 2002.

26. Laudon, K.C., Traver, C.G.:E-commerce. business. technology. society(2nd ed.). Pearson
Addison-Wesley, 2004.

27. Lochner, K.M., Wellman, M.P.: Rule-Based Specificationof Auction Mechanisms. In:Proc.
AAMAS’04, ACM Press, New York, USA, 2004.

28. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A classification scheme for negotiation in
electronic commerce. In: F. Dignum, C. Sierra (Eds.):Agent Mediated Electronic Commerce:
The European AgentLink Perspective. LNCS 1991, Springer-Verlag, 19-33, 2002.

29. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that Buy and Sell: Transforming Commerce
as we Know It. InCommunications of the ACM, Vol.42, No.3, pp.81-91, 1999.

30. Michael, S.: Design of Roles and Protocols for Electronic Negotiations. In:Electronic
Commerce Research Journal, Vol.1 No.3, pp.335-353, 2001.

31. Nwana, H., Ndumu, D.: A Perspective on Software Agents Research. In:The Knowledge
Engineering Review, 14(2), pp.1-18, 1999.

32. Paprzycki, M., Abraham, A.: Agent Systems Today; Methodological Considerations. In:
Proceedings of 2003 International Conference on Management of e-Commerce and e-Govern-
ment, Nanchang, China. Jangxi Science and Technology Press, China, pp.416-421, 2003.

33. Pîrv̆anescu, A., B̆adic̆a, C., Ghanza, M., Paprzycki, M.: Developing a JADE-based Multi-
Agent E-Commerce Environment. In: Nuno Guimares and Pedro Isaias (eds.):Proceedings
IADIS International Conference on Applied Computing, AC’05, Algarve, Portugal. IADIS
Press, Lisbon, pp.425-432, 2005.

34. Pîrv̆anescu, A., B̆adic̆a, C., Ghanza, M., Paprzycki, M.: Conceptual Architecture and Sample
Implementation of a Multi-Agent E-Commerce System. In: IonDumitrache, Catalin Buiu,
(Eds.):Proceedings of the15th International Conference on Control Systems and Computer
Science CSCS’15). ”Politehnica Press” Publishing House, Bucharest, 2005,Vol.2, pp.620-625

35. Rolli, D., Eberhart, A.: An Auction Reference Model for Describing and Running Auctions,
Wirtschaftsinformatik 2005, Physica-Verlag, pp.289-308.

23

36. Rolli, D., Luckner, S., Gimpel, H., Weinhardt, C.: A Descriptive Auction Language. In:
International Journal of Electronic Markets, 2006, 16(1), pp. 51-62.

37. Skylogiannis, T., Antoniou, G., Bassiliades, N.: A System for Automated Agent Negotiation
with Defeasible Logic-Based Strategies – Preliminary Report. In: Boley, H., Antoniou, G.
(eds):Proceedings RuleML’04, Hiroshima, Japan. LNCS 3323, Springer-Verlag, pp.205-213,
2004.

38. Tamma, V., Wooldridge, M., Dickinson, I: An Ontology Based Approach to Automated
Negotiation. In:Proceedings Agent Mediated Electronic Commerce, AMEC’02. LNAI 2531,
Springer-Verlag, pp.219-237, 2002.

39. Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-to-Business
E-Commerce Lifecycle. In:Proceedings of the WWW’02: International World Wide Web
Conference, Hawaii, USA. ACM Press, New York, USA, pp.89-98, 2002.

40. Wooldridge, M.:An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.
41. Wurman, P.R., Wellman, M.P., Walsh, W.E.: A Parameterization of the Auction Design

Space. In:Games and Economic Behavior, 35, Vol.1/2, pp.271-303, 2001.
42. Wurman, P.R., Wellman, M.P., Walsh, W.E.: Specifying Rules for Electronic Auctions. In:

AI Magazine23(3), pp.15-23, 2002.

