Developing a Model Agent-based E-commerce System

Costin Badicdt, Maria Ganzh4 and Marcin Paprzycki

1 University of Craiova, Software Engineering Department
Bvd. Decebal 107, Craiova, 200440, Romania
badica_costin@software.ucv.ro
2 Elblag University of Humanities and Economy,
ul. Lotnicza 2, 82-300 Elblag, Poland
ganzha@euh-e.edu.pl
3 Computer Science Institute, SWPS, 03-815 Warsaw, Poland
marcin.paprzycki@swps.edu.pl

Abstract. It is easy to realize that goals set behind a large clasment sys-
temsmatch these put forward for systems defineceaservice intelligenceln
this chapter we describe a model agent-based e-commeramsyisat utilizes
rule-based approach for price negotiations. Furtherntbesproposed system at-
tempts at mediating the apparent contradiction betweent agebility and intel-
ligence.

1 Introduction and Overview

Recently an increasing interest in combining Interneedasectronic services (e-ser-
vices) with “intelligent” functions can be observed (thesmv e-services are often
callede-service intelligende While this particular trend is relatively new, creatioh o
intelligent distributed systems in form of software agerdas be traced back a least
to the seminal paper of P. Maes [29]. While her main concers gevelopment of
an infrastructure dealing with information overload, het research concerned appli-
cations of software agents in a number of areas includingvermment, e-learning,
e-shopping, e-marketing, e-banking, e-logistics etc.r@hsoftware agents are to fa-
cilitate much higher quality information, personalizedammmendation, decision sup-
port, quasi-direct user participation in organizationianming, knowledge discovery
etc. When developed and implemented, agent systems areattapéve, personalized,
proactive and accessible from a broad variety of devicels 88 therefore easy to see
how software agents, and agent systems in general, canwed/es an incarnation of
e-service intelligence.

While there exist a large number of attempts at developirengbased systems,
they are mostly small-scale demonstrator systems—Ilataritbed in academic publi-
cations. Separately, some applications utilize the agetapmor, but not existing agent
tools and environments. Finally it is almost impossible tlfout if actual agent sys-
tems exist in the industry; e.g. the true role of the Con@edjent system within the
Mitsubishi Corp. While a number of possible reasons for sitisation have been sug-
gested (for instance see [31, 32]), one of them has beenthedi&pelled. It was shown
that modern agent environments (e.g. JADE [21]), even whening on an antiquated

hardware, can scale to 2000 agents and 300,000 messagéS][IFhus it was exper-
imentally established thdtis possible to build and experiment with large-scale agen
systemsTherefore, it is extremely important to follow the positiprogram put forward
by Nwana and Ndumu [31] and focus on developing and impleimgstich systems.

One of the well-known applications where software agergg¢@play an important
role is e-commerce. Modern agent environments (such as Ja&tsupportimplemen-
tation of quasi-realistic model e-commerce scenarios.ddeer, advances in auction
theory have produced a general methodology for descriliicg pegotiations. Combi-
nation of these factors gave new impetus to research on atittgre-commerce. In this
context, autonomous, and sometimes mobile, software sgeatited as a potentially
fruitful way of approaching e-commerce automation [25].

Sinceautonomyis a broad concept that can be defined in many ways, we wodd lik
to narrow it down and focus oadaptabilityviewed as ability to update the negotiation
“mechanism” to engage in unknown in advance forms of prigmtiations. Obviously,
another aspect of autonomydscision autonomghat can be understood as capability
to reason over past experiences and domain knowledge im tordeaximize “utility”
(making it very closely related to “intelligence”).

Finally, the notion of agennobility refers to its capacity to migrate from one com-
puter to another. While the goal of such a migration is tylhjcaelated to acting on
behalf of some software or human entity, it does not depentherntelligence that
agents are possibly equipped with. However, to be able ititéae e-service intelli-
gence, we have to be able to combine the two—as mobile agemésth be able to
dynamically adapt to situations found within visited sit@gerefore, agent mobility
requires transfer of code, data, process and authorityemetwnachines. This makes
intelligent mobile agents very heavy [40] and later in tHisyoter we discuss a partial
solution of this problem.

In our work we have been developing a skeleton system in waiebnomous agents
interact in a way that models realistic scenarios arisirgnie-marketplace (for a sum-
mary of our early results see [19] and references availdtdee). Here, we have two
long-term goals in mind. The first one is to broaden undedstayof technical aspects
of developing agent systems, such as agent functionalities interactions and com-
munication, agent mobility etc. We are also concerned wighfact that without agents
systems being actually implemented using tools that ararapgply designed to do this,
agent research will never be able to reach beyond acadentaesSs in achieving the
first goal will allow utilization of our systems as a tool-bfior modeling processes oc-
curring in an e-marketplace. For instance, it will be pdgsib apply it to study: fects
of pricing strategies, of negotiation protocols and st flow of commodities etc.
Due to agent flexibility it will be relatively easy to expermt with various e-commerce
scenarios.

In this chapter we proceed as follows. In the next section meige background
information and follow with the description of our systemifwlized through a com-
plete set of UML diagrams. We then discuss in some detailyéieg implementation
specifics) how rule based engine can be used to facilitabmantous price negotiations.

2 Background

2.1 Agent Systems in E-Commerce

While there exist many definitions of agents, for the purpafsthis chapter we will
conceptualize them as: encapsulated computer progratmatesl in an environment,
and capable of flexible, autonomous actions focused on nte#tteir design objectives
[40]. For such agents, e-commerce is considered to be othe gidradigmatic applica-
tion areas [25].

Proliferation of e-commerce is strongly related to the ezple growth of the Inter-
net. For example, the total number of Internet hosts with@omames was estimated
at 150 millions in 2003, while in the same year, Web conterd estimated at 8000
millions of Web pages ([26]). At the same time, e-commergemee projections were
estimated to reach in 2006 up to.8arillions for B2C e-commerce and up to .45
trillions for B2B e-commerce ([26]).

E-commerce utilizes (to various degrees) digital techgiel® to mediate commer-
cial transactions. As a part of our research we have conalipdd a commercial trans-
action as consisting of four phases:

— pre-contractual phasencluding activities like need identification, product keo-
ing, merchant brokering, and matchmaking;

— negotiationwhere participants negotiate according to the rules of thgkeat mech-
anism and using their private negotiation strategies;

— contract executiorincluding activities like: order submission, logisticsidapay-
ment;

— post-contractual phasthat includes activities like collecting managerial infa-
tion and product or service evaluation.

While there exist many scenarios of applying agents in eraerae, automated
trading is one of the more promising ones. In particular, regreterested in using agents
to support all the four phases of a commercial transactigttiped above, by addressing
guestions like: how is an e-shop to negotiate price withctete what happens before
negotiations start and after they are finished, where frenptirchase is actually made
etc, thus going beyond the phase of negotiation itself.

Unfortunately, our research indicates that most existutgraated trading systems
are not yet ready to become the foundation of the next ganarat e-commerce. For
example, the Kasbah Trading System ([12]) supports buyithszlling but does not
include auctions; SILKROAD ([30]), FENAs ([23]) and Int&tarket ([24]) exist as
“frameworks” but lack an implementation (which is typicalfmost agent systems in
general [31]).

2.2 Automated and Agent-based Negotiations

In the context of this chapter we understand negotiatiorss@®cess by which agents
come to a mutually acceptable agreement on a price ([28]gn/diesigning systems for
automated negotiations, we distinguish betweegotiation mechanismrotocol9
and negotiation strategiesProtocol defines “rules of encounter” between negotiation

participants by specifying requirements that enable tii@raction. The strategy de-
fines the behavior of participants aiming at achieving arddssutcome. This behavior
must be consistent with the negotiation protocol, and Wgimbkpecified to maximize
“gains” of each individual participant.

Auctions are one of the most popular and well-understoom$anf automated ne-
gotiations ([41]). An increased interest has been mamitestcently in attempts to pa-
rameterize the auction design space with the goal of fatilig more flexible automated
negotiations in multi-agent systems ([41, 28]). One of th& ittempts for standardiz-
ing negotiation protocols was introduced by the Foundat@nintelligent Physical
Agents—FIPA ([17]). FIPA defined a set of standard specificet of agent negotia-
tion protocols including English and Dutch auctions. Authof [9, 10] analyzed the
existing approaches to formalizing negotiations (inahgdiIPA protocols) and argued
that they do not provide enough structure for the developwfdruly portable systems.
Consequently, they outlined a complete framework commgisil) negotiation infras-
tructure, (2) a generic negotiation protocol and (3) taxopof declarative rules. The
negotiation infrastructuraelefines roles of negotiation participants and of a host. Par-
ticipants negotiate by exchanging proposals and, depgratirthe negotiations type,
the host can also become a participant. Geeeric negotiation protocalefines the
three phases of a negotiation: admission, exchange of patgpand formation of an
agreement, in terms of how, when and what types of messagaklidie exchanged be-
tween the host and participanidegotiation rulesare used for enforcing the negotiation
mechanism. Rules are organized into a taxonomy: rules foission of participants to
negotiations, rules for checking the validity of negotatproposals, rules for protocol
enforcement, rules for updating the negotiation statusiodming participants, rules
for agreement formation and rules for controlling the negimin termination. Finally,
they introduce aegotiation templatéhat contains parameters that distinguish one form
of negotiations from another, as well as specific valuesatiarizing given negotiation.
In this context it should be noted that rule-based appraabhee been indicated as a
very promising technique for introducing “intelligenceitd negotiating agents ([9, 11,
16,27,37,41,42, 20]). Furthermore, proposals have beefopuard to use rules for
describing both negotiation mechanisms ([9, 38]) andegias ([16, 37]).

With so much work already done in the area of agents and agstenss appear-
ing in the context of autonomous price negotiations, let mdeuline what makes our
approach unique.

— In most, if not all, papers only a “single price negotiatiogs’tonsidered. Specifi-
cally, negotiations of a single item or a single collectidritems is contemplated.
Once such a negotiation is over, a group of agents (agemmyshat participated
in it completes its work. We are interested in &elient (and a considerably more
realistic) scenario when a number of products of a given &ypelaced for sale one
after another. While this situation closely resembles wizgtpens in any Internet
store, it is practically omitted from research consideradi In this chapter, for clar-
ity of enclosed UML diagrams, we depict situation where amcat unlimited num-
ber of items is to be sold. However, this assumption has cedyhetical reasons.

— Fact that multiple items are to be sold has also an importamsequence for the
way that price negotiations are organized. In the litetuis very often assumed

that agents join an ongoing negotiation process as soorsih ready (see for in-
stance [9]), while agent-actions that take place afterepmiegotiation is completed
are disregarded. Since we sell multiple items one afterttempive have decided to
treat price negotiations as a “discrete process.” Heregaf a specific case of
fixed price mechanism, buyer agents are “collected” anéselé in a group to par-
ticipate in a given price negotiation. While the negotiatiakes place buyer agents
communicate only with the seller agent (they can be envisiaass being placed
in a closed negotiation room). At the same time the next gafupuyer agents is
collected (as they arrive) and will participate in the neagatiation.

— Fact that multiple subsequent auctions (involving the sproduct) take place al-
lows us to go beyond one more popular “limitation” of knownugagent systems.
While sometimes they involve rather complicated price tiagjons, e.g. mixed
auctions (see for instance [35, 36]), since only a singi® it a single collection
of items are sold, it is only that given price negotiation meatism that is taken into
account. In our case, since multiple negotiations are usedlt items of the same
product we conceptualize situation in which price negmtatmechanism change.
For instance, first 25 items may be sold using English Auctidnile the next 37
using fixed price with a deep discount.

— Furthermore, we consider the complete e-commerce systaimhwneans that af-
ter negotiation is completed we conceptualize subsequénha that may, or may
not result in an actual purchase. In the case when purchasad take place, we
specify what should happen then to all involved agents.

— While agent mobility is often considered to be importantiia tontext of e-com-
merce, conflict between agent mobility and intelligencaigly recognized. In our
work we address this question by designing modular agentslaarly delineating
which modules have to be send, when, by whom and where.

— Finally, the complete system is being implemented using BA&n actual agent
environment.

3 Code Mobility in an Agent-Based E-Commerce System

Code mobility has been recognized as one of key enablersgé kcale distributed
applications, while its specific technologies, designgrat and applications have been
systematically analyzed ([18]). Furthermore, recentaederesults suggest that blend-
ing mobility and intelligence might have important beneéitpecially in advanced e-
commerce by providing application components with aut@sdecision-making capa-
bilities and ubiquity as required in networked environnsgfi25]). At the same time it
has been argued that, as a general feature, agent mobiliyecessary. Therefore, we
asked a basic question: why, in the case of e-commerce,dbaeluse mobile agents
instead of messaging? To answer it, let us consider someboehlehind a slow In-
ternet connection (which is not an uncommon situatiorgstto participate in an eBay
auction. In this case it is almost impossible to assure thiatgersons bid (1) reaches
eBay server in time, (2) is $iiciently large to outbid opponents that have been bid-
ding simultaneously (information about auction progreswall as responses may not
be able to reach their destinationgistiently fast). As a result, network-caused delays

may prevent purchase of the desired product. ObviouskyMiould not be the case if
an autonomous agent representing that user was co-locétethe negotiation host.
In this context, one can obviously ask about the price of mpWiuyer agents across
the network. Naturally, it may happen that an agent may netdbeto participate in an
auction because it does not reach the host in time. In resgenss observe that: (1) if
it is a particular single auction that the user is interegtethen agent not reaching the
host has exactly the saméect as not being able to win because of bid(s) being late
andor too small; (2) therefore, itis only an agent that reachesbst in time that gives
its user any chance tdfectively participate in price negotiations; (3) furthemagdf an
agent reaches its destination, it will be able fieetively participate in all subsequent
negotiations within that host (and we assume across thisrghpt multiple negotia-
tions involving items of the same product take place), wHétays caused by network
traffic may permanently prevent user froiffiextive participation in any of them. For an
extended discussion of the need for agent mobility in e-cenemsee [7].

Let us now sketch proposed resolution of an above mentiooeidws contradiction
between agent mobility and adaptivity. In our work, we aélithe negotiation frame-
work introduced in [9, 10], where theegotiation protocols a generic set of rules that
describes all negotiations, while thegotiation templatés a set of parameters that es-
tablishes the form of negotiation and its details. Finahligre is thenegotiation strategy
defining outcome optimizing actions of individual negatatparticipants. It should be
obvious that theegotiation protocols generic and public—all agents participating in
all negotiations have to use it. Therefore buyer agent cegive it upon its arrival at
the host; similarly to the negotiation template which havédlocal” as it describes
currently used form of negotiations (and which can change @me). It is only the
strategy that is “private” and has to be obtained from thentlagent (we nameient
agentagents representing User-Clients). At the same time, itdias assumed that de-
pending on the form of negotiation,fiérent strategies will be used, and thus strategy
is not known in advance. Therefore, since the protocol aaddgimplate can be obtained
within the e-store, carrying them across the network is aasgary. Unfortunately, it is
not possible to establish the negotiation form in advancesamd buyers with the ne-
gotiation strategy pre-loaded. Recall that in our systenasgeime that e-stores respond
to the flow of commaodities by actively changing forms of pn@gotiations. This being
the case, by the time the buyer agent reaches its destinggistnategy module may be
useless, as the form of negotiations has already changetthuA/propose two network-
traffic minimizing approaches to agent mobility. In the first camaied thereaftegent
mobility) only an agent skeleton is send across the network and upwalatr obtains
the negotiation protocol and the template and then reqtieststrategy module from
the client agent. In the second case (hamed thereadthr mobility buyer agents are
created by the host (on the basis of a request from the clgantpand assembled in-
cluding (1) protocol, (2) actual template, and (3) inforirmatwho they represent. Then,
again, they request an appropriate strategy module froimdlient agent. Observe, that
since only the strategy module is “secret,” while the rernmajparts of the buyer are
public and open to any scrutiny at any time, this latter sotushould not directly result
in an increased security risk.

4 Description of the System

4.1 Conceptual Architecture

In our description of the system we utilize its almost cortmwldML-based formaliza-
tion. Due to lack of space we have decided to preseotapleteset of UML diagrams
of the system, rather than lengthy descriptions of its festand underlying assump-
tions. Interested readers should consult ([6,7,19]) forendetails. In Figure 1 we
present the use case diagram of our system that depictsitlagjents and their inter-
actions. We can distinguish three major parts of the systg&ptheinformation center
where white-page and yellow-page type data is stored—shigii current solution of
the matchmaking problem [38], (2) tipeirchasing sidevhere agents and activities rep-
resenting User-Client reside, and (3) 8adler sidewhere the same is depicted for the
User-Seller. Let us now describe in detail each of the agentept the CIC agent that
plays only an auxiliary role [19]) found in Figure 1.

—|Purchasing side |5,—-|Information centerdy Seller side

I
Maintaining
products DB
Warehouse Agent|
Shop Decision
Making
Creation of
Reservation
Notification @ —
about result
\Shop Agy User_Seller

Client Decision
Making

2

Client Agent

Communication

CIC Agent

Registration

User_Client

Negotiating
process
Buyer Agm Seller Age\m\
— <<include>>]]
Admittingto _ ___________= Creating List of
negotiations Participants

~

Gatekeeper Agent

Fig. 1. Use case diagram

4.2 UML Models of Agents in the System

Client agent On the purchasing side, we have two agents. Thent agent, repre-
sented in Figures 2 and 3 exists in a complex state. On theamekihlistens for orders
from the User-Client and, to fulfill them: (1) queries 88 agent which has access to
information which stores sell the requested product anldej treatdBuyeragents lo-
cally (or if such agent has to be send to them), (2) then itaddpes or requests creation
of Buyeragents tq by each such e-store (identified by E&atekeepengent). At the

do /Kill all BAs

I create Use]w
(Creation of BAS \
i Finalisation of work
one more address [not first address] / read next address { inCIC] r Waiting for order

Asking to create
entry / send(B_ID) new order(p)
Adjusting list] ask(CIC.p)
do / Adjust(CIC_list,Info)
Gathering il

creatonorsa_][Sending BA
ldolcvea{e(B D) || do/send(BA(E_ID)address)

T 1-st element of lst done \

recieve[CIC_list)

last element of list done

[not all BAS]

[all Bas]
[no more product || refused]

Refuse
Listening BA/GA (
[need strategy] Sending

do / send(B_ID strategy)

Storing

do / store(Info)

[1-st time]

labandon purchase
Fig. 2. Client Agent Statechart diagram

same time, it directly manages the process of making pueshas behalf of the User-
Client (Figure 3), on the basis Bluyeragent messages informing about results of price
negotiations (let us note that in the case of multiple ordefgarate groups duyer
agents—corresponding to separate products—will be mahagthe same fashion).
For a certain amount of time tl@&ient collects reports send Buyeragents. When the
wait-time is over (or when aBuyeragents have reported back)jent agent enters a
complex state. On the one hand it continues listening forsagss fronBuyeragents
(obviously, if all have reported already then none will bensng). On the other hand
it goes through a multi-criteria decision making procedtiie “MCDM” box) that has
one of three possible outcomes: (i) to attempt at completiaglected purchase, (ii) to
await better opportunity, or (iii) to declare the purchaspdssible and notify the User-
Client accordingly. Note that, in a realistic system, M@DM analysis should be truly
multi-criteria and include factors such as: price, histoirgealing with a given e-shop,
delivery conditions etc.

Cleaning >% Sale finalization
(Listening BAs messages] do /il all BAS (p)

o do / count(time);count(result number) J abandon purchase / Notify(User) (Notifying BAS)

do / notify(try once more)
[auLesuu received OR time is up]

iations result

Susper\d BAs

do / send(BAs,"stop")

[deal] / Notify User

msgBA

Canceling purchase
do / GA Send(refuse)

(e)

rResuh registration]
ldu/send(stra(egy) J

l do / store(result) J

MSYBA(GA
Stroring

do / store(info) J mcpm]

Confirming purchase(®_10) | [Waiting for BA response |
l do / send(confirm)

no more product

[reservation expired]

Fig. 3. Client Agent Statechart diagram

When attempt at completing a purchase is successfullieat agent sends mes-
sages to alBuyeragents to cease to exist. The situation is slightly more dioated
when the attempt was unsuccessful. Note that it is quiteilpleshat the firstMCDM
analysis was undertaken before Bliyeragents have complete their “first round” of
price negotiations. They could have contactedGhent while it was “thinking” which
of the existing dfers to choose. Therefore, when tB&ent agent analyses available
reservations, they include not only reservations that t&en already considered, but
also possibly new ones that have arrived in the meantime.rAsudt another attempt at
making a purchase can be made. If none of the availaiiéesois acceptable, but pur-
chase was not declared impossible, @leent agent undertakes the following actions:
(1) informs allBuyeragents that have already reported to cancel current reégsrsa
and return to price negotiations (or just to return to priegatiations if they previously
failed) and (2) resets timer establishing how long it willitnaefore the nexMCDM
analysis. Observe that in this way, in the proposed systenpdassible that some agents
make their second attempt at negotiating prices, while sageats have just finished
the first. As this process continues in an asynchronousdaghiyeragents will make
different number of attempts at negotiating price that is aetdpto theClientagent.
This process and th€lientagent will terminate when all orders submitted by the cus-
tomer have been either honored or abandoned. For the timg & assume that the
“Sale finalization” process seen in Figure 3 is always swsfaédn the future we plan
to remove this somewhat artificial restriction.

Let us note that it is possible that since it is fikent agent that makes the final
determination which fder to accept, and that it has to communicate with one of its
remotely locateduyeragents to actually complete a purchase, the request togttem
at making that purchase could be network-delayed resultiragn expired reservation
and inability to complete the task. Unfortunately, thiskgdem does not seem to have
a simple solution, since price comparison requires comaation between agents par-
ticipating in price negotiations. In our system we havedelg a central point-Client
agent—that will collect all §ers, instead of all-to-all communication. Since not a#sit
will conduct their price negotiations at the same time, aitti the same urgency, it is
impossible to assure that the besfeo will still be available, when the “remaining”
agents complete their negotiations. Therefore, our smiugmains optimal in terms of
reducing total network congestion by sending only minirsiat agents and minimizing
the total number of messages send over the network.

Finally, let us note that a complete information about a#ireg taking place during
servicing User-Client request (such as: refusal to admiegpotiations, results of price
negotiations, length of reservation, etc.) is stored fothier information extraction. For
instance, as a result of data analysis, store that is cahstalling good at very high
prices may be simply avoided.

Buyer agent Buyeragent (see Figure 4) is the only agent in the system thatvasgol
mobility. It is either dispatched by thélientagent or created by tHeatekeepeagent
on request of th€lient If it is dispatched, then upon arrival at the store it commun
cates with th&Gatekeepe(see Figure 6,7) to obtain entry to negotiations (in caserwhe
entry is not granted it informs it€lient agent and is killed). In the case Glient re-

10

Olcreated by CA]

Moving to the Host part 1)

entry / get(address) arrive entry / send(GA, RegistrationForm) J\
do / go(address) A answer

[rejection] / send(CA, GA refused)

[created by GA]

Registering part 2

do / get(protocol) O

more p) / send(CA, no more p)

Listening SeA,GA

entry / state=ready

1saGA(no more p) / send(CA.no more p)

msgCA(strategy)

Getting template

[nego] /
do / analyze template >0
template)
A4
i process

>
Tprice matching] Self-destruct

[end]
/ send(CA result)

Listening CA

[price not matching] / send(CA,Result) \|
A
[refuse] [confirm]

[Cancelling of purchase] [Attempting purchase]
lemnjlsend(SA.refuse) J lemrylsend(SA,VES) J

[waiting for SA answer Completing purchase |
[answer=expired] lexll/send(CA‘answer) [answer=deal] ~ | entry / transfer(CA,info)

mspSA(Nr_Res) / send(CA,Nr_Res)

[continue]

Fig. 4. Buyer Agent Statechart diagram

questing creation of thBuyer, the Gatkeepemay deny such request. In both cases,
information about refusal to cooperate is stored byGfient agent (e.g. e-stores that
do not want to cooperate may be removed from the list obtdioead the CIC; see box
“Adjusting list” in Figure 2). Next, the preregister&diyerobtains from th&atekeeper
the negotiation protocol and the current negotiation tetephnd requests (and obtains)
an appropriate strategy module from t@éent agent (see Figure 2). When all these
modules are installeBuyerinforms theGatekeepethat it is ready to negotiate (it is
then registered as such). Price negotiations start wheBiperreceives a start message
from the Selleragent (see Figure 9; note that the “Negotiations box” appgdhere

is “the same” for both th&ellerand theBuyeragents); note also special treatment of
fixed-price negotiations by both tiBiyerand theGatekeepeagents. Upon completion
of negotiationsBuyerinforms theClient about their result and, if necessary (when an
attempt at completing purchase is made), acts as an intarpéetween th€lientand
the Shopagents. In the case when purchase was not attempted or wasavaissful,
Buyeragent awaits the decision of tlientand if requested proceeds back to partici-
pate in price negotiations (before doing so it requests j@sion to re-enter that may be
granted or denied; updates its negotiation template anslggshe strategy module—

if the template has changed). This process continues hatuyeragent self-destructs
on the request of th€lientagent.

Shop agent On the "selling side” of the system, ti&hopagent acts as the represen-
tative of the User-Seller. We assume that after it is creatgekrsistently exists in the
system until the user decides that it is no longer needed.UME diagram repre-
senting theShopagent is presented in Figure 5. Upon its instantiation Shepagent
creates and initializes its co-workersGatekeepeagent, aVarehouseagent andeller
agents (one for each product sold). Initialization of Warehous@gent involves pass-

11

Creation of a SeA

entry / send(WA,add(p,q))
do create(SeA(Se_ID,p))
exit / send(CIC.p)

do / send(GA Se_ID template)

Completing work

(Creation of a GA) do/ Kill all agents

do/ send(CIC,GA)

Creation of a WA

I register(CIC)

terminated by UserSeller msgUsersier(p.)

Listening UserSeller, WA,BA,SeA

Withdraw product

do / Kill (Se_ID)
exit / send(CIC delete(p,Se_ID))

do / send(GA killed Se_ID)

UserSeller notification

Notification GA
do / reply(q)

Requesting WA

do / requestWA(p.q?)

[expired] msgWA(Info about reservation)

Cancelling sale

entry / send(WA,cancel(Nr_res))

Sale finalization
entry / add to Knowledge DB
do/ add to knowledge base

ML Creation of reservation

do/ send(WA,p, q) MCDM

do / Analysis of situation [new template]

Changing the template of negotiations

do / send(GA,new template for Se_ID)

Refusing done(Nr_Res),

do / send(BA Refuse)
BA notification

do / send(BA, Ni_res)

Fig. 5. Shop Agent Statechart diagram

ing information about goods that are initially available sale (see Figure 8), while
initialization of theGatekeepeagent involves providing it with templates that are to be
used initially in price negotiations of each product soldrtRermore, the&Gatekeeper
agent and the list of products available in the store aresteigid with theCIC agent.

After the initialization stage, th8hopagent enters a complex state where it super-
vises negotiations and product flow. First, it waits for fingf any price negotiation. If
the negotiation was successful, a giviellerinforms theShopagent, which is asking
the Warehouseagent to reserve a given quantity of a particular productfepecific
amount of time. (Currently we assume that a single item ofargproduct is sold each
time, but this, somewhat limiting, assumption will be reradun the future.) Events
can then proceed according to following scenarios.

1. If the winningBuyerconfirms purchase then tishopasks theNarehousagent to

check the reservation.
— If the reservation did not expire then tlopinforms theBuyeragent about

acceptance of transaction. This event starts the final stegeed "Sale final-
ization” which includes such actions as payment and dsliver
— In opposite case, theéhopagent sends rejection to tBeiyeragent
2. If the Client agent rejects purchase (and informs 8tepagent about it through
theBuyeragent) then th&hopagent asks the/arehous@gent to cancel the reser-

vation.

Completing one of these scenarios "closes” this bran®hafpagent execution. Sepa-
rately, theShopagent keeps track of all negotiations and transactions ariddically
performs multi-criteria analysis (tHdCDM module) that may result in changes in the
negotiation template for one or more products (e.g. minipméde, type of price ne-
gotiation mechanism, etc.). For instance, when only a femd are left they may be
deeply-discounted, or put on sale through an auction. & ¢hse a new template is
generated and send to tlatekeepeagent that switches it in an appropriate moment
(see below, Figures 6, 7).

12

Let us also note that, similarly to th@ient agent, theShopagent stores complete
information about all events taking place in the e-storelsas: results of price nego-
tiation, information about agents that actually purchassérved product, information
of agents that canceled reservations, etc.). This infaamawvhen analyzed, may result
for instance in a giveRlientagent being barred from entering negotiations.

Listening

>@
\r Notification]

[Seller(S_ID) is killed] l do / send(all reg. Buyers, no more product p) J

Updating tepmlate] \[Checking registration list]
entry / "close” registration list
do / update(template(S_ID))
L exit / notify (preregistration Buyers)

[new template]

[empty

[new Seller] / get(S_ID) \|XV not empty]

\[Preparing liations] [Buffer regi: ion list]
msgCA,msgBA /L J l do / push(registration list,template)

[SeA(end negotiations)] tart negotiations
Waiting for end of negotiations

Fig. 6. Gatekeeper Agent Statechart diagram

Gatekeeper agent Shopagents cooperate directly with thébatekeepeagents that
(1) either interact with incomin8uyeragents, and admit them to the negotiations (or
reject their attempt at entering the host), or interact \@tient agents and, on their
request, creatBuyeragents (or reject such a request), and provide admittegated
Buyeragents with the protocol and the current negotiation tetaf) in appropriate
moments releasBuyeragents to appropriatgelles and (3) manage updates of tem-
plate modules. The statechart diagram of @a&tekeepengent is presented in Figure
6 (the top level description dbatekeepefunctionality) and continued in Figure 7 (de-
picting negotiation related activities). Each createdltmvwaed to entelBuyeragent is
put on a list of preregistered agents and provided with maltand current template.
Buyeragents remain on that list until they receive their strategylule and complete
self-assembling. Assembl@&iiyeragents are put on a list of registered agents that await
start of price negotiations. When a minimum numbeBaferagents have registered
(minimum for a given form of negotiations) and the wait-tilmas passed, th&ate-
keepemasses their identifiers and the current negotiation teieptetheSelleragent.
Then it cleans the current list of registe®dyeragents and the admissjomonitoring
process is restarted (assuming that$edieragent is still alive).

As stated above, our system alloBayeragents that lost negotiations or that de-
cided not to make a purchase to stay at the host and try totez-4e@gotiations. They
have to ask permission to be re-admitted and if allowed blaek teceive an updated
template ("old Buyer” path). When a new template module ikvdeed by theShop
agent, a list of currently register&liyeragents is put into a lfter ("Buffer registra-
tion list” box). These agents have to be serviced first, usiiegcurrent template that
they have been provided with upon entering the e-store. &st#me time the new in-

13

coming agents will then be given the new template. Finatiya ispecial case, when a
given product has been soldfand theShopagent terminates thgellerresponsible for
selling it, theGatekeepeinforms awaitingBuyeragents about this fact.

[New registration means
fthat one creates

Reistration it and d :

preregistration listfor [~~~ -~

leurrent template mS9CA®_ IR Gecking cA | [creaionea)
l do | createBA(B_ID) J

Listening BAICA
do / count(iime),count(BA)

Registering BA)|
do / add_to(Reg_List,B_ID)

enough participant;

Closing regestration

2| do/ send(Protocol, Template)
exit/ add_to(Prereg_List,B_ID)

[fixed price]

do / send(Protocol, Template)

(registration) [enough participant] [not empty]

[time is up] / pop(rdgistration)
Transfer participants list
do send(Se_ID registration) |[Enough participants]

Preregistration old BA

do / send(Template)
exit/ add_to(Prereg_ListB_ID)

jestart timer

Fig. 7. Statechart diagram for Preparing Negotiations State

I create

Finishing the work

Listening SA

entry / get(Nr_Res)
do / check(Nr_Res)

Adding product
do / add(p,q,BD)

-

L/

Checking reservations

Checking / move(Nr_res) ‘

l do check(t_res) |

Checking quantity of p

exit / sendSA(p,new_q)

entry / get(p,qRes)
do / Reserve(p,qRes,t_Res)
exit / sendSA(Nr_Res)

1 move(1st res for p)
do / check(t_res)

Removing reservation l

entry / status res=expired
do / q+q_res

Completing confirmation
[t_res over]
do / complete reservation

exit / send(SA,deal)

do/q+q_res >(>_ >©
exit / send(SA,Refuse)

Fig. 8. Warehouse Agent Statechart diagram

Warehouse agent Shopagent interacts also directly with th¥arehousegent (pre-
sented in Figure 8). In the early stages of its functionirgWarehouseagent is sup-
plied (by theShopagent) with information about products and their quartiti® be
saved in a database). Then it enters a complex state whexpatMaits notifications
from theShopagent and (b) acts on them. T8hopagent notifies th&Varehousagent

14

about: (i) registration of new products for sale, (ii) pretiteservations, (iii) purchase
confirmations, and (iv) purchase terminations. Each ofehegtifications is followed
by an appropriate response: (i) product registrationp(duct reservation, (iii) check-
ing status of a reservation, (iv) cancellation of a reséowmafFinally, if quantity of some
product becomes 0, thé/arehouseagent informs about it th&hopagent, which (in
the current state of our system) terminates the correspgi&dilleragent, and informs
about it both theCIC and theGatekeepeagents.

killed by SA
/ create

[Waiting for start of negotiations .

get(registration Iist\{?mplale)

Starting negotiations

l do / send all participants(start)

]
J

\2
[Negotiations]
J

l exit / send all participants(end)

SA Notification
do / send(SA result)

do / send(GA, end)

Fig. 9. Seller Agent Statechart diagram

Seller agent Finally, the last agent working on the “selling side” of thestem is the
Selleragent. It is characterized by a rather simple statechagtaiia (see Figure 9). The
simplicity comes form the fact that, in the “Negotiationstidhe completenegotiation
framework proposed in [9, 10] in enclosed. Observe thatlhoegotiations have to end
in finding a winner and our system is able to handle such anteðe same time, all
data about negotiations is collected and analyzed bghwopagent and, for instance, a
sequence of failures could result in a change of the negmtisgmplate.

System activity diagram Let us now combine activities of all agents in the system
into one diagram (see Figure 10, 11). This diagram represiemt of actions presented
from the perspective of the two main agents in the systemStiepand theClient.
Obviously, to keep that diagram readable, we had to omielagnber of details that
have been represented within statechart diagrams of thdiviagents that should be
“co-viewed” with the activity diagram.

4.3 Rule-Based Mechanism Representation

Let us now describe how we have implemented in our systerbaged mechanisms.
We start by summarizing the framework for automated negotigntroduced in [9, 10]

15

Shop Seller Gatekeeper Buyer Client

i

(Waiting for a User-Client order

Waiting for a User- seller(s
eller(S_ID; S
Merchant order (Seller Creation} -=2 I —>(Seller Registration) <<signal receipt>>
]\ N Asking to create Buyer (CIC Request Contact Data)

Starting Nego Preparations

Creation BA

[service creation]

Checking CA

<<signal sending>>

<<signal sending>>
Asking to create Buyer

[problem] (Moving to the host)%4(Buyer Creation F

<<signal sending>>\
Reject CA /

< <<signal sending>>
< I am here

<<signal sending>>

NotifyWA(register,p,q)

<<signal receipt>>

Refuse interaction

Transfer protocol - -
and template <<signal receipt>>

| am here(B_ID)

<<signal receipt>>
BA not accepted

Checking BA I am not accepted

Negotiati -| List of paticipants | - [Preparing
egotiation process negotiation [problem]

> <<signal sending>> \ <<signal receipt>>
Reject BA / Refuse interaction

Storing info in
Knowledge DB

Fig. 10. Activity Diagram—before negotiation process

16

Warehouse

Product
reservation

<<signal sending>>

SA

SeA be 5

| SeA:Finalisation of negotiations

<<signal sending>>

?

BA-winner

=

<<signal receipt>>

<<signal receipt>>
Result of negotiations

Updating SA
(MCDM (1) HKnowledge Base

<<signal sen
Reserve (p for

<<signal receipt>>
/| Nr_res

Negotiations result

<<signal sending>>
CA:l won

<<signal sending>>

Done /

Checking
reservation

<<signal sending>>

For SA: Reservation
expired /

Cancelling reservation ’e

Reservation

MCDM(2)

Notify(B_ID,Nr_res)

<<signal sending>>
SA:Confirm

<<signal sending>>

<<signal sending>>

Check reservation

<<signal sending>>
For BA: Reservation expired,

For CA:Reservation expired

Transfer info to CA

Client

Updating Client's
Knowledge Base MCDM

<<signal sending>>
To buy

Rec g Info
from BA

Sale

completion

<<signal sending>>
Cancel(Nr_res)
Canceling
Updating Shop's reservation
Knowledge Base

<<signal sending>>
To SA:Rejection

<<signal receipt>>
Continue

User notification

Destruction of agents

<<signal sending>>
not to buy

<<signal sending>>

Continue

Fig. 11. Activity Diagram—after negotiation process

17

which is based on an abstract negotiation process that ¢eespa negotiation infras-
tructure, a generic negotiation protocol and a taxonomyecfatative rules. Here, the
negotiation infrastructurelefines roles involved in the negotiation process: paditip
and a host. Participants negotiate by exchanging propuestiis a negotiation locale
that is managed by the negotiation host. Depending on theed/pegotiations, the host
can also play the role of a participant (for example in araiiee bargaining scenario).
The generic negotiation protocalefines, in terms of how and when messages should
be exchanged between the host and negotiation particighetthree main phases of
negotiations: (1) admission, (2) exchange of proposals(a8nhtbrmation of an agree-
ment. Negotiation rulesare needed for enforcing a specific negotiation mechanism.
Rules are organized into a taxonomy that contains the faligwategories: (a) rules
for participants admission to negotiations, (b) rules fogaking the validity of negotia-
tion proposals, (c) rules for protocol enforcement, (d¢sufior updating the negotiation
status and informing participants, (e) rules for agreenfi@mhation and (f) rules for
controlling the negotiation termination. Based on the gaties of rules identified as
necessary to facilitate negotiations, in [9, 10] it is sugjgd to partition the negotia-
tion host into a number of corresponding compone@tiekeeperProposal Validator
Protocol EnforceyInformation UpdaterNegotiation TerminatoandAgreement Maker
(that are called sub-agents). Each component is resperisitgnforcing a specific cat-
egory of rules. Host components interact with each-otharavblackboard and with
negotiation participants by direct messaging. Note thegélcomponents are conceptu-
alized as a part of the host (sub-agents), not as stand-atgeres. This fact will have
consequences as to how they are to be implemented.

Before proceeding let us note that we have modified the pexptramework and
upgraded th&atekeepeto become a full-fledged agent [19]. In its new role, Gate-
keeperagent has also an increased scope of responsibilitiesrjded@above). Let us
now show: (i) how the negotiation host ageBe(le) is structured into components
(sub-agents); (ii) how rules are executed by the negotidtast in response to various
messages received from negotiation participants and hiefiring control is switched
between various components of the negotiation host, and@iv the generic nego-
tiation protocol was implemented using JADE agent behavemd ACL message ex-
changes between host and participants.

The Negotiation Host —Seller agent Let us note that what was defined in [9, 10] as
negotiatiorhostbecame &elleragent in our system. We will thus use these two terms
interchangingly. Host and negotiation participant agemésimplemented as ordinary
JADE agents and thus they extend fhde.core.Agentlass. TheSelleragent encap-
sulates the negotiation controlling sub-agents that amgeémented as ordinary Java
classes (see Figure 1Broposal Validatoy Protocol Enforcey Information Updater
Negotiation TerminatoandAgreement MakeilEach host component definekandle()
method that is activated whenever the component must reatteck the category of
rules it is responsible for. Note, again, that these comptsrere not full-blown JADE
agents, but ordinary member objects within Selleragent.

In addition to sub-agents responsible for protocol enforeet, the host encapsu-
lates two member objects representing the negotiatiodaad the blackboard (see

18

Proposalvalidator

- mProposalyalidator

jade:core:Agent
¥

MegotiationTerminator

- mMegatiationTerminator
- myAgent

MNegotiationLocale

- ryAgent

HostAgent

- myAgent

- mMegaotiationLocale

- myAgent
- m&greemeniiaker MEAgen

AgreementMaker

- myAgent

- mProtacolEnforcer

ProtocolEnforcer

- minformationUpdater

InformationUpdater
Ja

Fig. 12. The class diagram showing the structure of Ss#leragent

Figure 12)Negotiation Local@ndBlackboard’boxes”. TheNegotiation Local@bject
stores thaegotiation templatéa structure that defines negotiation parameters; see [9])
and the list of participants that were admitted to a givenotiatjon (obtained from
the Gatekeepeagent—see above). Tiackboardobject is a JESS rule engine (class
jess.Retgthat is initialized with negotiation rules. Whenever tlagagory of negotiation
rules is checked, the rule engine is activated.

The negotiation host contains handler methods that areadeti byaction() meth-
ods of agent behaviors. Each handler method delegateslthe itee responsible com-
ponent. Finally, that component activates the rule engiaghe myAgenmember ob-
ject that points to the parent host agent (see Figure 12).

Controlling Rule Execution Rather then implementing each component of the nego-
tiation host as a separate rule engine, we are using a siB@€ Jule engine that is
shared by all host components. This rule engine is impleettasing clasgess.Rete
The advantage is that we now have a single rule engine petiaggo host rather than 6
engines as suggested in [9]. Furthermore, this means tha itase ofm products sold,
we will utilize minstances of the JESS rule engine, insteadmofré&tances necessary
in [9, 10].

Rules and facts managed by the rule engine are partitioned&5S modules. Cur-
rently we are using one JESS module for storing the blackbfzats and a separate
JESS module for storing rules used by each component. Biacklfacts are instances
of JESSdeftemplatestatements and they can represent: (1) the negotiatioridém(?)
the active proposal that was validated by Hreposal Validatorand theProposal En-
forcercomponents; (3) a withdrawn proposal; (4) seller reseswgirice (not visible to
participants); (5) negotiation participants; (6) the rnigmn agreement that is eventu-
ally generated at the end of a negotiation; (7) the inforomatiigest that is visible to the
negotiation participants; (8) the maximum time intervalgobmitting a new bid before

19

the negotiation is declared complete; or (9) the value ofctimeent highest bid. Note
that these facts have been currently adapted to represghsiEauctions (and will be
appropriately modified to represent other price negotiati@chanisms).

Each category of rules for mechanism enforcement is storeal sSeparate JESS
module. This module is controlled by the corresponding conent of theSelleragent.
Whenever the component handles a message it activatedésdauenforcing the ne-
gotiation mechanism. Taking into account that all rulegipent to a given host are
stored internally in a single JESS rule-base (attached itogdesJESS rule engine), the
JESSocusstatement is used to control the firing of rules located amtpé focus mod-
ule. This way, the JESS facility for partitioning the rulege into disjoint JESS modules
proves very useful toféciently control the separate activation of each categorylet.
Note also that JADE behaviors are scheduled for executiamom-preemptive way and
this implies that firings of rule categories are correctlsiadized and thus they do not
cause any synchronization problems. This fact also suppant decision to utilize a
single rule engine for each host.

Generic Negotiation Protocol and Agent BehaviorsThegeneric negotiation protocol
specifies a minimal set of constraints on sequences of messaghanged between the
host and participants. As specified in [9], the negotiatiytpss has three phases: (1)
admission, (2) proposal submission and (3) agreement tamda he admission phase
has been removed from the negotiation process describ8{ lout it was implemented
in exactly the same way as suggested there. For instand® rase odgent mobility

it starts when a new participarByeragent) requires admission to the negotiation, by
sending an ACL PROPOSE message to@aekeeperngent. TheGatekeepegrants
(or not) the admission of the participant to the negotiaton responds accordingly
with either an ACL ACCEPT-PROPOSAL or an ACL REJECT-PROPQS3#essage
(currently admission is granted by default). In the way thatsystem is currently im-
plemented, the PROPOSE message is sent by the participamt iagmediately after
its initialization stage, just before itetup()method returns. The task of receiving the
admission proposal and issuing an appropriate responsglsiented as a separate
behavior of the negotiation host.

When aBuyeragent is accepted to the negotiation, it also receives fhemhbst the
negotiation protocol and template (representing parametfeauctions: auction type,
auctioned product, minimum bid increment, terminationetimindow, currently high-
est bid).Buyerwill enter the phase of submitting proposals after it wapatished to
the negotiation (here, a number®fiyeragents that were granted admission is "simul-
taneously” released by tt&eller(that sends them a start message) and they—possibly
immediately—start submitting bids according to their &tgées [19]). The generic ne-
gotiation protocol states also that a participant will béifredl by the negotiation host
if its proposal was either accepted (with an ACL ACCEPT-PRGRL) or rejected
(with an ACL REJECT-PROPOSAL). In the case when a proposal aczepted, the
protocol requires that the remaining participants will loéifired accordingly with ACL
INFORM messages.

Strategies of participant agents must be defined in accoedaith the constraints
stated by thegeneric negotiation protocoBasically, the strategy defines when a ne-

20

gotiation participant will submit a proposal and what are talues of the proposal
parameters. In our system, for the time being, we opted faexdremely simple so-

lution: the participant will submit a first bid immediatelyter it was released to the
negotiation and subsequently, whenever it gets a notificetiat another participant
issued a proposal that was accepted by the host. The vallee difid is equal to the
sum of the currently highest bid and an increment value tharivate to the partici-

pant. Additionally, each participant has its own valuatafrihe negotiated product in
terms of a reservation price. If the value of the new bid eslsdhis reservation price
then the proposal submission is canceled. The implementafithe participant agent
defines two JADE agent behaviors for dealing with situatistased above. Obviously,
as the system matures, we plan to develop, implement andieg® with a number

of negotiation strategies that can be found in the litemarg. see [20]).

Finally, the agreement formation phase can be triggeredwattisne. When the
agreement formation rules signal that an agreement wabedathe protocol states
that all participants involved in the agreement will be fietl by the host with ACL IN-
FORM messages. The agreement formation check is implechaate timer task (class
java.util. TimerTaskthat is executed in the background thread ¢d\a.util. Timerob-
ject.

5 Consluding Remarks

In this chapter we have described an agent-based model mema system that is
currently being developed and implemented in our groups Blystem as it is being
extended is slowly converging toward the main ideas undeglg-service intelligence
systems. After presenting background information on safénagents and automatic
negotiations we have provided a description of the systkustriated by its complete
formal UML-based definition. We have also argued that theppsed solution is able
to mediate the existing contradiction between agent mghalid intelligence, by pre-
cisely delineating which components, and when, have to bbguliacross the network.
Furthermore, we have discussed in detail how the negatidtaonework, utilizing a
rule-based engine is implemented in the system.

Currently, the proposed system is systematically beingempnted and extended.
We have experimented with its earlier versions and weretaldee that it scales well
(on a network consisting of 22 computers). Furthermore, weevable to successfully
run it in a heterogeneous environment consisting of Windamg Linux workstations.
The results have been reported in [4]. More recently we haydéemented and success-
fully experimented with the above described rule-basednengpplied to the English
auction mechanism. Additional information can be foundliy?].

As the next steps we envision, among others: (1) completiontegration of the
original system skeleton with the rule-based engine, (8)tah of rules for a number
of additional price negotiation protocols (e.g. Vickerycton, Dutch auction etc.), (3)
implementation of an initial set of non-trivial negotiatistrategies for both buyers and
sellers, (4) conceptualization of MCDM processes, stgrfiom the ways in which
data concerning results of price negotiations has to bedtw that it can befiectively

21

utilized in support of decision making in the system etc. Viler@port on the results in
subsequent publications.

References

1. Badi@a, C., Ganzha, M., Paprzycki M.: Rule-Based Automated PMNegotiation: an
Overview and an Experiment. Ifroceedings of the International Conference on Artificial
Intelligence and Sost Computing, ICAISC’20@&akopane, Poland. Springer LNAI, 2006 (in
press)

2. Badia, C., Badifa, A., Ganzha, M., lordache, A., Paprzycki M.: ImplementRgle-based
Mechanisms for Agent-based Price NegotiationsPimceedings of the ACM Symposyum on
Applied Computing, SAC’200®ijon, France. ACM Press, 2006 (in press)

3. Badia, C., Ganzha, M., Paprzycki, M., Pawescu, A.: Combining Rule-Based and Plug-in
Components in Agents for Flexible Dynamic Negotiations.Nh Péchowiek, P. Petta, and
L.Z. Varga (Eds.)Proceedings of CEEMAS'QBudapest, Hungary. LNAI 3690, Springer-
Verlag, pp.555-558, 2005.

4. Badia, C., Ganzha, M., Paprzycki, M., Pamescu, A.: Experimenting With a Multi-Agent
E-Commerce Environment. In: V. Malyshkin (EdProceedings of PaCT'200Krasnoyarsk,
Russia. LNCS 3606, Springer-Verlag, pp.393-402, 2005.

5. Badia, C., Ganzha, M., Paprzycki, M.: Mobile Agents in a Multie¢xg E-Commerce Sys-
tem. In: Proceedings" International Symposium on Symbolic and Numeric Algorittion
Scientific Computing, SYNASC,0Bmigoara, Romania. IEEE Computer Society Press, Los
Alamitos, CA, pp.207-214, 2005.

6. Badia, C., Ganzha, M., Paprzycki, M.: UML Models of Agents in a kkéigent E-Com-
merce System. InProceedings of the IEEE Conference of E-Business EngimgelCEBE
2005 Beijing, China. IEEE Computer Society Press, Los Alami@A4, pp.56-61, 2005.

7. Badia, C., Ganzha, M., Paprzycki, M.: Two Approaches to Code Ntglih an Agent-based
E-commerce System. In: C. Ardil (edEnformatika Volume 7, pp.101-107, 2005.

8. Badia, C., Badifa, A., Ganzha, M., lordache, A., Parzycki, M.: Rule-Baseank@work for
Automated Negotiation: Initial Implementation. IRroceedingsls Conference on Rules
and Rule Markup Languages for the Semantic Web, RuleML;288%way, Ireland. Lecture
Notes in Computer Science 3791, Springer-Verlag, pp.188-2005.

9. Bartolini, C., Preist, C., Jennings, N.R.: Architectiiog Reuse: A Software Framework for
Automated Negotiation. InProceedings of AOSE’2002: Int. Workshop on Agent-Oriented
Software Engineering8ologna, Italy, LNCS 2585, Springer Verlag, pp.88-100020

10. Bartolini, C., Preist, C., Jennings, N.R.: A SoftwararRework for Automated Negotiation.
In: Proceedings of SELMAS’2004NCS 3390, Springer-Verlag, pp.213-235, 2005.

11. Benyoucef, M., Alj, H., Levy, K., Keller, R.K.: A Rule-en Approach for Defining
the Behaviour of Negotiating Software Agents. In: J.Plaéteal. (eds.):Proceedings of
DCW’'2002 LNCS 2468. Springer-Verlag, pp.165-181, 2002.

12. Chavez, V., Maes, P.: Kasbah: An Agent Marketplace foyilgpand Selling Goods. In:
Proc. of the First Int. Conf. on the Practical Applicationlotelligent Agents and Multi-Agent
TechnologyLondon, UK, 1996.

13. Chmiel, K., Czech, D., Paprzycki, M.: Agent TechnologyModelling E-commerce Pro-
cess; Sample Implementation. In: C. Danilowicz (eMdtimedia and Network Information
Systems\Volume 2, Wroclaw University of Technology Press, pp.23-2004.

14. Chmiel, K., Tomiak, D., Gawinecki, M., Karczmarek, Pzy8iczak, Paprzycki, M.: Testing
the Eficiency of JADE Agent Platform. IrProceedings of th& International Symposium
on Parallel and Distributed ComputingCork, Ireland. IEEE Computer Society Press, Los
Alamitos, CA, USA, pp.49-57, 2004.

22

15. Chmiel, K., Gawinecki, M., Kaczmarek, P., Szymczak, Marcin Paprzycki: Hiciency of
JADE Agent Platform, Scientific Programming, 2005 (to appea

16. Dumas, M., Governatori, G., ter Hofstede, A.H.M., OaRs, A Formal Approach to
Negotiating Agents Development. IfElectronic Commerce Research and Applications
Vol.1, Issue 2 Summer, Elsevier Science, pp.193-207, 2002.

17. FIPA: Foundation for Physical Agents. Seep: //www. fipa.org.

18. Fuggetta, A., Picco, G.P,, Vigna, G.: UnderstandingeCldability. In: IEEE Transactions
on Software Engineeringol.24, no.5, IEEE Computer Science Press, pp.342-3613.19
19. Ganzha, M., Paprzycki, M., Pamescu, A., Bdi@, C, Abraham, A.: JADE-based Multi-
Agent E-commerce Environment: Initial Implementation, Wnalele Universitatii din

Timisoara, Seria Matematica-Informaticsol. XLII, Fasc. special, pp.79-100. 2004.

20. Governatori, G., Dumas, M., ter Hofstede, A.H.M., ank®&.: A formal approach to
protocols and strategies for (legal) negotiation. In: WePrakken (ed.)Procedings of th&"
Int. Conference on Artificial Intelligence and LalAAIL, ACM Press, pp.168-177, 2001.

21. JADE: Java Agent Development Framework. Begp: //jade.cselt.it.

22. JESS: Java Expert System Shell. Begp: //herzberg.ca.sandia.gov/jess/.

23. Kowalczyk, R.: On Fuzzy e-Negotiation Agents: Autonarmmegotiation with incomplete
and imprecise information, IfiProc.DEXA'2000 London, UK, pp.1034-1038, 2000.

24. Kowalczyk, R., Franczyk, B., Speck, A.: Inter-Marketwards intelligent mobile agent
E-Market places. InProc. 9" Annual IEEE Internmational Conference and Workshop on the
Engineering of Computer-Based Systems, ECBS’ 200, Sweden, pp.268—276, 2002.

25. Kowalczyk, R., Ulieru, M., Unland, R.: Integrating Mébiand Intelligent Agents in
Advanced E-commerce: A Survey. Imigent Technologies, Infrastructures, Tools, and
Applications for E-Services, Proceedings NODe’2002 Adreiated WorkshopsErfurt,
Germany. LNAI 2592, Springer-Verlag, pp.295-313, 2002.

26. Laudon, K.C., Traver, C.GE-commerce. business. technology. soc{gt§ ed.). Pearson
Addison-Wesley, 2004.

27. Lochner, K.M., Wellman, M.P.: Rule-Based SpecificatbAuction Mechanisms. IrProc.
AAMAS’'04 ACM Press, New York, USA, 2004.

28. Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A clfisation scheme for negotiation in
electronic commerce. In: F. Dignum, C. Sierra (Edagent Mediated Electronic Commerce:
The European AgentLink PerspectitdlCS 1991, Springer-Verlag, 19-33, 2002.

29. Maes, P, Guttman, R.H., Moukas, A.G.: Agents that Buy%ell: Transforming Commerce
as we Know It. InCommunications of the ACMol.42, No.3, pp.81-91, 1999.

30. Michael, S.: Design of Roles and Protocols for ElectoNegotiations. In:Electronic
Commerce Research Journabl.1 No.3, pp.335-353, 2001.

31. Nwana, H., Ndumu, D.: A Perspective on Software AgentseRech. In‘The Knowledge
Engineering Reviewi4(2), pp.1-18, 1999.

32. Paprzycki, M., Abraham, A.: Agent Systems Today; Methodical Considerations. In:
Proceedings of 2003 International Conference on ManagewfaCommerce and e-Govern-
ment Nanchang, China. Jangxi Science and Technology Pressa(ip.416-421, 2003.

33. Pinanescu, A., Bdi@, C., Ghanza, M., Paprzycki, M.: Developing a JADE-basedtiMu
Agent E-Commerce Environment. In: Nuno Guimares and Peshia$ (eds.)Proceedings
IADIS International Conference on Applied Computing, A& 'Blgarve, Portugal. IADIS
Press, Lisbon, pp.425-432, 2005.

34. Pinanescu, A., Bdi@, C., Ghanza, M., Paprzycki, M.: Conceptual Architecture 8ample
Implementation of a Multi-Agent E-Commerce System. In: Damitrache, Catalin Buiu,
(Eds.):Proceedings of th&5" International Conference on Control Systems and Computer
Science CSCS’}5'Politehnica Press” Publishing House, Bucharest, 200562, pp.620-625

35. Roalli, D., Eberhart, A.: An Auction Reference Model foegxribing and Running Auctions,
Wirtschaftsinformatik 2005, Physica-Verlag, pp.289-308

23

36. Roalli, D., Luckner, S., Gimpel, H., Weinhardt, C.: A Déptive Auction Language. In:
International Journal of Electronic Market2006, 16(1), pp. 51-62.

37. Skylogiannis, T., Antoniou, G., Bassiliades, N.: A ®ystfor Automated Agent Negotiation
with Defeasible Logic-Based Strategies — Preliminary Regda: Boley, H., Antoniou, G.
(eds):Proceedings RuleML'QHiroshima, Japan. LNCS 3323, Springer-Verlag, pp.205-21
2004.

38. Tamma, V., Wooldridge, M., Dickinson, I: An Ontology EBasApproach to Automated
Negotiation. In:Proceedings Agent Mediated Electronic Commerce, AMEQ'0/AI 2531,
Springer-Verlag, pp.219-237, 2002.

39. Trastour, D., Bartolini, C., Preist, C.: Semantic Welpjgrt for the Business-to-Business
E-Commerce Lifecycle. InProceedings of the WWW’'02: International World Wide Web
ConferenceHawaii, USA. ACM Press, New York, USA, pp.89-98, 2002.

40. Wooldridge, M. An Introduction to MultiAgent Systemiohn Wiley & Sons, 2002.

41. Wurman, P.R., Wellman, M.P., Walsh, W.E.: A Parame&tion of the Auction Design
Space. InGames and Economic Behavj@&5, Vol.1/2, pp.271-303, 2001.

42. Wurman, P.R., Wellman, M.P., Walsh, W.E.: SpecifyingeRufor Electronic Auctions. In:
Al Magazine23(3), pp.15-23, 2002.

