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Abstract—As the Linked Data paradigm is embraced by
a growing number of data providers (and consumers), the
count of publicly available, semantically-annotated resources is
systematically increasing. Here, elasticity and extensibility of
semantics, enmeshed in Linked Data principles, and technologies
supporting them, starts to attract application developers. In this
context, multitude of developed ontologies motivates (and, in
some cases, forces) work devoted to ontology “reconciliation”,
including alignment and merging, as well as supports pursuing
rules of ontology engineering, such as modularity and reuse.
At the same time, as uptake of semantic technologies grows,
semantically-annotated resources are used not only in static
data storage systems (where they appear “in bulk” and are
accessed through some query mechanism), but also as separate,
dynamically created, transmitted and processed entities.

In the field of the Internet of Things, this is exemplified in con-
tent of messages exchanged, either between internal components
of IoT platforms (within the middleware), or between applica-
tions built on top of each other. Platforms such as Open-IoT,
UniversAAL, or VITAL, use serializations of RDF to transmit
messages, while other platforms, such as FIWARE and OneM2M
support ontologies, even if they don’t use RDF within exchanged
messages. However, one of important unsolved issues remains –
“how to facilitate understanding of messages exchanged between
artifacts founded on different ontologies” (i.e. establish semantic
interoperability). In this paper, we focus on semantic translation
applied in the context of “continuous” communication between
IoT artifacts. Our approach is rooted in semantic translation,
based on ontology alignments, and utilizes scalable streaming
infrastructure that supports diverse communication topologies
and scenarios. It also forms foundation for the design and
implementation of the Inter Platform Semantic Mediator (IPSM),
which is one of key components to establish interoperability in
the INTER-IoT project.

I. INTRODUCTION

Even a simple reflection on the state of the Internet of
Things, A.D. 2017, shows that the IoT ecosystem consists of
large (and fast growing) number of separate artifacts – devices,
platforms, applications, services, etc. In a typical scenario,
such artifacts work in more or less independent silos, while
“completing assigned jobs”. As a matter of fact, one of the
key factors slowing adoption of IoT-based solutions is lack of
interoperability. In other words, it is very difficult to facilitate
exchange of information between entities developed by sepa-
rate vendors, deployed using different technologies, “speaking
different languages”, to achieve independent goals. Here, each
artifact (group of artifacts) has implicit, or explicit, semantics
– the meaning assigned to its data. Explicit semantics can be

represented as an ontology, which provides a comprehensive
description of data that includes definitions, categorizations, as
well as restrictions put on it, and logical rules it must adhere
to. In the case of implicit semantics, it is possible to “make
it explicit” (i.e. establish an ontology that represents it) and
develop translators between the internal data representation
and the ontology-based data representation (for more details,
see [1], [2]). Therefore, in what follows, we assume that
(one way or another) IoT artifacts have explicit semantics,
represented as an ontology.

Let us now assume that a number of IoT artifacts has to
be combined to instantiate a new IoT ecosystem. Obviously,
it can also be assumed that an existing IoT ecosystem is to
be enriched by adding new artifacts (e.g. new sensors/plat-
forms/services) to deliver new functionality to the user(s).
To achieve this goal, communication channel(s) has/have to
be established to facilitate exchange of information between
two, or more, artifacts. While, as assumed, all joining entities
have explicit semantics (in the form of an OWL ontology),
it may, and in most cases will, differ from entity to entity
(see, also [3]). The aim of this paper is to discuss how it is
possible to develop an efficient communication infrastructure
that will facilitate exchange of messages, combined with their
translation “on the fly”.

To this effect, we proceed as follows. In Section II we briefly
discuss how ontology alignments can be used to translate mes-
sages between entities with different semantic representation
of the domain of interest. We follow (in Section III), with
a description of the alignment format used in our approach.
Next, in Section IV, we extend our translation mechanism to
the special case of any-to-any translations. This background
information allows us to introduce the Inter Platform Se-
mantic Mediator (IPSM), a stream-oriented architecture (in
Section V). Some special aspects and features of the proposed
architecture are briefly discussed in Section VI. The same
section also contains conclusions and presents our ideas for
future work.

II. FROM ALIGNMENTS TO TRANSLATION

Let us assume that multiple IoT artifacts, having explicit
semantics (represented in the form of OWL ontologies), are
to exchange data/information with each-other via, one or more,
“communication channels”. To make such communication



feasible, a common understanding, i.e. semantic interoperabil-
ity has to be established (besides syntactic interoperability
defining the format of data exchange). In general, there are
multiple ways of achieving this goal. The most obvious is
to implement the same semantics (the same ontology) across
the IoT ecosystem. However, it would mean that each artifact
within the ecosystem would, possibly, have to change its
original semantics to the common one. For obvious reasons
(e.g. who will decide, which semantics should be chosen as
the common one, who will pay the cost of such changes, how
to make sure that another change will not be necessary when
further integration, involving independent IoT artifacts, occurs,
etc.) this is impossible to achieve in any real-world scenario.
As a matter of fact, our observations are very clear, instead
of converging towards a common solution / set of solutions,
new IoT platforms materialize. According to O. Vermesan 1,
within last year almost 100 new, independently recognizable
IoT platforms entered the global market (pushing the total
number to about 450).

Seeking a weaker solution, “semi-interoperability” may be
achieved when many artifacts write data to the same storage
that has a specific semantics. In this case, all data sources need
to translate the data on their own, from their own semantics
into the selected one. This approach, however, is mainly
applicable to data-fusion scenarios, and does not allow for
proper inter-artifact communication. Furthermore, the question
“which ontology is to be the one selected for the common
repository” remains unanswered (and a likely deal-breaker).

Partial interoperability is (at least theoretically) achievable
when artifacts share an upper ontology as a module of their
ontologies. This level of interoperability, however, is hardly
applicable to any realistic case of IoT ecosystems, mainly be-
cause of their vast (internal) heterogeneity. To put it simply, in
order to be fully functional, the highly specialized applications
that are to collaborate within IoT ecosystems, to deliver value
to the users, require higher level of interoperability than what,
in most realistic cases, an upper ontology can offer. Here,
it should be also noted that the heterogeneity of semantic
representations occurring in IoT-related domains (see, for
instance, [3]) further diminishes real-world applicability of this
approach. Consider, for instance, a sample use case, in which
an e/m-health-related subsystem is to be used by drivers of a
trucking company. Here, the semantic representations of e/m-
health domain is to work hand-in-hand with a logistics and
transportation one [3].

In the layered model of interoperability [4], semantics is
positioned above syntactic interoperability [2], which ensures
common understanding of the structure of data. Therefore,
in what follows, we assume that artifacts participating in the
ecosystem, have already achieved the syntactic interoperabil-
ity. Since we also postulated that all of them have defined
explicit semantics, we further assume that the information
produced/consumed by the artifacts, of the IoT ecosystem, is
expressed in RDF [5], the de-facto standard language for the

1O. Vermesan, SINTEF, personal communication, e-mail from July, 2017

exchange of semantically-enriched data. It should be stressed
that the actual RDF serialization (RDF/XML, Turtle, JSON-
LD, etc.), used by individual artifacts, is unimportant (does
not make any difference in what follows).

In case of IoT ecosystems, we are interested in ensuring
that artifacts can use communication channels to exchange
data between each other, in a meaningful manner. This simple
idea turns out to be fairly complex to realize in practice, and
requires solutions that harmonize both syntax and semantics of
information, besides actually using the communication infras-
tructure (channels). Note that the actual number and topology
of communication channels depends on the information flow
in the ecosystem and can change dynamically over time (in
response to the needs of the applications using them).

In principle, a semantic-enabled communication channel is
a medium that, when properly configured, can accept mes-
sages with data annotated by entities from one (input/source)
ontology, and produce semantically equivalent messages, an-
notated with another (output/target) ontology. In this way, the
translation becomes a part of the communication process and
is entirely external to the participating artifacts (contrary to the
semi-interoperability). Complexity of this task stems from the
fact that each artifact might represent a different application
domain. However, as stated above (and illustrated in [3]), even
within the same domain, ontologies might (and usually do) dif-
fer substantially. Henceforth, defining appropriate “translation
rules” requires good knowledge of the domains of interest.
Additional challenge is to ensure that the communication
architecture is capable of handling the volume of messages
that can be exchanged between IoT artifacts. Here, it should
be noted that the solution proposed here brings about a number
of possibilities that lead us to believe that it is likely to scale.
However, these considerations are out of scope of current
contribution.

Since the conceptualization of a domain directly corre-
sponds to its ontology (see, [6]), to bridge the “semantic gap”
between the artifacts, we have decided to use “alignments”
between the corresponding ontologies (see, [7]). Upon their
creation, appropriate alignments can be “applied” to any mes-
sage traveling through a (semantic-enabled) communication
channel. Specifically, application of an alignment substitutes
parts of information from the incoming message with their
translations, i.e. the descriptions that the specified parts are
mapped to, by the alignment. Such, updated/translated, mes-
sage is then made available to the recipient(s) “at the end of
the channel”.

The translation process allows, at least in theory, to find
an equivalent representation of any piece of data originating
from one ontology in terms of another ontology, provided that
an appropriate alignment between them exists. If there is no
direct equivalence, then one may be able to translate the data
to its more general, though less informative, representation
in the target ontology. Those two cases (equivalence and
lack thereof) directly correspond to two common relations in
alignments – equivalence and subsumption. Note that in-depth
treatment of issues related to alignment creation and use (as



well as consequences of subsumption-based translation to the
information flow), while being an interesting research topic on
its own, is out of scope of current considerations.

In this context, in what follows we shall describe both
the mechanisms used for application of alignments, and the
communication architecture allowing for efficient handling of
messages.

For readability reasons, let us start by focusing on a one-to-
one interoperability (single semantically-enabled communica-
tion channel). The proposed approach will be then extended to
the any-to-any scenario. To provide foundation of the proposed
approach, in the next section, we present the alignment format
used for configuring the translation process.

III. ALIGNMENT FORMAT

Since the semantic interoperability is to be based on appli-
cation of ontology alignments, from a practical perspective,
it is necessary to introduce a way of representing alignments.
Therefore, within the INTER-IoT project, we have developed
a dedicated format, with an XML representation, based on
the Alignment API [8] and inspired, to some extent, by the
EDOAL [9]. From here on, we will name this format: the
IPSM format, since it is to be used in the Inter Platform
Semantic Mediator (IPSM) component developed within the
scope of the INTER-IoT project.

An alignment, expressed in the IPSM format, consists of
a sequence of cells, that define parameterized “unit” map-
pings/transformations applied to RDF data/graphs. The general
(meta-level) structure of an alignment in the IPSM format is
represented in Listing 1.

<Alignment>
<onto1> { source ontology info } </onto1>
<onto2> { target ontology info } </onto2>
<steps>

<step order="1" cell="cell_k"/>
{ more steps }

</steps>
<map>

<Cell id="cell_id">
<entity1> { source RDF pattern } </entity1>
<entity2> { target RDF pattern } </entity2>
<transformation>
{ functional constraints }

</transformation>
<filters> { datatype constraints } </filters>
<typings> { typing info } </typings>

</Cell>
{ more Cells }

</map>
</Alignment>

Listing 1. INTER-IoT alignment format — general structure

In principle, Listing 1 describes a uni-directional alignment
comprised of independent mapping cells, each of which has
an “input” and an “output” entity descriptions. Elements
<onto1> and <onto2> describe the “source” and “target”
ontologies of the alignment, by giving their URIs and spec-
ifying the formalism used for their definition (e.g., OWL
2.0). Here, let us note that, in the case when bidirectional
translations are needed, separate alignments have to be defined
for “each direction” (even if the alignment cells all describe

equivalences, and are, therefore, trivially reversible). This is
because, in the proposed alignment format, source and target
ontologies are explicitly specified – this information is nec-
essary for the communication channel configuration/creation
process, within the IPSM.

In the Listing 1, the <steps> element specifies the (de-
fault) order, in which cells of the alignment will be sub-
sequently applied during the message transformation process.
Each <step> refers to a cell identifier, as given by the id
attribute of the <Cell> element. Note that a given cell might
be referenced here (and, hence, also applied) more than once.
Furthermore, if needed, the default order may be overridden
during the channel configuration process.

Every <Cell> element represents an “atomic” transforma-
tion applied to the RDF graphs. Here, content of <entity1>
describes the source, and content of <entity2> establishes
the target of the transformation. Both should be valid RDF
graphs (presented in the RDF/XML serialization), possibly
containing special-purpose nodes, playing the role of “vari-
ables”, which are to be bound and referenced within the
transformation.

Let us now present an example of a specific alignment.
The source “pattern” in Listing 2 matches any RDF graph, in
which there is a node (matched by <sripas:node_CTX>)
with two (value) properties: <wgs84_pos:long> and
<wgs84_pos:lat>. Their values will be matched by
<sripas:nod_x> and <sripas:node_y>, respectively.

<sripas:node_CTX>
<wgs84_pos:lat>

<sripas:node_x/>
</wgs84_pos:lat>
<wgs84_pos:long>

<sripas:node_y/>
</wgs84_pos:long>

</sripas:node_CTX>

Listing 2. Source RDF pattern – <entity1>

We can now illustrate the situation when the target entity
pattern refers to a value, which has to be “computed” from
some of the values matched by the source entity pattern.
The target RDF pattern, in Listing 3, refers to the RDF
node matched by <sripas:node_CTX>, and assigns to
it property <geosparql:asWKT> with a value referenced
by <sripas:node_z>. Since <sripas:node_z> did not
appear in the source pattern, at this point, its meaning is
undefined. Here, lack of properties <wgs84_pos:long>
and <wgs84_pos:lat> in <entity2> means that the
transformation presented by the considered cell removes them
from the RDF graph matched by <entity1>.

<sripas:node_CTX>
<geosparql:asWKT>

<sripas:node_z/>
</geosparql:asWKT>

</sripas:node_CTX>

Listing 3. Target RDF pattern – <entity2>

To give a meaning to the <sripas:node_z> ele-
ment, we need to add some constraints, which would de-
fine it in terms of the values of <sripas:node_x> and



<sripas:node_y>. This is precisely the role of the cell’s
(optional) <transformation> element. The content of this
element is a sequence of functional constraints (given by
<function> elements). In Listing 4 we have three such
constraints.

<function about="str">
<param order="1"

about="&sripas;node_x"/>
<return about="&sripas;node_sx"/>

</function>
<function about="str">

<param order="1"
about="&sripas;node_y"/>

<return about="&sripas;node_sy"/>
</function>
<function about="concat">

<param order="1"
val="Point("/>

<param order="2"
about="&sripas;node_sx"/>

<param order="3"
val=" "/>

<param order="4"
about="&sripas;node_sy"/>

<param order="5"
val=")"/>

<return about="&sripas;node_z"/>
</function>

Listing 4. Value constraints of the <transformation>

Each constraints presented in Listing 4 is of the form:

fun(arg1, ..., argN) = res

where fun is a function referenced by the about attribute of
the <function> element, arg1, . . . , argN are arguments
(described by the <param> elements), and res is the result
of applying the function to the arguments (given by the
<return> element). Both, the arguments, and the result,
might refer to the “variable” elements. In this case, the value
of the <sripas:node_z> element is defined via string
concatenation, from the values of <sripas:node_x> and
<sripas:node_y>. More information about functions that
can be used within functional constraints will be given in
Section V.

The (optional) elements <filter> and <typing>, in
the IPSM alignment format, add datatype information to the
“variable elements” from the source and target RDF graph
patterns, respectively (see Listing 5 and Listing 6).

<filter about="&sripas;node_x"
datatype="&xsd;float"/>

<filter about="&sripas;node_y"
datatype="&xsd;float"/>

Listing 5. Datatype <filters>

<typing about="&sripas;node_z"
datatype="&geo-sf;WKTLiteral"/>

Listing 6. Data <typings>

Translation defined in Listings 2-6, applied to an RDF graph
from Listing 7, results in the RDF data presented in Listing 8.

@prefix ssn:
<http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix geo:
<http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix xsd:
<http://www.w3.org/2001/XMLSchema#> .

@prefix p1ont:
<http://platform1.eu/sensors#> .

p1ont:PositionMeasurementValue
a ssn:ObservationValue, geo:Point;

geo:lat "52.3"^^xsd:float ;
geo:long "98.2"^^xsd:float .

Listing 7. Sample input RDF graph

@prefix sosa:
<http://www.w3.org/ns/sosa/> .

@prefix geo:
<http://www.opengis.net/ont/geosparql#> .

@prefix geo-sf:
<http://www.opengis.net/def/sf/> .

@prefix p1ont:
<http://platform1.eu/sensors#> .

p1ont:PositionMeasurementValue
a sosa:Result, geo:Geometry;

geo:asWKT "Point(52.3 98.2)"^^geo-sf:wktLiteral .

Listing 8. Output RDF after the translation

As stated above, the IPSM alignment format has been
developed on the basis of ideas originating from the Alignment
API and the EDOAL. Therefore, let us now briefly juxtapose
the IPSM alignment format with both of them.

Many existing ontology alignment tools [10] produce their
outputs in the Alignment API format, although, mostly, on
level 0. This means that only simple class-to-class mappings
are expressed (see, [8]). EDOAL, on the other hand, is capable
of expressing complex alignments, i.e. mappings between
complex descriptions with multiple restrictions. As far as
we know, at the time of writing of this contribution (June,
2017), there are no automated tools that produce output in the
EDOAL format. Therefore, using EDOAL would, in practice,
require anyone to develop her/his own implementation of the
language, and accepting all limitations and peculiarities that
its authors decided to introduce. Moreover, EDOAL defines its
own proprietary set of XML tags, while the cells are not stored
in OWL, RDF, or any other well-known ontology language
or serialization. Henceforth, we have decided that, at least
for the time being, to fulfill our current practical needs, it
is better to define our own alignment format, which allows
us to express mappings between contents of any valid RDF
graphs. At the same time, the original Alignment API format
can be easily translated to the IPSM alignment format, because
of similarity in their structures. Furthermore, we believe that
using RDF/XML for the definition of alignment cells improves
readability, understandability and intuitiveness of the format,
and, simply, makes it easy to use.

IV. ANY-TO-ANY TRANSLATIONS

Let us now observe that defining alignments, as presented in
Section III, allows their application to any message, in order to
translate its semantics. Given a pair of IoT artifacts, translating
a stream of messages from one to the other requires a single
alignment file.



Let us now recall that bidirectional communication requires
a pair of “mirrored” alignments, one for each direction of
communication. Specifically, while, in theory, reversible align-
ments are very practical, we realize that it may not always
be possible to construct them, especially when subsumption,
and not equivalence, is considered. On the other hand, for a
large number of alignment cells there exist trivial reverse cells,
making construction of a reverse alignment easier. In essence,
the problem is reduced to issues that have to be solved for
only few specific cells.

For a large number of artifact ontologies, defining all
potentially needed one-to-one alignment pairs involves a lot
of work. Not only it may require aligning every possible
pair of ontologies but, also, adding a new ontology to an
existing ecosystem grows more difficult, when large number
of artifacts are already aligned. Observe that adding artifact
N may require creation of as many as N − 1 one-to-one
alignments (allowing interoperability with artifacts that are
already part of the ecosystem). Instead of doing this, we
assume existence of a modular central ontology – as described
in [1]. Here, the modularity assumption makes the central
ontology less vulnerable to changes [11]. In this case, the
translation has an “intermediate point”, i.e. information is first
translated “to the central ontology”, and then to the target
ontology (with the process being reversed for bidirectional
translations). Observe that, the problem of incorporating a new
artifact to an existing “federation” is simplified to creation
of a pair of alignments between the artifact’s ontology, and
the central ontology. Bidirectional communication between
artifacts, in this case, requires four alignments, i.e. two pairs,
one per artifact.

Figure 1. Modularized central ontology and alignments.

Conceptual depiction of use of the central ontology is pre-
sented in Figure 1. Here, we assume that, among modules g1,
. . . , gn, of the central ontology G, some core modules model
knowledge common to all “participants of a given ecosystem”
(artifacts P, R, S, T, with their respective ontologies OP, OR,

OS, and OT). For the case of the Internet of Things, a base
ontology of the IoT (similar, for instance, to [12], [13]) is a
perfect candidate for such a core module (for a more com-
prehensive discussion of potential candidates for the central
IoT ontology, see [14]). In addition to the core modules, the
central ontology would contain ontologies/modules that are
context/domain specific (e.g. a transport and logistics ontology
or the ontology of e/m-healt, or both, see [1], [3]). Each of
these modules might, of course, be modular itself.

In order to be useful for translation, the central ontology
must cover as much of the range of information expressible
by any participant, as possible. Small number of artifacts,
especially when they are all known in advance, suggests
either using the most expressive ontology, from those used
by participants, or making a “super”-ontology encompassing
all participants. In such cases the modularity assumption may
be relaxed. However, modularity of the central ontology has an
important practical consequence (and advantage). An artifact,
willing to join the ecosystem, needs to provide only alignments
to/from particular modules of the central ontology (depending
on the flow of information defined by the application that is
going to be developed that involves the joining artifact and
the ones already existing in the ecosystem). For instance,
in Figure 1, modules g1 and g2 are used by all platforms,
i.e. they contain general concepts such as IoT devices, or
basic truck identification descriptions. Module g3 models
information specific to P and T, while module g4 is pertinent
to communication between platforms R, S, T. Therefore, for
instance, there will be alignments between ontology of P and
module g3, but no alignments between module g3 and R, or
S will be needed.

The underlying principle states that an artifact needs only
to align the concepts, entities and descriptions, that it wants
to use in communication with other artifacts. For instance,
in a port environment, a trailer truck company may only
want to share the geopositioning information with the port
and terminal operators. However, it may not necessarily want
to share its catalog of goods. Therefore, in the context of
this communication, it only needs to define alignments for
the geopositioning module of the central ontology. If, in the
future, the platform owner decides to communicate other
information with the port, (s)he only needs to define additional
alignments for other (appropriately selected) modules, while
the already existing alignments may remain unchanged. In this
way, a well-established modular ontology defines clear borders
between its modules, which enables easy implementation of
the described scenario.

Let us now assume that, for each artifact (that has its seman-
tics lifted to an OWL ontology) that is to communicate within
a given IoT ecosystem, for all needed / defined communication
flows, we have defined all necessary one-way and bidirectional
alignments. On the basis of this assumption, we will describe
technological foundations and the architecture of the IPSM.



V. STREAM-ORIENTED ARCHITECTURE

As eluded above, the Inter Platform Semantic Mediator
(IPSM) is being developed within the “Horizon 2020” research
project INTER-IoT, as a general purpose component for
semantics-based translation. The translation infrastructure of
the IPSM is built around the notion of a stream. Streams, as a
data flow abstractions, are certainly not new, but only recently
they became widely used and studied. The growing interest
in studying them, and their processing, is undoubtedly related
to the huge amounts of (real-time) data (or “data in motion”,
as some call it) sources available today. The need for efficient
processing of data streams is, of course, particularly evident
in the realm of the Internet of Things.

One of the most difficult aspects of stream processing is
the ability to treat data flow in an asynchronous and non-
blocking fashion. Whereas, it’s relatively simple to treat any of
the two aspects separately, taking them into account together
is not easy. Fortunately, ideas originating from the field of
reactive programming [15] and, recently, codified within the
“Reactive Manifesto” [16] led to creation of the Reactive
Streams specification [17]. Ever since, the number of tools
and libraries following this specification is constantly growing.
This leads, in turn, to further increase of the interest in both
research and practice of reactive stream programming.

When choosing an optimal environment for implementation
of the IPSM, we took several options into account. However,
eventually, we have decided to use Akka [18] running on
the JVM [19]. According to the authors of Akka, it “is a
toolkit and runtime for building highly concurrent, distributed,
and resilient message-driven applications for Java and Scala”
(actually, it is also available for the .NET platform, which
makes it “universally available” across majority of most pop-
ular software environments of today).

Akka is based on the actor programming paradigm [20],
[21], and offers a very interesting and useful unification
of thread-based and event-based approaches to concurrency.
What was also an important factor for the IPSM implemen-
tation, was that Akka Streams (one of Akka core modules) is
a mature and solid implementation of the Reactive Streams
specification, additionally offering flexible DSLs (Domain
Specific Languages) for building stream-oriented applications.

An overview of the architecture of the IPSM is depicted
in Figure 2. The REST manager is the “configuration entry-
point” of the IPSM, offering two kinds of services, related
to the management of: alignments and translation channels,
respectively. The Alignment repository is a rather standard
service, performing actions related to storing, retrieving and
deleting alignments.

More interesting is the Channel manager. It offers services
for configuring and creating semantic translation channels.
Because of the “modular central ontology” approach, used by
the IPSM, (as discussed in the previous Section), to configure
a single translation channel one needs two alignments – having
the central ontology as the “mediating point”. Note that,
creation of bidirectional translation requires instantiation of

Figure 2. Overview of the IPSM architecture.

two (separate) channels – one in each direction of information
flow.

The alignments are subsequently compiled into alignment
applicators, which are responsible for actually performing the
translation tasks. The applicators utilize, appropriately gener-
ated, SPARQL 1.1 [22] update queries for every alignment
cell. A sample query, being the compilation result for the
sample alignment cell, presented in the previous section (see,
Listings 2-4), is given (without the CONTEXT declarations)
in Listing 9.

DELETE {
?node_CTX wgs84_pos:long ?node_y.
?node_CTX wgs84_pos:lat ?node_x.

} INSERT {
?node_CTX geosparql:asWKT ?node_z_typed.

} WHERE {
?node_CTX wgs84_pos:long ?node_y.
?node_CTX wgs84_pos:lat ?node_x.
FILTER(datatype(?node_x) = xsd:float)
FILTER(datatype(?node_y) = xsd:float)
BIND(str(?node_x) AS ?node_sx)
BIND(str(?node_y) AS ?node_sy)
BIND(
concat("Point(", ?node_sx, " ", ?node_sy, ")")
AS ?node_z

)
BIND(
strdt(

str(?node_z),
<http://www.opengis.net/def/sf/WKTLiteral>

) AS ?node_z_typed
)

}

Listing 9. Alignment cell compiled into SPARQL update query

The transformation sections, of the alignment cells, can
refer to arbitrary SPARQL 1.1 functions [22] (such as str
and concat, presented in Listing 4). It can also apply user-
defined functions, thanks to the efficient Apache Jena [23]
ARQ SPARQL processor, used by the IPSM. ARQ is the
tool directly responsible for transforming the RDF graphs, of



the messages flowing through semantic translation channels.
Cell filters, and typings (Listings 5 and 6), correspond to the
appropriate SPARQL filters and BIND-ings in the WHERE
clause of the update query.

Each translation channel is an Akka Streams flow, com-
patible with the Reactive Streams standard. For connecting
the channel to the “outside world” the IPSM communication
infrastructure uses the Apache Kafka [24], [25] message
broker. To integrate the IPSM with this high throughput tool,
the Akka Streams Kafka module is employed. This guarantees
that the proposed solution is, again, Reactive Streams com-
pliant. In the process of configuring a translation channel,
in addition to the alignments, its source and target Apache
Kafka topics have to be provided. Observe that the proposed
approach meas that the communication mechanism is based
on the subscription mechanism (offered by Kafka). In other
words, the receiving party subscribes to a channel where the
messages “of interest” (i.e. results of semantic translation
based on alignments, specific for that channel) may appear.
This allows, among others, very simple realization of one-
to-many communication, where all artifacts “interested” in a
specific communication subscribe to a given channel. While
scalability of the proposed solution was not considered, it
is worthy noting that the proposed mechanisms have been
build with high throughput in mind. Hence, it is possible
to “parallelize” streams to take advantage of modern multi-
core and multi-threaded CPU architectures. Experimental in-
vestigations concerning scalability of the IPSM, as well as
its throughput-oriented optimization (matching architectures of
currently existing computer hardware) is planned for the near
future.

VI. REMARKS, CONCLUSIONS AND FUTURE WORK

Although stream-oriented processing of RDF has already
been considered in the literature, known research has concen-
trated mainly on RDF Stream Processing (RSP) and stream
reasoning. The former area focuses primarily on various ways
of extending SPARQL for continuous querying [26] and event
processing [27], [28], [29], whereas the latter is geared towards
ontology evolution and related problems [30].

The approach to semantic-based translation presented in this
paper, seems to open a new perspective on utilizing stream-
oriented techniques for RDF processing. It is worthy noting
that the architecture described above is flexible, very likely
highly scalable, and enables building a complicated network of
streaming RDF transformations for arbitrary RDF graphs that
flow through the infrastructure. Here, the flows of information
within the IoT ecosystem would require, only, instantiation of
the needed Kafka channels. Hence, the problem of building
an interoperable IoT ecosystem would be reduced to devel-
opment of an efficient communication infrastructure within a
distributed system.

In this context, it is worthy noting that, apart from the
“primary” translation scenario presented in previous sections,
the infrastructure can be, in fact, used also in other ways. For
instance, the alignment for one, or more, ontologies may be

empty. As a result, the translation process, for the part that uses
such an alignment, would effectively be an identity translation,
i.e. it would actually not modify the original message at
all. This may be used when the input message already has
the semantics of the central ontology, or when a particular
communication scenario is intended to not to “go through”
the central ontology.

An important feature of the IPSM is that it, in fact, does not
store the actual ontologies, only the necessary alignments. This
makes the requirement of creation of an alignment between
two ontologies only a methodological issue, and not technical
one. The existing infrastructure may be used with alignments
that involve many ontologies and are of any size – from small,
one cell alignments, to big mappings with hundreds of cells.
Since no restriction is placed on the ontologies, the IPSM may
also be used as a very broadly applicable tool for transforming
RDF graphs. It is only up to the designer of alignments to
decide whether the IPSM is used with specific ontologies in
mind, or on a “pure RDF level”, where the graph structure and
the triples themselves are the focus. Such usage, especially in
the context of this article and the INTER-IoT project (where
the IPSM was originally developed), considerably deviates
from the original usage intentions. As such, we acknowledge
the wide possibilities, but do not describe them in detail.

The streaming element (i.e. a single message) for the IPSM
is a set of triples. It should be relatively self-contained, but may
reference entities from outside data sources (as is natural in the
case of Linked Open Data). Furthermore, it does not have to
contain all restrictions placed upon its entities, nor does it need
to include definitions of used concepts. It should, however,
present enough information to be properly recognized in the
context of translation. For instance, if the translation is with
respect to devices, then it may require explicit annotation of
the entity, in the message, with the device type. In other words,
the message needs to match the alignment cells.

This, seemingly trivial, observation is of considerable conse-
quence to the usage of OWL ontologies that are rich in logical
rules and complicated restrictions that, in practice, demand a
reasoner to fully understand and properly use them. In its
current state, the IPSM does not offer reasoning services.
For instance, matching an alignment cell for a class device
will not work for a message with entity of class sensor,
even when it is known that the sensor is a subtype of
the device (specifically, every sensor is a device). Currently,
adding reasoning capabilities to the translation channels is an
interesting open research issue. On the one hand, based on the
“wisdom of the crowd” it can be expected that it would slow
the developed infrastructure immensely. On the other hand,
our initial experiments with real-world semantic processing
gives us some hope that the reality may not be as pessimistic.
Therefore, our future work involves researching methods of
realizing that idea and, at the same time, precisely delineating
practical limits of its usability.

Since the IPSM is a standalone component, it can be de-
ployed in many instances, even within a single IoT ecosystem,
in particular, when the artifacts of the ecosystem can be



divided into “communication clusters”, members of which do
not communicate with artifacts from outside of their clus-
ter. Obviously, multiple IPSM instances (placed on separate
hardware nodes) can also be used for load-balancing and for
increasing the total message throughput within the ecosystem.

Finally, let us reflect on the fact that the design of a
concrete architecture of communication with the IPSM is
a very broad topic, and involves many peculiarities. The
possibilities are very varied and include design of channels that
may be persistent, or dynamically created on a need-be basis,
and, subsequently, destroyed. There are also many details
about the philosophy of alignment design and usage, such
as the size of alignment cells, order of cell application, and,
finally, the number of cells in an alignment. These, and other,
details of working with the IPSM (including, above mentioned,
experimental evaluation and optimization of scalability of the
approach) will be subjects of our future work.
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