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Abstract The Internet of Things (IoT) is a jeopardized ecosystem in which
heterogeneity is intrinsic at all levels, from physical devices to communication
protocols till high-level application semantics. The absence of IoT standards
increases the complexity of integration and interoperability among heteroge-
neous platforms. This generates a strong demand for proper methodologies in
order to fully support the development of heterogeneous, yet interoperable,
IoT systems. To fill this gap, in this chapter the INTER-METH engineering
methodology is presented. Developed in the context of the European H2020
INTER-IoT project, INTER-METH supports the integration of heteroge-
neous IoT platforms from the analysis to the maintenance phase. Its abstract
and instantiated process schema are described, with particular focus on the
analysis and design phases that are fundamental drivers of the whole integra-
tion process. Relevant interoperability design patterns, the building blocks of
the design phase, will be discussed. The chapter also presents the INTER-
CASE tool associated to the methodology which is useful to guide integra-
tor designers in properly following the INTER-METH workflow. Finally, the
chapter shows the proposed methodology and its tool in action, with the
practical integration of BodyCloud and UniversAAL platforms adopted in
the INTER-Health pilot of the INTER-IoT project.

1 Introduction

The IoT domain is stimulating the interest of academia and industry, thus
generating considerable yet uncoordinated research efforts. As a result, high
degree of heterogeneity is characterizing IoT scenarios at all levels, obstruct-
ing interoperability of IoT devices, systems, and applications [1] and gen-
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erating major technological and business development issues. For instance,
lack of interoperability causes impossibility to plug third-party IoT devices
into existing IoT platforms, makes very hard the development of IoT appli-
cations exploiting multiple platforms, discourages the adoption of IoT tech-
nology, increases maintenance costs, reduces reusability of existing techni-
cal solutions, and as a natural consequence generates user dissatisfaction.
To tackle the rapid proliferation of poorly interoperable IoT systems, the
H2020 EU-funded project INTER-IoT aimed to design, implement and eval-
uate methods and tools to enable voluntary interoperability among different
IoT platforms by using a bottom-up approach [2]. Indeed, in the absence
of global IoT standards, the INTER-IoT results allows IoT stakeholders to
design open IoT devices, smart objects, services, and platforms leveraging
on the existing ecosystem, and bring them to market quickly. In particular,
INTER-IoT is based on hardware/software tools (INTER-LAYER) granting
multi-layer interoperability among IoT system layers (i.e., device, network-
ing, middleware, application service, data and semantics), on frameworks for
open IoT application and system programming and deployment (INTER-
FW), and on a full-fledged engineering methodology for IoT platforms in-
tegration (INTER-METH) complemented by its Computer Aided Software
Engineering (INTER-CASE) tool.

INTER-METH, that is probably the most peculiar feature of the INTER-
IoT project, is the subject of this chapter. INTER-METH aims at supporting
the integration process of heterogeneous IoT platforms to (i) obtain interop-
erability among them and (ii) allow implementation and deployment of IoT
applications on top of them. INTER-METH, whose relevance is emphasized
by the absence in the literature of any other full-fledged methodology for
the integration of IoT platforms, is based on a workflow composed by six
phases: Analysis, Design, Implementation, Deployment, Testing and Mainte-
nance that are in turn divided into sub-tasks. Each phase generates work-
products that are inputs for the successive phase(s). It is worth noting that
INTER-METH is domain agnostic by definition, intended to be extensible
and customizable, and it can be associated to any specific IoT systems inte-
gration approach.

The remainder of the chapter is organized as follows. Sec. 2 provides an
overview of available methodologies for integrating IoT systems and mak-
ing them interoperable. Sec. 3 presents several interoperability patterns that
represent the building blocks of the integration design phase. Sec. 4 intro-
duces, phase by phase, the INTER-METH methodology, with particular em-
phasis on its INTER-IOT instantiation, with the goal of showing how the
integration process between two heterogeneous IoT platforms/systems can
be concretely carried out by exploiting the INTER-METH guidelines and
INTER-IoT products. Sec. 5 describes INTER-CASE, the tool associated to
the methodology which is useful to guide integrator designers in properly fol-
lowing the INTER-METH workflow. Ultimately, in Sec. 6, a practical use of
INTER-METH and its INTER-CASE tool is presented by showing the anal-
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ysis and design workflows applied for the integration of the two platforms
adopted in the INTER-Health pilot. Final remarks conclude the chapter.

2 Background

The aim of this section is to provide background to the research and design
of methodologies for interoperable IoT systems and their integration. State-
of-the-art (SotA) analysis includes discussion of: (i) the definition of method-
ologies, (ii) relevance of the reviewed methodologies in the IoT domain, and
(iii) characteristics of such methodologies useful for defining INTER-METH.
Specifically, they are organized in two main categories: (a) General-Purpose
Software Engineering Methodologies (see Sec. 2.1) and (b) More Specific
Methodologies for System Integration (see Sec. 2.2). For each category, we
provide an overview and finally an overall analysis towards INTER-METH
definition, i.e. the characteristics of surveyed methodologies useful to support
the definition of INTER-METH.

2.1 Software Engineering Methodologies

In software engineering, a software development methodology (also known as
a system development methodology, software development life cycle, software
development process, software process) is a splitting of software development
work into distinct phases (or stages) containing activities with the intent of
better planning and management. It is often considered a subset of the sys-
tems development life cycle. The methodology may include the pre-definition
of specific deliverables and artefacts that are created and completed by a
project team to develop or maintain an application. Common methodologies
include waterfall, prototyping, iterative and incremental development, spi-
ral development, rapid application development, extreme programming and
various types of agile methodologies.

The Waterfall development methodology [11] is a step-by-step guide to the
development of software systems. Briefly, it focuses on gathering the features
of the final product, designing it, and then implementing it following that
design. The term depicts the idea that only once a higher step in the process
is complete (full of water), it will spill its results in the following step below
itself. The classic Waterfall methodology is composed of five main steps,
in the following sequence: (1) Requirements gathering, (2) System design,
(3) Implementation. (4) Verification, and (5) Maintenance. This engineering
method is one of the first such methods used for the structured production of
software solutions, and is still often used in several industries, though the so
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called ‘agile’ methods have displaced the Waterfall method in several areas,
in particular in rapidly evolving systems.

The VOLERE methodology [12] helps to describe, formalize and track the
project market analysis, requirements, use cases and scenarios in an explicit
and unambiguous manner. VOLERE has been used by thousands of organiza-
tions around the world in order to define, discover, communicate and manage
all the necessary requirements for any type of system development (e.g. soft-
ware, hardware, commodities, services, organizational, etc.). The VOLERE
methodology provides several templates to deal with the different techniques
and activities that it includes.

Interestingly, several development methodologies are built around the
concept of Agent and are known as Agent-Oriented Software Engineering
(AOSE) methodologies.

Gaia is an AOSE Methodology [13] specifically tailored to the analysis and
design of agent-based systems. It is intended to allow an analyst to go sys-
tematically from a statement of requirements to a design that is sufficiently
detailed that it can be implemented directly. It is worth pointing out that
Gaia authors view the requirements capture phase as being independent of
the paradigm used for analysis and design. For this reason Gaia does not deal
with the requirements capture phase but it considers the requirements state-
ment as an input for the methodology. Analysis and design can be thought
of as a process of developing increasingly detailed models of the system to be
constructed moving from abstract to increasingly concrete concepts.

Tropos [14] is an AOSE methodology strongly focuses on early require-
ments analysis where the domain stake-holders and their intentions are iden-
tified and analysed. This analysis process allows the reason for developing the
software to be captured. The software development process of TROPOS con-
sists of five phases: Early Requirements, Late Requirements, Architectural
Design, Detailed Design and Implementation.

ELDAMeth [15] is a methodology specifically designed for the simulation-
based prototyping of distributed agent systems (DAS). It is based on an
iterative development process covering the modeling, coding and simulation
phases of DAS. ELDAMeth can be used both stand-alone and in conjunc-
tion/integration with other agent-oriented methodologies which fully support
the analysis and (high-level) design phases. The Modeling phase produces an
ELDA-based MAS design object that is a specification of a MAS fully com-
pliant with the ELDA MAS meta-model (MMM). This design object can
be produced either by (i) the ELDA-based modeling which uses the ELDA
MMM and the ELDATool [16], a CASE tool supporting visual modelling and
coding of ELDA-based MAS [33, 34], or by (ii) translation and refinement of
design objects produced by other agent-oriented methodologies. The Coding
phase produces an ELDA-based MAS code object which is a translation of
the ELDA-based MAS design object carried out manually or automatically
(by means of the ELDATool). The developed code could be also mapped
onto heterogeneous MAS platforms [38]. -The Simulation phase produces the
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Simulation Results in terms of MAS execution traces and calculation of the
defined performance indices that must be carefully evaluated with respect to
the functional and non-functional requirements [39]. Such evaluation can lead
to a further iteration step which starts from a new (re)modelling activity.

Other interesting AOSE methodologies include MaSE [17], Prometheus [18],
MESSAGE [19].

General AOSE methodologies deal with providing engineering support to
systems modeled as multi-agent systems. Thus, they could be used for general
software development support (from analysis to implementation) for imple-
menting or re-engineering software systems. Nevertheless, some of their meth-
ods could be generalized and reused to support integration of systems. For
instance, TROPOS proposes a goal-oriented analysis that could be reused
to elicit integration requirements among different components/part of sys-
tems/systems. In particular, we reused TROPOS to identify/refine integra-
tion goals among IoT platforms.

Agent-oriented methodologies are suitable for the development of dis-
tributed applications and systems in terms of multi-agent systems. They can
be categorized in basic (e.g. Gaia, Message, TROPOS, MaSe, Prometheus)
and simulation-based (e.g. ELDAMeth). However, they do not aim at sup-
porting (hw/sw) distributed systems integration, thus they cannot directly
support the definition of INTER-METH. Nevertheless, some of the tech-
niques proposed by such methodologies could be reused as basic techniques
for defining INTER-METH:

� Goal-oriented analysis (from TROPOS) to analyse integration goals;
� Agent-oriented domain conceptualization (from Gaia and ELDAMeth), to

formalize integration requirements in the form of a high-level agent system
design;

� Simulation-based validation (from simulation-based methodologies) to val-
idate integration (i.e. the high-level agent system design) before its imple-
mentation.

2.2 IoT Methodologies

In the following, we analyse currently available IoT methodologies. It is worth
noting, however, that they are still at an earlier stage of development with
respect to methodologies presented in the previous section.

Despite a variety of research efforts that tackle different specific issues
within an IoT systems development process, a full-fledged IoT engineering
methodology is still missing. Several studies proposed domain specific best
practices, guidelines, checklists, and templates. For instance, Slama et al. [20]
and Collins [15] created a repository of technology-dependent solutions com-
ing from the experience in the industrial/business world and specifically di-
rected to the IoT makers and enterprises. In fact, they proposed reference
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architectures and guidelines to make specific purpose devices interoperable
through abstraction data models and high-level software interfaces.

By means of different views, perspectives and metamodels, IoT-A aims
to offer a unified approach to the development of IoT systems, in order to
promote cross-domain interaction, to support interoperability and to reduce
fragmentation within an IoT context. Notably, IoT-A introduced an Architec-
ture Reference Model (ARM) [21] with the capability of generating architec-
tures for specific systems. A reference model is, according to the OASIS [22]
is “an abstract framework for understanding significant relationships among
the entities of some environment. A reference model consists of a minimal set
of unifying concepts, axioms and relationships within a particular problem
domain, and is independent of specific standards, technologies, implementa-
tions, or other concrete details”. Most of the indications provided by IoT-A
have inspired AIOTI (Alliance for the Internet of Things) [28] particularly
for the domain model. From IOT-A we re-used its functional architecture in
INTER-METH Analysis Phase.

Zambonelli [23] proposed a software engineering methodology centered
on the main general-purpose concepts related to the analysis, design and
implementation phases of IoT systems and applications. Such concepts are
used to identify the key software engineering abstractions as well as a set of
guidelines and activities that may drive the IoT systems development. The
envisioned methodology, however, lacks the definition of models and tools to
represent different conceptual and software artifacts.

Fortino et al. [36] proposed the ACOSOMeth approach for the agent-
oriented development of IoT systems [37]. ACOSOMeth uses a model-driven
development approach seamlessly covering the analysis, design and implemen-
tation phases. ACOSOMeth also enables the development of even complex
IoT systems of systems [35].

Although the overviewed methodologies have been specifically defined for
developing IoT systems totally or partially fulfilling the reference require-
ments for IoT systems development, they have not been devised for IoT sys-
tems integration and interconnection. Even though such methodologies have
another scope, INTER-Meth took inspiration by borrowing the ideas of:

� meta-modeling approach that is typical of the model-drive development
(MDD) approach;

� agent-oriented-like approach (see [23]) allowing to simplify the definition
of integration requirements analysis;

� AIOTI [28] and IoT-A [24] meta-models to have reference IoT architectures
during the integration process, in order to align the meta-models of the IoT
systems/platforms to be integrated/interconnected or made interoperable
to the reference meta-model.

In [26, 25], the addressed IoT interoperability using “model-driven develop-
ment“ tools and techniques. In particular, there are three key contributions:
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1. Interoperability models are reusable, visual software artifacts that model
the behavior of services in a lightweight and technology independent man-
ner; these models are a combination of architecture specification and be-
havior specification and are based upon Finite State Machines (FSM);

2. A graphical development tool to allow the developer to create and edit
interoperability models and to also execute tests to report interoperability
issues;

3. The Interoperability monitoring and testing framework captures systems
events (REST operations, middleware messages, data transfers) and trans-
forms them into a model specific format that can be used to evaluate and
reason against required interoperability behavior.

Hence, such model-driven development approach allows the developer to
create, use and re-use “models of interoperability” to reduce development
complexity in line with the following requirements to ensure interoperability
is correctly achieved. Different stakeholders are defined in the engineering
methodology:

� Interoperability testers create new IoT applications and services to be
composed with one another;

� Application developers model the interoperability requirements of service
compositions. They create interoperability models to specify how IoT ap-
plications should behave when composed.

This research discusses about interoperability of IoT services, systems, and
(virtualized) devices and was taken in consideration in our CASE-driven inte-
gration methodology (see INTER-CASE) supporting the integration process
of heterogeneous IoT platforms. In [27] System of Systems (SoS) integration
is considered. SoS is defined as a “set of systems that are cooperating and
interoperating while the different systems are simultaneously working as in-
dependent entities”. Authors proposed methods to improve the way in which
an IT architect addresses the integration problem, focusing on how to select
the best integration approach in SoS context depending on the features of the
environment and systems to be integrated. Some design patterns from pop-
ular patterns catalogs are analyzed by the authors who proposed a process
for creating SoS based on patterns as a central architectural concept.

2.3 An analysis toward INTER-METH

The analyzed methodologies and techniques directly address the issue of sys-
tems integration by adopting different approaches. Some of them are pur-
posely related to IoT systems integration but they do not provide any sys-
tematic methodology that, starting from two or more systems to integrate,
provides a clean process (along which tools for each phase) to support the
integration.
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Nevertheless, the Waterfall model can be used, after enhancement, to sup-
port INTER-Meth. In fact, the proposed INTER-Meth process is based on
an iterative version of the waterfall model, as the basic waterfall is too static.
Agent-oriented methodologies are suitable for the development of distributed
applications and systems in terms of multi-agent systems. However, they do
not aim at supporting (hw/sw) distributed systems integration, thus they
cannot directly support the definition of INTER-METH. Nevertheless, some
of the techniques proposed by such methodologies could be reused as basic
techniques for defining INTER-METH:

� Goal-oriented analysis (from Tropos) to analyse integration goals;
� Agent-oriented domain conceptualization (from Gaia and ELDAMeth), to

formalize integration requirements in the form of a high-level agent system
design;

� Simulation-based validation (from simulation-based methodologies) to val-
idate integration (i.e. the high-level agent system design) before its imple-
mentation.

Regarding the overviewed IoT methodologies, they have been specifically
defined for developing IoT systems totally or partially fulfilling the refer-
ence requirements for IoT systems development, but they are not devised for
IoT systems integration and interconnection. Thus, even though some of the
ideas on which they are founded could be reused, such methodologies (as the
reviewed agent-oriented methodologies) have another scope. INTER-Meth
could borrow mainly:

� the meta-modeling approach that is typical of the model-drive develop-
ment (MDD) approach;

� The agent-oriented-like approach (see [23]) allowing to simplify the defini-
tion of integration requirements analysis;

� AIOTI [28] and IoT-A [24] meta-models to have reference IoT architectures
during the integration process, in order to align the meta-models of the IoT
systems/platforms to be integrated/interconnected or made interoperable
to the reference meta-model.

3 Design Patterns for IoT systems

With the proliferation of IoT artifacts (devices/platforms/systems/services)
the need arises to analyze existing solutions from the software engineering
perspective. Specifically, in the context of integration and interoperability
new design patterns materialized and required to be analyzed and catalogued.
Note that design pattern is understood as a general reusable solution to a
problem that recurs repeatedly within a specific context in software design,
whereas a pattern catalog is a collection of related patterns, subdivided into a
(small) number of categories. Here, we outline the design patterns identified
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in INTER-IoT project either by defining them from scratch or extending
some existing pattern. They address issues that can be extended beyond
INTER-IoT project. For more detailed information INTER-IoT deliverable
D5.1.

Since so far there have been no formal guidelines to IoT integration, in
INTER-IoT we have decided to decompose the the problem into layers: D2D
(Device-to-Device), MW2MW (Middleware-to-Middleware), AS2AS (Appli-
cations and Services -to- Applications and Services, DS2DS (Data and Se-
mantics -to- Data and Semantics) and CROSS layer relating them. For each
of these layers design patterns have been proposed and described using the
following template:

� Pattern name - unique name of the pattern.
� Inspired by - name(s) of pattern(s) that a given one is based on / extends.

In most cases, when pre-existing patterns did not fully solve specific prob-
lems, new patterns were created, extending existing ones.

� Related patterns - other patterns, related to the given one.
� Intent (summary) - short description of the goal behind the pattern and

the reason for using it (an extension of the “Pattern name”, explaining its
action/purpose).

� Problem & Solution - scenario that illustrates a problem and how the
pattern solves it.

� Applicability - situations, in which the pattern is usable; context for the
pattern.

� UML representation - structure of the pattern modeled with a UML dia-
gram (mostly deployment and component diagrams).

� Implementation - extension of the “UML representation” property, i.e.
description of realization and architecture.

� Known uses - an example usage of the pattern within the INTER-IoT
pilot installation.

Fields: UML representation, Implementation, Related patterns and Known
uses have not been included in what follows (find them in INTER-IoT deliv-
erable D5.1).

3.1 D2D patterns

The two following patterns are related to design on device-to-device layer.
IoT Gateway Event Subscription describes an approach to data forwarding,
whereas D2D REST Request/Response describes approach to communication
on D2D layer.

IoT Gateway Event Subscription
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Inspired by: (1) “Publish/Subscribe” (IoT Patterns: Design Patterns for
Interaction), (2) “Publish-Subscribe Channel” (EIP: Messaging Channels),
(3) “Facilitator”, and (4) “Proxy” (Agent Design Patterns: by Kendall).

Intent: D2D gateway allows data forwarding (any type). Flexibility in
the D2D layer is achieved by decoupling a gateway into: a physical part
that handles network access and communication protocols, and a virtual part
dealing with remaining gateway operations and services. Note that, in this
way, data providers (communicating within the network) and their identities
(known to the virtual layer) can also be decoupled.

Problem & Solution: To provide interoperability between two heteroge-
neous IoT devices, the solution should establish bidirectional, asynchronous
communication with the ability to publish, filter and consume data. Here,
the IoT gateway is used as a subscription mechanism. It is an intermedi-
ary between IoT artifacts (in D2D communication, between two devices).
It allows transmission of data generated by “sensors” to the destination,
and asynchronous messaging between artifacts that interact with it. If re-
quired, the gateway should perform protocol conversion to enable commu-
nication. Senders of messages (publishers) do not program messages sent
directly to specific receivers (subscribers). Instead, they publish them, us-
ing defined classes, without knowledge of subscribers. Similarly, subscribers
express interest in one or more classes and receive only messages of inter-
est (without knowing publishers). Significant is the structure of the message,
which should contain subscription information (e.g. message endpoint; see:
“D2D REST Request/Response” pattern).

Applicability: Used within event-based communication, when asynchronous
data is to be pushed/pulled to/from the gateway.

D2D REST Request/Response
Inspired by: (1) “Request-Response” (Reactive Patterns: Message Flow),

(2) “Request-Reply” (EIP: Messaging Patterns), (3) “Request/Response”
(IoT Patterns: Design Patterns for Interaction).

Intent: A request/response solution for gateway communication within
the D2D layer.

Problem & Solution: IoT Gateway needs to communicate with IoT
artifacts. It should be accessible to authorized external elements to enable
reception of information and execution of control and configuration orders.
For example, the main goal of IoT ecosystems is to allow heterogeneous IoT
artifacts to retrieve information. Thus, the artifacts’s middleware should be
able to communicate with the IoT gateway to enable needed information
flows. Thus, it is desirable to connect IoT artifacts (if possible) through a
HTTP/REST API using the Request/Response pattern. This communication
pattern allows message exchange, in which a requester (e.g. middleware or
gateway) sends a request message to a replier system, which receives and
processes the request (e.g. middleware or gateway), ultimately returning a
message, in response.



INTER-Meth 11

Applicability: Used when communication between the middleware of an
IoT artifact and the IoT gateway is performed through a REST API (middle-
ware � gateway is typically based on Publish/Subscribe). Also, for manage-
ment purposes, the gateway will expose a REST endpoint where configura-
tion and management actions can be performed using the Request/Response
patterns.

3.2 N2N patterns

On network-to-network layer we have identified one pattern that addresses
the problem of orchestration of different SDN network elements.

IoT Pattern for Orchestration of SDN Network Elements
Inspired by: (1) “Software-defined networking (SDN) orchestration”, (2)

“Network virtualization (NV)”.
Intent: Monitoring and configuration of SDN elements (virtual-switches)

with an orchestrator component (Controller) exchanging flow and control
messages. To provide interoperability between different domains connected
to a network or between different network topologies and/or configurations.

Problem & Solution: Domain-focus of IoT deployments isolates them
from each other. One of approaches to interconnection is, instead of realiz-
ing it at the device/gateway level, to move it to upper layers. In particular,
at the network layer, interoperability and exchange of information can be
achieved by applying pattern that manages elements of the network that
provide connection from different domains to the network itself. The pattern
is used in development of virtual SDNs, where all elements are virtual re-
sources, or instances, controlled within a central point, or orchestrator. N2N
interconnection can then be performed through the SDN. Different networks
(in different locations), can be virtually interconnected and belong to a sin-
gle Virtual LAN. Thus, physical separation of networks becomes “invisible”,
thus facilitating elastic definition of needed connectivity.

Applicability: Used when an IoT SDN is deployed, to enable its function-
ality. Allows total software control over network functions, and transparent
N2N interoperability.

3.3 MW2MW patterns

Patterns on middleware-to-middleware layer address the issues of compo-
nents decomposition, communication infrastructure and messaging between
IoT artifacts.

IoT Artifact’s Middleware Simple Component
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Inspired by: (1) “Simple component” (Reactive Patterns: Fault Tolerance
and Recovery).

Intent: Every IoT artifact is designed to perform (in full) a single task
(single responsibility principle, where each class should have only one reason
to change).

Problem & Solution: In complex systems with multiple functions, it
may be necessary to have these functions performed by different components.
Their responsibilities are to be divided recursively, until desired component
granularity is reached. This enables testing, debugging and extending com-
plex system more efficiently, simplifying all operations.

Applicability: Basic pattern that can be universally applied. Does not
impose level of granularity to be achieved, but indicates that analysis should
be performed in order to end up with the best component decomposition.
Should be applied recursively, remembering to not to divide components too
far, to avoid trivial ones.

IoT artifact’s Middleware Message Broker
Inspired by: (1) “Message Broker” (EIP: Message Routing), (2) “Broker”

(IoT Patterns: Design Patterns for Interaction).
Intent: Facilitates passing messages between IoT artifacts.
Problem & Solution: In middleware, composed of several independent

components, point-to-point connections should be avoided, as they result in
multiple interfaces that expose operations of each component. Furthermore,
having point-to-point interfaces complicates dynamic reconfiguration, match-
ing of security constraints, and quality of service (QoS) requirements manage-
ment. Message broker helps to overcome those limitations by enforcing com-
mon messaging interface upon different components. This allows components
to initiate interactions with other components, no matter their architecture
and purposes. Each component communicates directly with the broker only,
while within the broker, each component is represented with a logical name,
making its internal operation hidden from other components. Crucial is the
proper format of message, which consists of the payload and the label, storing
information needed by the broker.

Applicability: Central Message Broker receives messages from multiple
message producers, determines their destinations (message consumers), and
routes them to channels specific for their destinations. Allows decoupling the
sender from the destination and maintains central control over the flow of
messages. This can be achieved through usage of topics, to which consuming
components can: subscribe, and proceed to consume awaiting messages.

IoT Artifact’s Middleware Self-contained Message
Inspired by: (1) “Self-contained message” (Reactive Patterns: Message

flow), (2) “Messaging Metadata” (SOA Patterns).
Intent: Messages contains complete information needed for execution of

a specific action.
Problem & Solution: Within middleware, messages should be “pure and

complete” representations of events (or commands), regardless when they are
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to be interpreted. Each middleware component must always be able to ex-
tract from the message, stored there, complete information needed for its
routing and interpretation, with only minimal data stored within the mid-
dleware components. Each message has distinct set of types associated with
it. Each middleware component processes and routes messages based solely
on these types. For each message that travels “downstream”, there can be a
response that travels “upstream”. Such messages might, for example, include
additional response message type. Matching messages that go downstream
with responses that go upstream can be done through remembering and dis-
tinguishing different chains of messages (conversations).

Applicability: Allows middleware components to be “contextfree”, stor-
ing only a minimal information needed for message processing and routing.
Can be also employed when there is no need to reference past messages,
except for responses, and even then, these are only semantically linked to
original messages (could exist without original messages).

IoT Artifact’s Middleware Message Translator
Inspired by: (1) “Message Translator” (EIP: Message Transformation),

(2) “Data Format Transformation” (SOA Patterns).
Intent: Translation of messages to/from IoT artifact’s middleware internal

message format and platform’s proprietary data models and data formats.
Problem & Solution: The purpose of the middleware is to pass infor-

mation between different IoT artifacts. However, artifacts produce/consume
messages in “their” formats and data models. Hence, to make sense of ex-
changed messages, they have to be syntactically and semantically translated.
A message translator enables conversion between proprietary data models
and data formats, used by artifacts, and the internal data model and data
format, used by IoT middleware components.

Applicability: Enables interoperability between different platforms with-
out the need to introduce translations between every possible pair of plat-
forms, i.e. translation into and out of the common INTER-IoT data model.
Semantic translation from and into the internal message format is done by a
dedicated IoT semantic translation component, while syntactic translation is
completed in bridges to/from artifacts, as only they know the internal data
syntax.

3.4 AS2AS patterns

On applications and services-to applications and services layer design pat-
terns address the issues of service composition, orchestration and discovery.

AS2AS Flow-based Service Composition
Inspired by: (1) “Flow–based programming”.
Intent: Generate execution flow that allows interoperation and composi-

tion of services from different IoT artifacts.
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Problem & Solution: Pattern necessary to define execution flow that
allows specific sequence of execution of multiple IoT services. Flow–based
programming (FBP) defines applications and services as networks of “black
box” processes, which exchange data across predefined connections by mes-
sage delivery, where connections are specified externally to processes. Con-
sidered pattern allows creation of sequential execution flows using those ser-
vices, thus allowing composition among different IoT services. Black boxes
that represent IoT services can be linked by wiring the output of a service
with the input of a different one (output messages from a service are routed
to another service input). Thus, by wiring IoT services execution flow can be
instantiated.

Applicability: Used in black box representation of IoT services to be
interconnected through an FBP link, generating a flow.

AS2AS Service Orchestration
Inspired by: “Service Orchestration” (SOA Patterns).
Intent: To specify orchestration of services to facilitate interactions among

different IoT services.
Problem & Solution: Cooperating, diverse, heterogeneous IoT artifacts

involve huge number of different services that have to work together. Impor-
tant is not only the message flow from point(s) to point(s) but also triggering
necessary actions (during the flow). The common problem is that existing
processes/actions are duplicated (not reused). This pattern allows union and
orchestration of heterogeneous IoT services, creating a specific process. The
main idea is to define a set of IoT nodes, i.e. services and interfaces that
run within the integrated platforms. Internal, central, element wires nodes
necessary to handle the specific task and controls processes.

Applicability: Reuse of process fragments. Orchestration enables com-
position of IoT service workflows, based on services from IoT artifacts.

AS2AS Discovery of IoT Services
Inspired by: (1) “Discovery” (IoT Patterns: Design Patterns for Interac-

tion), (2) “Enterprise inventory” (SOA Patterns).
Intent: Registering and claiming specific services, used by the artifacts

(within the IoT ecosystem).
Problem & Solution: Multiple IoT services, from different IoT plat-

forms, provide a wide range of functionalities that have to be discoverable,
to be aware of them and to use them. This pattern enables registration of
services (in a service catalog), in order to find them and (potentially) use
through an AS2AS layer solution. Here, only registered services, indicating
their associated features, can be discovered.

Applicability: Pattern for providing service interoperability via regis-
tration and service retrieval. Applied to services that run within the IoT
ecosystem, and used by other IoT artifacts.
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3.5 DS2DS patterns

On data and semantics-to-data and semantics layer pattern address the prob-
lem of semantic translation, specifically how to persist translation rules and
how to organize the translation process.

Alignment-based Translation Pattern
Inspired by: (1) “Message Translator” (EIP: Message Transformation),

(2) “Data Model Transformation” and (3) “Metadata centralization” (SOA
Patterns), (4) “Market Maker” (Agent Design Patterns).

Intent: Semantic translation of RDF messages exchanged between IoT
artifacts, based on alignments (sets of correspondences) defined between ar-
tifacts’ ontologies.

Problem & Solution: Building the IoT ecosystem involves combining
existing solutions, which (likely) belong to different owners and have been
developed using different technologies (e.g. Web Services “combined with”
a graph database, communicating using JSON messages, to exchange infor-
mation with application that uses XML messages). Consequently, they differ
both on syntactic and semantic level. Interoperation between artifacts should
be achieved regardless of the underlying technology. Without loss of general-
ity, we assume RDF message format, since other formats can be transformed
to RDF. Semantics of messages is artifact specific (ontology can be natively
supported, or semantics, e.g. expressed in XSD, can be lifted to an OWL
ontology). Hence, for semantic interoperability, a method for defining corre-
spondences should support mapping between specific URIs, parts of the RDF
structure, transformations etc. The component implementing the translation
should provide interfaces to submit messages to be translated and publish
translated messages.

Applicability: Providing semantic translation between RDF messages
exchanged between heterogeneous IoT artifacts. Translation, based on one-to-
one translation (alignment), should be possible to define for any two artifacts.

Translation with Central Ontology
Inspired by: (1) “Message Translator” (EIP: Message Transformation),

(2) “Data Model Transformation” and (3) “Metadata centralization” (SOA
Patterns), (4) “Market Maker” (Agent Design Patterns).

Intent: Semantic translation of RDF messages exchanged between IoT
artifacts, where one involves central/common data model.

Problem & Solution: To provide common understanding in the semantic
translation process a modularized central ontology can be created on the basis
of IoT and domain ontologies. Here, a domain ontology is a conceptual model
for a specific domain, e.g. transportation, health, etc. IoT ontology describes
different IoT aspects, e.g. platforms, devices, sensors, services, etc. Central
ontology should reuse / be based on existing standards (e.g. SSN, SOSA,
SAREF, etc.). This approach is highly scalable: it is possible to add artifacts
to the existing IoT ecosystem by instantiating translations with the central
ontology (i.e. creation of alignments; see above). This approach requires less
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preparation/work, as only a single “point of joining” has to be instantiated.
Furthermore, the long-term maintenance is simplified, as changes in a single
platform require localized adjustments only. The component implementing
the translation should provide interfaces to submit messages to be translated
and publish messages after translation (realizable via an appropriate pattern,
above).

Applicability: Providing semantic translation between multiple hetero-
geneous IoT artifacts that are to exchange RDF messages.

3.6 CROSS-layer patterns

IoT SSL CROSS-Layer Secure Access
The CROSS-Layer pattern addresses issue that is common to the IoT-

based systems regardless of the layers, i.e. security.
Inspired by: (1) Security Patterns, (2) IoT Patterns: Design Patterns for

IoT Security.
Intent: Ensuring security of interactions with external interfaces (i.e.

APIs) of every layer of the IoT ecosystem.
Problem & Solution: As IoT architecture is composed by diverse layers,

access to each of them, as well as interactions between them, must be secure.
To ensure a sufficient level of security on each of the IoT layers, different
security mechanisms can be implemented: authentication of credentials, use
of authentication tokens, or Secure Sockets Layer (SSL). In an IoT ecosys-
tem, layer access will be secured with the SSL that employs the IoT SSL
pattern. Every IoT layer exposes a REST API that represents an external
interface accessible to the outside actors, such as other IoT layers, users, or
IoT artifacts. To enable use of such APIs to only allowed actors the access
is secured through SSL. REST APIs are accessible through a browser, which
should provide a trusted certificate. Only after the establishment of a secure
connection authentication through login will be allowed, to open the access
to the layer API. Further operations on the layer API will be done using this
secure connection.

Applicability: Pattern applied in interactions of any actor with the IoT
environment layer’s APIs. Access can also be done internally between pairs
of different layers.

4 INTER-METH

In this section, we will briefly introduce the abstract process of our INTER-
METH methodology. Then, we will describe in more details its INTER-IoT
instantiation, with particular attention to the Analysis and Design phases.
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4.1 INTER-METH Abstract Process

Fig. 1 INTER-METH Abstract Process Schema.

The engineering methodology INTER-METH aims at supporting the in-
tegration process of heterogeneous IoT platforms to obtain interoperability
and support implementation and deployment of IoT applications on top.
In this section, we introduce the abstract process of INTER-METH whose
SPEM1-based schema is shown in Fig. 1. The process is envisioned as iterative
waterfall and is composed of six main phases, each of which is divided into
tasks and produces workproducts that are inputs for the successive phase. In
particular:

� Analysis Phase supports the definition the IoT platform (non-)functional
integration requirements.

� Design Phase produces both artifacts (e.g., diagrams) and program-
ming/management patterns to fulfill the elicited requirements and define
the integration design.

� Implementation Phase drives the implementation of the design workprod-
uct to obtain the full-working (hardware/software implemented) inte-
grated IoT platform.

� Deployment Phase involves the support to the operating set-up and con-
figuration of the integrated IoT platform.

� Testing Phase defines the performance evaluation tests to validate the in-
tegrated platform according to the functional and non-functional require-
ments.

� Maintenance Phase manages the upgrade and evolution of the integrated
system.

In detail, at the Analysis Phase, on the basis of the Integration Goals
(representing high-level integration requirements), each platform is analysed
according to a shared reference architecture model. Functional and non-
functional integration requirements of the platforms are hence formalized in
a document whose format will be specified according to the specific instanti-
ation of the abstract INTER-METH methodology (see Sec. IV). On the basis

1 OMG, SPEM, and O. M. G. Notation. “Software&systems process engineering
meta-model specification.” OMG Std., Rev 2 (2008).
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of the elicited requirements at the Analysis Phase, an initial design specifi-
cation is produced for each layer and iteratively refined at the Design Phase.
The final workproduct is a formalized specification containing the design of
the integration of the IoT platforms/systems to be interconnected/integrated.
This full-fledged design specification is actually implemented through mul-
tiple refinement steps at the Implementation Phase according to the inte-
gration specifications, aiming at obtaining the final integrated platform. The
final workproduct is the integrated platform, that will be based on the spe-
cific IoT platforms/systems to be integrated/interconnected and that will be
deployed according to deployment goals and requirements at the Deployment
Phase. Hence, the deployed platform is set-up according to the defined config-
uration and run specifications. The integrated and deployed platform is then
executed and validated through testing according to well-defined test cases
at the Testing Phase: specifically, functional and non-functional test cases
(previously defined to respectively validate functional and non-functional re-
quirements) are executed by the platform and results collected according to
formalized analysis documents. Finally, to maintain and allow the evolution
of the integrated IoT platform, the Maintenance Phase aims at identifying
both bugs and evolution points, activities which imply to totally/partially
re-execute the integration process.

4.2 INTER-METH instantiated on INTER-IoT

The INTER-METH abstract methodology has been customized for the
INTER-IoT approach [2] with the aim of showing how the integration process
between two or more heterogeneous IoT platforms/systems can be concretely
carried out by exploiting the INTER-METH guidelines and the two INTER-
IoT products INTER-LAYER and INTER-FW. INTER-LAYER is a set of
interoperability solutions dedicated to each specific INTER-IoT architectural
layer (Device-to-Device D2D, Networking-to-Networking N2N, Middleware-
to-Middleware MW2MW, Application&Services-to-Application&Services AS2AS,
Data&Semantics-to-Data&Semantics DS2DS). Thanks to its layered ap-
proach, INTER-LAYER makes the interoperability flexible and allows it to
reflect the interests/needs of the stakeholders, integrators or application de-
velopers. INTER-FW, instead, allows the development of new applications
and services by customizing INTER-METH and exploiting INTER-LAYER.
Indeed, INTER-FW is a global framework for programming and managing
interoperable IoT platforms by means of specific programming interfaces and
interoperability tools for every architectural layer. As in Sec. 4.1, for each
phase of the instantiated process, an overall description is reported along
with a brief description of the performed tasks and obtained workproducts.

� INTER-IoT-based Analysis Phase: given two or more heterogeneous IoT
platforms to be integrated according to certain Integration Goals, these are
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analyzed according to the INTER-IoT RA that is, as previously reported
in Sec. 2, based on IoT-A [4]. Integration requirements are then defined
for each architectural layer (according to some iterative tasks that will be
elicited in Sec. 4.2.1) and formalized in the INTER-Goal Oriented Model
(INTER-GOM) as final workproduct.

� INTER-IoT-based Design Phase: for each layer, on the basis of the elicited
requirements reported in the INTER-GOM, an initial INTER-IoT De-
sign Pattern is produced and iteratively defined by exploiting the INTER-
LAYER product (D2D, N2N, MW2MW, AS2AS, DS2DS), thus producing
five instantiated INTER-IoT Design Patterns. On the basis of these Pat-
terns, a full-fledged specification is iteratively produced as workproduct
by incorporating also the CROSS-LAYER and INTER-FW INTER-IoT
Design Patterns. These patterns are integration solutions structured ac-
cording to certain templates (describing pattern’s main properties, e.g.,
pattern name, its intent, its known uses) and formalized through XML
files providing domain-specific guidelines to be exploited for driving the
INTER-IoT-based Implementation Phase.

� INTER-IoT-based Implementation Phase: it consists in the (i) configu-
ration of the components of the Integrated Platform by means of the
INTER-FW; (ii) potential extension of the components of the Integrated
Platform (e.g., a new functionality enabled by the integration needs to be
implemented); and (iii) implementation, in terms of software bridges con-
nected to INTER-LAYER, of the INTER-IoT based design patterns. The
final output workproduct is the INTER-IoT-based Integrated Platform (if
needed, an ontology alignment for finding correspondences among entities
and sub-structures from different ontologies can be performed). Indeed,
at this point, the heterogeneous IoT platforms are integrated according
to the INTER-IoT approach, thus obtaining interoperability among them
and allowing implementation and deployment of IoT applications on top
of them.

� INTER-IoT-based Deployment Phase: the following six tasks have to be
performed for the deployment of the Integrated Platform according to de-
ployment goals and requirements: (i) Platform Configuration, which aims
to instantiate and deploy an IoT Platform Middleware in the INTER-FW;
(ii) Gateway Configuration, focused on the device to device interoperabil-
ity, addressed in the scope of INTER-IoT in the D2D Layer; (iii) Network-
ing Configuration, which achieves network interoperability via network
virtualization to support the needs of the N2N Layer; (iv) Application Ser-
vices Configuration, which includes a graphic tool for service orchestration,
namely the underlying interoperability mechanism for AS2AS Layer; (v)
Semantics Configuration, which manages all the processes and mechanism
of DS2DS Layer enabling ontologies interoperability; (vi) User Manage-
ment Configuration, to configure and manage the users of the INTER-FW
and their authorized access to the IoT resources connected in INTER-IoT.
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� INTER-IoT-based Testing Phase: the integrated, configured and deployed
platform is executed and validated through well-defined test cases. In par-
ticular, to determine if the requirements of a specification are met, Factory
Acceptance Testing (FAT) task is performed by simulation whereas Site
Acceptance Testing (SAT) task takes place after integration at the cus-
tomer site and tests if the solution has been correctly integrated into the
customer’s environment. The Defect Reporting task, instead, is in charge
of identifying and reporting issues emerged in FAT and SAT tasks as well
as implementing, integrating and testing the related solutions. FAT and
SAT documents are the output workproducts of such phase.

� INTER-IoT-based Maintenance Phase: it allows the maintenance and evo-
lution of an integrated and already deployed IoT platform. It first identifies
bugs and/or evolution points at each layer as well as at cross-layer of the
integrated platform (i.e., at INTER-LAYER) and framework level (i.e., at
INTER-FW), and then at actually develops the required changes.

4.2.1 INTER-IoT-based Analysis Phase

Fig. 2 The INTER-IoT-based Analysis phase: (a) Requirement Analysis activity
overall description and (b) its workflow.

The INTER-IoT-based Analysis Phase involves the Requirement Analysis
activity, which is described in Fig. 2(a) in terms of tasks, roles, and workprod-
ucts as well as in terms of workflow in Fig. 2(b). The Requirement Analysis
comprising the following three main tasks that are performed by the integra-
tor: the IoT Platforms Analysis, the Integration Layer Identification, and the
INTER-GOM Production.

The IoT Platforms Analysis Task receives two or more heterogeneous IoT
systems as inputs and, according to the INTER-IoT RA, produces the An-
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alyzed Platforms Document. This step allows heterogeneous IoT platforms
with even notably different architectures to be compared by means of a com-
mon set of architectural solutions and building blocks. In particular, INTER-
IoT RA is depicted in Fig. 3 and consists in the following Functional Groups
(FG):

� Service Interoperability FG, supporting the AS2AS interoperability through
the definition and execution of new compound services that make use of
already existing services in the underlying IoT Platforms; it uses services
from different IoT Platforms and create new services based on them.

� Semantics FG, addressing the challenges related to semantic interoperabil-
ity of IoT Platforms; it provides support for the Service Interoperability
FG, the Platform Interoperability FG and the Device Interoperability FG.

� Platform Interoperability FG, interacting with the different IoT Platforms
to be interconnected; it is the responsible for accessing the IoT Platforms.

� Device Interoperability FG, addressing the challenges of making legacy
devices and non-real IoT Platform interoperable with other IoT Platforms
and systems.

� Device Access FG, that is responsible for offering a common interface to
services and virtual entities that represent and expose functionality of
physical devices; it abstracts all the necessary functions for managing the
devices and interacting with them.

� Management FG, considering all the functionalities to rule the interop-
erability among different IoT Platforms; it is responsible for initializing,
monitoring and modifying the operation of the interoperability among IoT
Platforms.

� Security FG is responsible for ensuring all the security aspects involved in
the interoperability of IoT Platforms.

Fig. 3 INTER-IoT Reference Architecture schema.
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The Integration Layer Identification Task receives the Analyzed Platform
Document and a set of Integration Goals as input. As extensively reported,
INTER-IoT presents a layer-oriented solution for interoperability, to provide
interoperability at any layer and across layers among different IoT systems
and platforms. Although a layer-oriented approach is more challenging than
an application-level approach, it has a higher potential to deliver tight bidi-
rectional integration among heterogeneous IoT platforms, thus providing flex-
ibility, modularity, higher performance, reliability, and security. This layer-
oriented solution is achieved through INTER-LAYER and includes several
interoperability solutions dedicated to specific layers. The INTER-LAYER
architecture is reported in Fig. 4 and comprises the following six layers: (i) De-
vice allows the seamless inclusion of novel IoT devices and their interoperation
with already existing ones; (ii) Network(ing) aims to provide seamless support
for smart objects mobility and information routing; (iii) Middleware enables
seamless resource discovery and management system for the IoT devices in
heterogeneous IoT platforms; (iv) Application&Services enables the use of
heterogeneous services among different IoT platforms; (v) Semantics&Data
allows a shared interpretation of data and information among heterogeneous
IoT systems and data sources, achieving semantic interoperability; and (vi)
CROSS-LAYER covers and guarantees non-functional aspects that must be
present across all layers: trust, security, privacy, and quality of service (QoS).

Fig. 4 The INTER-LAYER approach schema

Finally, the INTER-GOM Production Task receives the Analyzed Plat-
form Document, the Integration Goals and the Categories of Integration,
and produces the INTER-GOM. This task can be iterated one or more
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time, thus obtaining the final INTER-GOM that will represent the formal
requirements model and drive the INTER-IoT-based Design Phase. In par-
ticular, the INTER-GOM comprises the following components, according to
its Metamodel depicted in Fig. 5(a): (i) the Analyzed Platform Document,
which compares the platforms using the shared the INTER-IoT RA to iden-
tify their integration points; and (ii) one or more Integration Points IP [14],
which put together parts of the platforms according to the CoI and one or
more Requirements. Requirements represent the states to be achieved by the
IP; they are progressively refined into intermediate goals, until the process
produces actionable goals/tasks that need no further decomposition and can
be executed. According to the Analyzed Platform Documents and the IP,
the GOM is defined following an iterative procedure as shown in the activ-
ity diagram of Fig. 5(b). After having analyzed IoT platforms/systems whose

Fig. 5 (a) INTER-GOM Metamodel and (b) UML Activity Diagram of INTER-
GOM Production.

formal integration requirements are reported in INTER-GOM model, process
is ready to move toward the INTER-IoT-based Design phase.

4.2.2 INTER-IoT-based Design Phase

Given two or more IoT platforms/systems whose formal integration require-
ments are reported in INTER-GOM model, a set of INTER-IoT Design Pat-
terns have to be produced (see Sec.3), by instantiation, on the basis of the
available pattern templates (semi-instantiated patterns). For each layer, on
the basis of the elicited requirements reported in the INTER-GOM, an ini-
tial INTER-IoT Design Pattern is produced and then usually iteratively re-
fined. The Integration Design activity, which is the only main activity of the
INTER-IoT-based Design phase, is subdivided into two subtasks that are
performed by the Integrator according to the workflow depicted in Fig. 6: (i)
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INTER-IoT Layer Integration Design Specification and (ii) INTER-IoT Full
Integration Design Specification. On the basis of the INTER-GOM and An-
alyzed Platforms Document, for each INTER-IoT Layer a layer integration
specification is iteratively defined by exploiting the INTER-LAYER prod-
uct. Such task will produce instantiated INTER-IoT Design Patterns (see
Section 3), one for each INTER-IoT layer. Then, a full-fledged specification
is iteratively produced by incorporating the CROSS-LAYER and INTER-
FW INTER-IoT Design Patterns. In particular, INTER-IoT PATTERNS
(or INTER-PATTERNS) are design patterns directly corresponding to the
integration solutions already achieved in the WP3 (particularly, according
to INTER-LAYER) and WP4 (particularly, according to the INTER-FW
for contextualize solutions in different application domains, e.g. m-Health,
Transportation and Logistics) and they aim at furnishing well-formalized
domain-specific guidelines. Note that WP5 depends on WP3 and WP4 out-
comes, while WP3 and WP4 are independent from WP5. The defined set
of INTER-PATTERNS comprises the element listed in Table 1.2, where is
reported also their related INTER-IoT layer and inspiring Pattern Catalog
(if any).

Fig. 6 The INTER-IoT-based Design phase: (a) Design activity overall description
and (b) its workflow.

The work product of this phase is a set of instantiated INTER-IoT Design
Patterns to be exploited for driving the implementation phase.

4.2.3 INTER-IoT-based Implementation to Maintenance Phases

The Implementation phase is the third step of our methodology; it takes in in-
put two or more IoT platforms whose integration has been designed according
to the instantiated INTER-IoT Design Patterns. The objective of this phase
is to concretely integrate/interconnect the considered IoT platforms by phys-
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ically implement the instantiated patterns according to successive refinement
steps that involve to (i) configure the components of the Integrated Platform
by means of the INTER-FW, (ii) extend the components of the Integrated
Platform (e.g., a new functionality enabled by the integration needs to be
implemented), and (iii) implement, in terms of software bridges connected to
INTER-LAYER, the INTER-IoT based INTER-LAYER design patterns. The
final output work-product is the INTER-IoT-based Integrated Platform. At
this point, the heterogeneous IoT platforms/systems are integrated according
to the INTER-IoT approach.

The Deployment phase is the fourth step of the methodology and follows
the Implemention phase. The objective is the deployment of the integrated
and implemented platform. The Integrated Platform is deployed according
to deployment goals and requirements. In particular, the INTER-FW web
framework is the entry point to the INTER-IoT Configuration and Manage-
ment Framework (CMF).The INTER-IoT based Deployment activity, which
is the only main activity of the Deployment phase, comprises six main tasks,
described in the following.The Platform Configuration task deals with the
deployment of complete IoT Platforms for interoperating them towards rich
applications. Although the technical focus of this module is the deployment of
interoperable middlewares of platforms, the whole content (i.e., the platform)
has been assumed to the concept of ’middleware’ since the IoT platforms are
univocally bound to the concept of platform (there are few or none platforms
without a middleware, while there are middlewares not linked with specific
platforms). To instantiate and deploy an IoT Platform Middleware in the
INTER-FW to enable middleware interoperability, the following steps are
followed: A bridge of the platform to interoperate must be available. INTER-
IoT provides a series of reference bridges. If the platform is not in the list
of reference implementations, this must be done following the “developing
new bridges” instructions that will be publicly available by the end of the
project in the project site in GitHub. These instructions will extensively use
the Software Development Framework of the project. The Gateway Config-
uration task focuses on the device to device interoperability, addressed in
the scope of INTER-IoT in the D2D Layer through the “Gateway Event
Subscription” and “REST Request/Response” patterns (as described in the
Deliverable 5.1). To add a new gateway, the following steps are followed: A
gateway with the gateway software of INTER-IoT must be available. The
hardware must be compatible with the INTER-IoT Gateway software. The
compatibility list will be published in the INTER-IoT Gateway development
site in GitHub. The Networking Configuration task focuses on network in-
teroperability, achieved via network virtualization and the “Virtual Network
Orchestration” pattern is configured and managed.The Application Services
Configuration task includes a graphic tool for service orchestration. This is
one of the less intrusive views in the INTER-FW, since the implementation
tool, the open source project “node-red” has a powerful user interface which
allows this service orchestration from a visual perspective. In the Semantics
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Configuration task, configurable parameters and processes related to the se-
mantics interoperability are configured for the deployment of interoperable
IoT platforms. The last task of the Deployment phase is called User man-
agement Configuration and contains configurations valid for all the previous
modules; in particular, it configures and manages the users of the INTER-
FW and the authorized access of them to the IoT resources connected in
INTER-IoT. The final work-product of the deployment phase is, thefore, a
configured and deployment integrated IoT platform.

The fith step of our methodology is the Testing phase. The integrated and
deployed platform is executed and validated through testing according to
well-defined test cases. Acceptance testing is a test conducted to determine
if the requirements of a specification are met [29]. In systems engineering
it may involve black-box testing performed on a system, such as for exam-
ple for software modules. International Software testing Qualifications Board
(ISTQB), which is a software testing qualification certification organisation,
defines acceptance as formal testing with respect to user needs, requirements,
and business processes conducted to determine whether a system satisfies the
acceptance criteria [30]. There can be many types of acceptance testing for
a system, service or product. The acceptance test can be performed multi-
ple times in the case of defect resolving or when test cases are not executed
within a single test iteration. In INTER-IoT acceptance testing is performed
in two tasks: Factory Acceptance Testing (FAT) and Site Acceptance test-
ing (SAT). Factory Acceptance Test (FAT) and Site Acceptance Test (SAT)
are performed to test and evaluate the INTER-IoT-based integrated system
implemented in the Implementation Phase and deployed in the Deployment
Phase. The FAT task is performed to test and prove the system in a lab en-
vironment and tests if solution meets the specifications and if it is functional
before it is deployed in the field. FAT tests can be performed by simulation or
a functional test. The SAT task takes place after integration at the customer
site and tests if the solution has been correctly integrated into the customer’s
environment and meets all the requirements. During the SAT testing process
the actual deployed system is tested and proven.

Maintenance is the final phase of our methodology with the objectives
to maintain and track the evolution of the integrated IoT platform during
time. Maintenance is referred to the identification of a list of bugs and/or a
list of evolution points at specific INTER-IoT layers and/or products and to
the consequent correction of bugs and/or implementation of new functional-
ities. The Maintenance activity is subdivided into two main tasks. Change
Identification task aims at identifying bugs and/or evolution points of the in-
tegrated platform. Change Implementation task is the actual development of
the changes, i.e. bug fixing or analysis, design, implementation, deployment,
and validation of new functionalities; the latter could imply to re-execute,
totally or partially, the integration process.
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5 INTER-CASE

INTER-METH is supported by a CASE (Computer Aided Software Engi-
neering) tool called INTER-CASE that helps supporting each aforementioned
phase of the integration process and specifically provides the following func-
tionalities:

� Support for workflow execution in each phase;
� Web-based Graphical facilities;
� XML-based project data repositories.

INTER-CASE is specifically intended to guide the IoT integrator in prop-
erly following and applying the integration workflow of the INTER-IOT in-
stantiated INTER-METH. It is particularly effective to keep trace of inte-
gration choices at each phase of the methodology, so to favor and simplifying
documentability of the IoT platforms integration project. In addition, it sup-
ports the reduction of inconsistencies during specification refinements from
one step to the following, with warning and error messages provided to the
integrator when inconsistent conditions are detected.

A simple, intuitive graphic user interface (GUI) characterizes the INTER-
CASE Tool. It is composed of a:

� Navigation bar, with a menu that allows the integrator user to interact
with the application

� Dashboard message bar, that displays the opened project
� Container, in which all the documents are presented to the user
� Footer, that contains application and copyright information

The use of the INTER-CASE Tool is allowed after authentication, by
entering a username and password in a traditional-looking form. Each au-
thenticated user can choose to open a previously saved integration project or
create a new one from scratch. Obviously, the user can modify or delete an
existing project.

Each project has a status page showing the integration project summary
at a glance. For each phase, a card contains a list of documents produced.
In every card, the Integrator user can edit or export a document by using
the specific buttons placed to right of the name of every document. In case a
produced document contains inconsistencies (e.g. platforms name mismatch
across documents), an alert icon will be shown so to allow the Integrator
with quick visualization of the issue. Figure 7 depicts an example of Project
Status in which only the Analysis and Design phases are displayed.

A menu to define the activities of a given phase becomes accessible to the
integrator user once all tasks related to the previous phase are complete. In
the following, we describe the various INTER-CASE functionalities for each
phase of the INTER-METH methodology.
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Fig. 7 INTER-CASE Project Status page

5.1 Analysis Phase

Through the Analysis menu, the analysis phase can be carried out. It is
composed by five tasks. The completion of a task enables the access to the
following one.

The first task is the IoT Platforms definition, where the integrator user
defines generic information about the platforms to integrate, such as the
platform type, the platform owner, the ontology type used.

The second task is the Analyzed Platforms Document (APD) definition.
In this task the Integrator user has to analyze the platforms to integrate in
terms of the INTER-IOT platform reference model described in the Deliver-
able D4.1. The APD, exemplified in Figure 8, is a fundamental document in
the integration project because represents the basis to analyze the platforms
according to a homogeneous representation, which is necessary to identify the
integration points among the platforms. The platforms in this document must
be obviously the one identified in the IoT Platform document, so INTER-
CASE automatically fills in the Platform Name field, although the Integrator
could still edit the pre-compiled information; in case of information mismatch
with the IoT Platform document, however, the Tool will report a warning to
the Integrator user.

The third task is the Integration Goals definition where the integrator user
identifies high-level integration requirements and objectives.
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Fig. 8 Example of Analyzed Platforms Document

The fourth task is the Category of Integration definition. The integrator
user identifies the integration layers, selecting them among those defined in
INTER-Layer.

The last task generated the final output of the Analysis phase: the Goal
Oriented Model (GOM) document. In this task the integrator user refines, in
terms of functional (FR) and non-functional requirements (NFR) and accord-
ing to the APD, the identified integration goals. The Goal Oriented Model
document also includes the list of Category of Integration document pro-
duced in the previous step. In Figure 9 an example of the GOM document is
depicted.

5.2 Design Phase

INTER-CASE enables the Design phase when the integrator completes the
Analysis phase. The page showed to the user is generated by the application
according to the GOMl document defined in the previous Analysis phase.
Based on the identified layers of integration, the integrator user must in-
stantiate the design patterns proposed in this phase. The instantiation of a
pattern occurs by selecting the specific pattern template, and involves open-
ing the page of the corresponding pre-instantiated pattern (see Section 3).
For a complete description of each identified and pre-instantiated pattern,
the interested reader can refer to the Deliverable D5.2 of the INTER-IOT
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Fig. 9 INTER-CASE Goal Oriented Model

project. Figure 10 depicts an example of the Design document in which both
middleware layer and device layer pattern are proposed.

Fig. 10 INTER-CASE Design Phase: list of identified patterns

5.3 Implementation to Maintenance

INTER-CASE also supports the following integration phases, from Imple-
mentation to Maintenance.

In the Implementation phase the integrator user creates a document to
specify the information related to the public or private repository (or repos-
itories) of the software source code under development.
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In Deployment phase, INTER-CASE requests the integrator to specify in-
formation related to integrated platform deployment in terms of configuration
parameters of the INTER-FW product (see Deliverables D4.x).

The Testing phase the integrator user creates a systematic document with
the relevant tests to be carried out on the integrated platform. For each
defined test, the integrator has to specify the objectives, the requirement to
validate (preferably also including NFRs identified in the Analysis phase),
the tools necessary to execute the test, the test strategy, and of course the
expected results of the test execution.

Finally, the Maintenance phase allows to create a ”live” document in which
the integrator inserts. from time to time, notes related to discovered bugs
(including possible resolution actions) and evolution points which essentially
represent future developments and functionalities of the integrated platform.

6 The INTER-Health use case: from Analysis to Design

To exemplify the use of INTER-METH for the integration of two hetero-
geneous IoT platforms, we will summarize the work done in the context of
INTER-Health (see Deliverable D6.3), one of the two pilots developed in
INTER-IOT, with particular focus on the Analysis and Design phases that
are carried out and documented through our INTER-CASE tool.

The integration scenario, shown in Figure 11 involves two different IoT
platforms, BodyCloud [31] and UniversAAL [32], that need to be integrated
to develop the INTER-Health Pilot.

To execute the INTER-METH workflow with INTER-CASE, the integra-
tor logs in the tool and creates a new Integration Project first. The Analysis
phase starts with the definition of the two platforms: each one is characterized
by name, type, ontology, and owner.

Then, IoT Platforms Analysis is carried out by representing BodyCloud
and UniversAAL using the common, homogeneous model: the INTER-IoT
Reference Architecture (depicted in Figure 3 and described in Deliverable
D4.1). The representation of this model (called Analyzed Platform Docu-
ment) is reported in Figure 12.

The next task requires to define the high-level integration goals. In partic-
ular, for INTER-Health the following goals were identified by the integrator:

� IG1: Data generated from the two platforms have to be shared and trans-
parently accessed from both platforms;

� IG2: Common notion of the users registered to each platform;
� IG3: Subscription support from one platform to the other to be notified

upon the availability of new data of a given user.

After the elicitation of the integration goals and by studying the possible
integration points with the support of the Analyzed Platform Document, the
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Fig. 11 INTER-Health integration scenario

integrator user made the choice to integrate BodyCloud and UniversAAL at
the ”MIDDLEWARE” layer among the INTER-LAYER stack.

The final task of the Analysis phase is the INTER-GOM Document pro-
duction. The high-level integration goals are refined in functional (FR) and
non-functional (NFR) requirements; for INTER-Health the result of such
work led to the definition of the following:

� FR1: Common knowledge and sharing of users IDs
� FR2: Syntactical and semantic translation of messages (BodyCloud uses

JSON while UniversAAL is based on RDF)
� FR3: Subscription management to topics (e.g. messages generated from a

given user)
� FR4: User Access Gateway for Patients. The main functionalities for pa-

tients are: Access to services (providing username and password); Setting
Profile communication and devices pairing; Managing measures on the
device and releasing them to the gateway which stores them on a local
database; Possibilities of inserting measures manually; Sending measures
to the platform.

� FR5: Definition of reference meaning for health information. Health infor-
mation can be detected using different devices according to different way
of measurement (unit of measure that could differ from country to country
and also depending on devices manufacturers). To use same information
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Fig. 12 INTER-Health integration: IoT Platforms Analysis.
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coming from different systems and going to others, it is mandatory to es-
tablish specific criteria to: (i) define a common meaning if it is possible,
(ii) determine a correspondence between different data that have the same
meaning and different values, (iii) set transcoding tables between different
values of the same data.

� NFR1: Application response time. The ”navigation” functionalities on dif-
ferent contents by using both Smartphone or Personal Computer to access
to the platform, have to guarantee a response time of a few seconds.

� NFR2: Availability of sensor data. Health monitoring data must be acces-
sible from a remote location to facilitate patient triage and inform decision
making.

� NFR3: User Authentication to access INTER-Health services. Users shall
authenticate to the services using their username and password

The design phase of the INTER-Health integration process involves the
requirements elicited in the INTER-GOM model. The integrator instantiates
a set of INTER-IoT Design Patterns (see Section 3 and Deliverable D5.2)
related to the integration of BodyCloud and UniversAAL platforms. The first
step is the choice of the necessary pre-instantiated design patterns, among
the available ones that are automatically filtered out by the INTER-CASE
tool according to the input from the Analysis phase.

Given the choice of make the two platforms interoperable at Middleware
layer, the integration design patterns that are selected belongs to the INTER-
Middleware category. Specifically, three patterns will drive the implementa-
tion phase. INTER-MW Message Broker template is instantiated as follows:

� Intent : A component that facilitates passing of messages between decou-
pled INTER-Health components.

� Problem and Solution: Having point-to-point communication interfaces
among several interacting components, makes dynamic reconfiguration,
matching of different security constraints and QoS, requirements between
components difficult. The employment of a message broker, can help to
overcome limitations of point-to-point connection and enforce a common
messaging interface upon different middleware components.

� Applicability : Each Inter-Health component communicates directly only
with the message server broker which in turn handles the communications
and dispatches messages to the respective destination component.

� Implementation: There is a message broker service that analyzes each re-
ceived messages to check is there exists a subscription for the user that
sent the message. If a subscription exists, the broker obtains (from the
subscription message initially received) the necessary information to send
the current message. If the subscription does not exist, the message is not
forwarded to the external middleware components.

INTER-MW Message Translator template is instantiated as follows:

� Intent : Syntactical and semantic translation of messages between Body-
Cloud and UniversAAL.
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� Problem and Solution: BodyCloud and UniversAAL use different message
formats and models, respectively based on JSON and RDF, so direct com-
munication between the two platforms is not possible. An effective solution
is to introduce a translator component in the middle that is able to un-
derstand both message structures so to translate from the source platform
format/model to the destination one.

� Implementation: Message translation is actually composed of two steps.
First, there is need for syntactic translation to/from proprietary message
format which is done in the bridge; the second step is semantic translation
of the message and it is done in the Inter Platform Semantic Mediator
(IPSM) component of Inter-IoT.

INTER-MW Self-contained Message template is instantiated as follows:

� Intent : Each message contains all the information needed to subscribe or
unsubscribe to a given topic (or conversation).

� Problem and Solution: BodyCloud and UniversAAL need to communicate.
To do so, it is necessary to know where one platform has to send the mes-
sages to the other platform. Hence, the identified solution is the creation
of a subscription mechanism to conversations.

� Implementation: A bridge component of INTER-MW will process the mes-
sages to perform the proper action (i.e. subscription or subscription) . The
bridges then registers a corresponding callback to the action, in case of
subscription message.

7 Conclusions

Interoperability among heterogeneous IoT platforms is a complex multi-faced
issue which requires effective approaches that are difficult to implement and
test. Indeed, it is not straightforward defining boundaries and requirements of
the IoT platforms to be integrated as well as controlling the development envi-
ronment. Traditional software/systems engineering approaches showed poor
applicability in the IoT domain and, therefore, ad-hoc and closed integra-
tion/interoperability solutions are often adopted. INTER-IOT aimed at ad-
dressing the lack of systematic, generalizable methods and tools for IoT plat-
forms interoperability. This chapter, in particular, described INTER-METH,
developed in the project, that is first full-fledged, general-purpose engineering
methodology completely supporting the integration process among IoT plat-
forms. Particular focus has been given to the INTER-IoT-based Analysis and
Design phases, that are fundamental drivers for the integration process. Rele-
vant interoperability design patterns, the building blocks of the design phase,
have been discussed.The chapter also presented INTER-CASE, a web-based
tool that guides integrator designers to follow the methodology; INTER-
CASE supports semi-automatic integration refinements and particularly use-
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ful to easily document the choices taken during the integration workflow. The
practical use case related to the integration of the two IoT platforms (Body-
Cloud and UniversAAL) adopted in the context of the INTER-Health Pilot,
is finally shown.
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