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Abstract 

Agent oriented programming is often described 
as the next breakthrough in development and 
implementation of large-scale complex software 
system. At the same time it is rather difficult to find 
successful applications of agent technology, in 
particular precisely when large-scale systems are 
considered. The aim of this paper is to investigate if 
one of the possible limits may be the scalability of 
existing agent technology. We have picked JADE 
agent platform as technology of choice and 
investigated its efficiency in a number of test cases. 
Results of our experiments are presented and 
discussed. 
 
1. Introduction 

For a number of years now, researchers promise 
that the agent technology is about to change the 
ways we construct software [2, 3] as well as have a 
much broader impact on the field of human-
computer interaction [4, 5]. Some of the principle 
areas software agent technology is expected to 
impact are [1, 2, 3, 4, 5]: 

- development and maintenance of complex 
systems, 

- resource management, 
- delivery of personalized content, 
- e-commerce on a large and small scale. 

Obviously, this list is far from exhaustive, however, 
the breadth and depth of these areas supports the 
claim that agent technology, if successful, can 
become the next “extreme event,” leading to 
breakthroughs in a number of fields. The agent 
paradigm also promises to add a new dimension to 
our interaction with computers. Here, the promise 
of being able to deal with the information overload 
resulting from the exponential growth of the 
information available on the Internet, which has 
been pledged in the influential work of P. Maes [5], 
is particularly tempting. 

Unfortunately, as it is easy to see, almost 10 
years after publication of [5], promises furnished 
there did not materialize (regardless of the rapidly 
increasing number of conferences, workshops, 
publications, etc). To the contrary, it is relatively 

difficult to point to a successful large-scale 
implementation of agent systems (as understood in 
[1, 2, 5]). Moreover, what is particularly revealing, 
agent systems described in [5] as successful 
implementations of agents, for one reason or 
another, have never spread beyond the MIT Media 
Laboratory. 

The starting point for this paper was an exchange 
of messages in one of electronic discussion groups 
devoted to a particular agent platform. One of the 
participants described an e-commerce system under 
development. In this system a personal agent was to 
be devoted to (instantiated for) each user logged 
into the system. The question was therefore asked if 
it is possible to scale the platform to 500+ agents. 
The response, from someone who clearly was a 
practitioner of agent-system applications was that 
“this is a wrong way of looking into the problem 
and one should not expect realistically to scale an 
agent application to this size.” This response is 
fascinating as it seems to contradict one of the most 
basic tenets of agent system development where it 
is exactly that each user should be served by his/her 
“own” personal agent [3, 5]. Is it thus really the 
case that while agents are to be the breakthrough in 
development of software for large complex 
systems, it is also the case the using currently 
existing technology one cannot implement large-
scale software systems? 

This obviously is a question of scalability of 
agent systems. There exist a number of papers that 
discuss various aspects of this problem [6, 7, 8, 9, 
10]. However, here we are not interested in an 
almost philosophical discussion of what is agent 
scalability found in most of these papers. We prefer 
to follow a more pragmatic route, where “a good 
agent system is an implemented agent system” (see 
also [11]). In this way we follow and expand work 
reported in [12, 13]. While there, focus was only on 
messaging between agents, we, first, study different 
scenarios involving messaging and also add tests of 
efficiency of agent creation and migration. 

A methodological remark is in order. Since there 
exists no benchmarking suite to test performance of 
agent systems (similar to these found in scientific 
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computing; in particular in computational linear 
algebra), there is an open question as what to 
measure and why. Scenarios proposed here are not 
designed to necessarily become such benchmarks. 
Rather, we were interested in getting a broad 
understanding as to how our agent platform of 
choice behaves when the number of messages and 
agents is increasing as well as obtaining some 
general assessment of efficiency of agent migration. 

To obtain such an insight we have selected one of 
the best currently existing agent platforms, JADE 
version 3.1 [13, 14] and “stress-tested” in five 
scenarios, that can be divided into two groups: two 
of them are focused on message exchanging 
capabilities (results reported in the next section) and 
three of them concentrated primarily on agent 
creation and/or migration performance (results 
reported in Section 3).  
 
2. Message exchange performance 

In this section we present results of tests that 
were aimed at testing the messaging capabilities of 
JADE. These tests differ from, but follow in spirit 
these reported in [12]. The main rationale behind 
them is as that in agent-based systems functionality 
is divided into agents (each agent is responsible for 
a particular function of the system e.g. search agent, 
query agent, database wrapper agent etc.) [3]. These 
agents coordinate their actions and/or communicate 
by exchanging messages. Assuming that a large 
number of agents are to be used, a large number of 
messages are to be expected. We therefore try to 
find out what is the message-load efficiency of 
JADE agent platform. 
 
2.1 Spamming Test 

The first test is very simple and is designated to 
flood the system with Agent Communication 
Language (ACL) messages [16]. Here spammer 
agents send to user agents a large number of 
messages. The general scheme of interaction 
between three spammer agents and three user 
agents is illustrated in Figure 1. 

 

 
Figure 1. Spamming scheme  

On each computer participating in the test a pair 
consisting of a user agent and a spammer agent is 
generated. At a given time all spammer agents starts 
sending messages to all user agents (including these 
existing on their own machines). For example, in 
Figure 1, spammer agent from Computer 1 sends 
messages to user agents residing on Computers 1, 2 
and 3. Similarly spammer agent residing on 
Computer 2 sends messages to user agents residing 
on computers 1, 2 and 3 etc. In the JADE platform 
all posted messages are put in a receiver message 
queue [14, 15] and then it is processed by the 
receiver (see Figure 2). 

 
Figure 2. JADE message processing scheme  
 

To measure the performance we utilize a starter 
agent which initiates the spamming process and 
measures time. During the execution each spammer 
agent broadcasts a certain number of messages and 
the total time of this broadcast is measured. 
Separately the time of processing of all messages 
flooding the system is also measured. 

Our tests were performed on 8 Sun workstations 
each with an UltraSparc III processor running at 
300 MHz and 192 Mb RAM. All these machines 
were Internet-connected through a Cisco switch 
with full backplane 100 Mbits/s transmission rate. 
We have used ACL messages with content 
consisting of 300 ASCI characters. A total of 5000 
messages were sent by each spamming agent to 
each user agent. 

Experimental results are summarized in Table 1 
and Figure 3. 
 

Agent pairs 
Spamming 
time [ms] 

Receiving 
time [ms] 

2 40034 87053
3 24440 141778
4 25128 217501
5 25217 313625
6 28843 448181
7 35164 634847
8 40624 821341

 Table 1. Message sending and receiving times 
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Figure 3. Average message sending and receiving 
times for 2-8 machines (and thus spammer-user 
pairs); calculated by dividing total times by a 
number of sent messages. 

 
A number of observations can be made. (1) For 

the (relatively small) number of computers used the 
total “spamming time” practically does not depend 
on the number of recipients. This is related to the 
broadcast command used. It is only after the total 
number of spamming agents becomes larger than 5 
when the spamming time increases. (2) As the 
number of agent pairs increases, the receiving time 
starts to increase immediately. While we were not 
able to confirm this, the message receiving time 
seems to be increasing slightly faster than linearly. 
This probably because in the case of receiving a 
message, it is first put in a message queue and only 
then processed by an agent (see Figure 2). (3) When 
each of 8 spammers sends 5,000*8 = 40,000 
messages; resulting in a total of 320,000 messages 
flooding the system (with each message being more 
than 0.3 Kbytes – message and its ACL wrapper – 
totaling approximately 100 Mbytes of data), user 
agents are capable to process them in no more than 
14 minutes. 

 
2.2 Processing messages with database 
access 

The second series of tests involved messaging 
and database access. In this scenario it was assumed 
that a number of user agents (taskSender in Figure 
3) generate tasks to be executed (in this case these 
tasks consist of inserting information into the 
database). These tasks are stored in a list contained 
in a list agent. User agents do not communicate 
with the list agent directly, but they send their 
requests to an intermediate agent (agent B). 
Similarly, worker agents (SQLAgent in Figure 3) 
obtain tasks from the list agent through an 

intermediate agent A. Worker agents insert data into 
a database (DB in Figure 3). All communication 
between agents involves ACL messages. While this 
scenario is not based in any particular application, it 
allows us to observe message processing involved 
in a relatively complicated flow pattern which is 
depicted in Figure 3. It also involves a real-life 
constraint of an access to a database. 

 

 
Figure 3. Communication pattern for messaging 
and database access test.  
 
We have tested the following two situations: 

• tasks originate from one tasksSender agent 
while 1 to 4 SQLAgent agents are inserting 
information into a database 

• tasks originate from four tasksSender 
agents while 1 to 4 SQLAgent agents are 
inserting information into a database (DB) 

Furthermore, each SQLAgent agent is located on a 
different computer and each tasksSender agent is 
located on a different computer as well. Agents A, 
list and B are all located on the same computer. 
TasksSender agents sent to agent B messages 
consisting of a name of that agent and an SQL 
statement describing what to insert into the 
database; a total of approximately 40 ASCI 
characters. The total number of messages sent was 
1000, 10,000 and, attempted, 1,000,000. List agent 
receives messages from agent B and appends them 
into the end of the queue. When agent A requests 
the next task, agent list removes the task from the 
front of the queue and sends it to agent A. If there 
are no tasks stored in the queue one will be send to 
A when one is received from agent B. The queue is 
implemented using the standard java class list and 
wrapped in an agent (there is no practical way to 
persist an “independent” list structure in an agent 
system). Unemployed SQLAgent agents request 
tasks from agent A and start to “work” as soon as 
they receive a response from agent A. Agent A 
requests and receives tasks from the list agent.  

In our tests we have utilized a PostgreSQL 
database running on a 2 processor Linux server 
with 1GHz Intel P3 processors and 1GB of RAM. 
We have also used the same 8 Sun computers as in 
Section 2.1. Results of testing flow of 1000 and 
10000 messages are presented in Table 2. 



Number of 
SQLAgent'(s) 

Received by 
SQLAgent'(s) 
when 
tasksSender 
ends sending 

All received by 
all 
SQLAgent'(s) 

1000 messages; 1 tasksSender agent 
1 40 1000 
2 68 1000 
4 95 1000 

1000 messages each; 4 tasksSender agents 
1 42 4000 
2 69 4000 
4 98 4000 

10000 messages; 1 tasksSender agent 
1 220 10000 
2 370 10000 
4 574 10000 

10000 messages each; 4 tasksSender agents 
1 215 40000 
2 365 40000 
4 558 40000 

Table 2. Message flow through a number of 
intermediate agents 
 

It can be observed that the message flow through 
the system is rather slow. In the best case, when 
40,000 messages have been send, only 558 of them 
have been processed. This means that at this stage 
there are still about 39500 messages waiting to be 
processed. Moreover, these messages are likely to 
be waiting to be processed by one of the three 
“central” agents of the system: A, list or B. Finally, 
when the number of SQLAgent agents increases, the 
total number of processed messages increases as 
well. We will investigate this fact in the next series 
of experiments. 

As noted above we have also tried to push 
1,000,000 messages through the system. We were 
not able to do so. In the case of 1 SQLAgent agent, 
agent B received its messages too fast and was not 
able to put them into the list agent. It stopped 
working after receiving about 150,000 messages 
and returned an error “out of memory.” This caused 
tasksSender agent to stop after sending about 
200,000 messages, also with an “out of memory” 
error. Finally, SQLAgent agent completed about 
19,000 insertions and stopped because the queue 
was empty. This would indicate that agent B was 
able to send about 19,000 messages to the list agent. 
In the case when two SQLAgent agents were used, 
the same scenario repeated somewhat later. Agent B 
stopped (out of memory) when after receiving 
approximately 175,000 messages. The SQLAgent 
agents inserted about 17,000 messages each (a total 

of 34,000 messages processed) and the queue 
became empty. Agent tasksSender stopped working 
(out of memory) after sending about 230,000. 
Finally, when four SQLAgent agents were used, 
agent B died after receiving about 195,000 
messages; SQLAgent agents were able to insert 
approcimately 16000 messages each (total of 
58,000) and taskSender agent died after sending 
approximately 240,000 messages. These results 
indicate that the system in the proposed setup, with 
the bottleneck at the three “central agents” (A, list 
and B) is capable to resist a flood of up to almost 
200,000 messages. This total number of messages is 
somewhat smaller than that reported in the 
spamming scenario, however in that case the 
distributed in nature data processing did not have a 
clearly defined bottleneck.  

Results reported thus far indicate that adding 
SQLAgent agents into the system improves its 
message processing capabilities. We have decided 
to further test this hypothesis.  We have therefore 
increased the number of SQLAgent agents from 1 to 
5. The results for processing 1,000 messages are 
presented in Figure 4, while the results for 10,000 
messages are presented in Figure 5.  
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Figure 4. Processing times for increasing number 
of SQLAgent agents and 1000 messages. 

 

Time of processing 10000 messages
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Figure 5. Processing times for increasing number 
of SQLAgent agents and 10000 messages 



The results indicate a substantial performance 
difference between one and two SQLAgent 
processing tasks. The performance gain can be 
observed up to four SQLAgent agents, but the 
performance curve is clearly flattening. It can be 
conjectured that in the current setup adding more 
than five SQLAgent agents will not help. It is 
worthy noting that processing 10 times as many 
messages (10,000 vs. 1,000) requires 10 times as 
much time and that this ratio remains constant 
regardless of the number of SQLAgent agents used 
(~900 vs. ~90 and 550 vs. ~55 seconds) . This 
indicates that the processing time of a single task 
(requesting it and completing it) remains constant 
regardless of the total number of tasks to be 
processed. 
 
3. Agent creation and migration 
performance 

The second group of tests was designated to test 
the ability of JADE to create and migrate a large 
number of agents. This is in response to the 
perceived potential of utilization of agents in 
implementation of large software systems. 
Additionally, it is often claimed that agent mobility 
is one of the important factors that make agent 
systems attractive. 

 
3.1 Agent migration 

The first experiment was focused on pure agent 
migration and was mimicking a relay-race. A fixed 
number of containers was placed on separate 
computers. Each container constituted a “place” 
where agent runners exchange batons. The “race” 
starts in JADE’s “Main-Container” and leas agents 
to the standard “Container-1” (on a different 
computer). There agents pass the relay baton by 
exchanging ACL messages. Second group of agents 
proceeds to the “Container-2” (on the next 
computer) and the process repeats. The total race 
consists of 5 laps and ends in the “Main-Container.” 
Two tests were performed. First, four runner teams 
were running around an increasing number of 
containers/computers. Second, an increasing 
number of runner teams moved around four 
homogeneous computers/containers. 

For the homogeneous setup each container was 
placed on the Sun workstation (as described above). 
We have also used a PC with a Pentium 120 MHz 
processor and 48 Mb of RAM to create a 
heterogeneous configuration. In Figures 6 and 7 we 
depict the total migration time for four agent groups 
and increasing number of containers. Figures 8 and 
9 present the results of increasing the number of 

agent-teams while keeping the number of 
containers constant.    
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Figure 6. Total migration time; heterogeneous 
environment; increasing number of containers 

 

0

20000

40000

60000

80000

100000

120000

2 3 4 5

number of containers

tim
e 

(m
se

c)

6

 
Figure 7. Total migration time; homogeneous 
environment; increasing number of containers 
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Figure 8. Total migration time; heterogeneous 
environment; increasing number of agent-teams 
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Figure 9. Total migration time; homogeneous 
environment; increasing number of agent-teams 



In all cases the results are practically linear. Some 
jumps in the total time in the heterogeneous 
environment can be attributed to the usage of a 
substantially slower computer. To confirm the 
linearity we have decided to test the performance 
for a very large number of runner teams. The results 
are summarized in Figure 10. 
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Figure 10. Total migration time; homogeneous 
environment; large and increasing number of 
agent-teams 

 
The results are very similar to these in the case of 

a small number of agents. As the number of agent 
teams increases, time increases linearly. Note that 
JADE did not collapse even when a total of four 
hundreds agents were residing and migrating in four 
containers on four computers with a relatively small 
amount of available memory (196 Mbytes). 
 
3.2 Shop performance - agent flooding 

In this experiment we wanted to test the 
performance of JADE when one of its nodes 
(container) was flooded by a large number of agents 
from other machines from the platform. 

As an example we have used a scenario that can 
occur when an e-shop is implemented using agents. 
Here one container was a metaphor of a “store” and 
held the MotherShop agent. This agent was a “store 
manager” and its main task was to create (and later 
remove) Seller agents for each Client which came 
to the store and requested to be served. We had 
created also MotherClient agents which produced 
Client agents and send them to the store. 

The complete scenario of the test is as follows. 
MotherClient agents create Client agents that 
migrate to the store. Here for each visiting Client 
agent the MotherShop agent generates a Seller 
agent. Then the Seller and the Client agents briefly 
negotiate, via. ACL messages, about goods and 
prices (in our case the “conversation” was: “do you 
have beer?,” “yes,” “please give me one,” “here you 
are,” “thank you”). When the “conversation” ends 
Seller confirms transaction with the MotherShop 

agent while the Client agent moves back to the 
node/container in which it was created and reports 
to its MotherClient. Here, MotherClient agents 
generate a given number of Client agents and send 
all of them to flood the shop and then just simply 
wait for their return. This process is depicted in 
Figure 11. 

 

 
Figure 11. Agent shop experiment; ms – 
MotherShop agent, s – Seller agent, mc – 
MotherClient agent, c – Client agent. 
 

In our experiments we study the system when (1) 
we increase the number of MotherClient agents, 
and (2) increase the number of Client agents 
generated in each node/container. We have, again, 
experimented on the same network of Sun 
workstations. Each MotherClient agent was located 
on a different machine (in a separate container), 
while the shop was also located in a separate 
container on a separate computer. We have also 
experimented with generating larger number of 
Client agents on a smaller number of host 
computers and on a smaller number of containers 
and the results differed only up to 10%. The 
experimental results (in milliseconds) of system 
processing 30, 40, 50 and 120 agents generated by 
1,  2, …, 5 MotherClient agents (in the largest case 
a total of 600 agents flooding the system) are 
depicted in Figure 12.  
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Figure 12. Agent shop experiment; 30, 40, 50 and 
120 agents generated by each MotherClient agent 
 

As previously, the processing time is almost 
linear. We have experimented also with large 
number of agents in the system and we have found 



that the processing time was still almost linear e.g. 
for 520 Client agents the processing time was 75 
seconds, while for 1020 Client agents 136 seconds. 
However, we have also found that at approximately 
1430 Client agents Java generated an “out of 
memory” exception. To verify the connection of an 
amount of RAM and numbers of agents we have 
made a test on a weaker configuration which 
consisted of PC’s with 4 times smaller amount of 
available RAM. In this test the exception appeared 
after generating approximately 370 agents; again an 
almost linear relationship. 

 
3.3 Agent creation and migration within two 
containers and/or two computers 

The results of experiments reported above 
indicated that JADE is capable of handling a large 
number of agents, however the question remains 
open: how many agents can JADE handle? While 
this question may sound a bit like a proverbial “how 
many angels can dance on the head of a pin?” it 
seems relatively important in the context of a 
relationship between the number of agents and the 
total available memory. We have therefore 
implemented a very simple scenario to find an 
answer: 
 
Start of the process: 

AgentA1, which resides in the Main-Container 
Actions: 

1. AgentA1 creates AgentB 
2. AgentB moves to Container-1 
3. AgentB registers at the Directory 

Facilitator (DF) 
4. AgentB sends a message to AgentA1 

confirming arrival at Container-1 
5. AgentB clones itself 
6. AgentB clone repeats steps 3 and 4 above 
7. AgentA1 counts only messages received 

from “original” agents (not clones) but 
replies to all of them 

8. When AgentB and its clones receive the 
response from AgentA1 they deregister and 
terminate 

9. AgentA1 creates as many AgentB agents as 
their number in the previous step plus an 
additional 50 agents 

10. Steps 2 to 7 are repeated for every newly 
created agent AgentB 

 
This process involves a sizable migration 

between containers as well as an increasing number 
of agents that are created and exist at the same time 
in the system. We have experimented with this 
scenario on a number of machines: the Sun 

workstation and the PC described above as well as 
PC with an AMD Athlon processor running at 1.4 
GHz, and a PC with AMD Duron processor running 
at 800 MHz (both these PC’s had 256 Mbytes of 
RAM). We have experimented two situations: (1) 
when both the Main-Container and the Container-1 
were located on the same computer and (2) when 
they were located on separate computers.  The main 
observations can be summarized as follows:  

1. With both containers on a slow PC – the 
system died after creation of 151 agents, 
during the migration. 

2. With both containers on a Sun workstation – 
system died after creation of 451 agents, 
during the migration. 

3. With both containers on the Athlon PC – 
system died during creation and migration of 
approximately 300 agents.  

4. With both containers on different Sun 
workstations – system died during creation 
and migration of 501 agents. 

5. With the Main-Container on the Athlon PC 
and Container-1 on the Duron PC – system 
died during creation and migration of 351 
agents. 

6. With the Main-Container on the slow PC and 
Container-1 on the Sun workstation – system 
lived with over 600 agents, and likely would 
live longer, but the whole process lasted over 
an hour and we decided to terminate it 

The results are inconsistent. Obviously, when the 
amount of available memory increases, the number 
of agents that can be processed increases as well, 
but then one could ask, why the Athlon PC with 
256 Mbytes of memory was not able to handle more 
agents than the Sun with 196 Mbytes of RAM (in 
both cases we have used default setups for the 
JVM)? We have tried to answer this question in 
additional experiments and the results were rather 
peculiar, indicating complicated interactions 
between JVM and JADE, and prevented us from 
being able to provide a definite answer here. 

Even more surprising may seem to be that the PC 
with 48 Mbytes of memory is able to exist in a 
system that generates 600+ agents. An explanation 
seems to be in the typical error generated here: 
Error creating agent on destination container. 
Abort transfer. An RMI error occurred [nested 
Connection refused to host: 62.21.17.200; nested 
exception is: java.net.ConnectException: 
Connection refused: connect]. The error occurred 
during agent transfer and involved the RMI port. 
This means that when a slow PC is generating and 
sending agents to the Sun workstation “slowly” the 
Sun can accept them and the RMI port is not 



overrun. At the same time in other cases, the 
creation and migration of agents occurs much too 
fast for the receiving container to be able to accept 
them and the RMI port generates an exception. 
 
5. Concluding remarks 

The aim of our work was to follow and expand 
the experimental research outlined in [12] (using 
JADE 2.5). Here, we have used the most recent 
JADE 3.1 and in addition to messaging performed 
experiments related to agent creation and migration. 
Our main goal was to establish if JADE can be used 
to follow the research program put forward by 
Nwana and Ndumu in [11] and be used while 
developing implement large software systems. 

Our tests indicate that JADE is quite an efficient 
environment limited mostly by the standard 
limitations of Java programming language, which is 
interpreted and executed in a Virtual Machine: 
processor speed, amount of available memory and 
speed of network connection. The environment 
itself does not introduce substantial overhead. 
Executing JADE on a relatively antiquated 
hardware (PC’s with Pentium II processors running 
at 120 MHz with 48 Mbytes of RAM and 
workstations with UltraSparc III processors running 
at 300 MHz with 192 Mbytes of RAM) we were 
able to run experiments with thousands of agents 
effectively migrating among eight machines and 
communicating by exchanging tens of thousands of 
ACL messages. Furthermore, an increase in the 
number of agents results typically in a linear 
increase of processing time. 

It has to be stressed that it does not really matter 
here how realistic or unrealistic our experimental 
scenarios were. Even if one would like to believe 
that they are completely unrealistic, they still show 
how efficient JADE is and that there is no excuse 
for agent researchers, but to start designing and 
implementing large software systems, consisting of 
hundreds of agents and study their behavior. We 
can do it already today and there is no reason to 
stop with demonstrator systems consisting of only a 
few agents. And we believe that this is very good 
news for the future of agent research. 
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