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Definicja

Partial differential equation for a function u(x , y , . . . ) is a relationship between u and
its partial derivatives ux , uy ,. . . , uxx , uxy , uyy ,... and can be written as:

F (x , y , . . . , u, ux , uy , . . . , uxx , uxy , uyy , . . . ) = 0, (?)

where F is some function, x , y , . . . are independent variables and u(x , y , . . . ) is called
a dependent variable

The first- and the second-order partial differential equation with two independent va-
riables x and y , can be written as follows:

F (x , y , u, ux , uy ) = 0, F (x , y , u, ux , uy , uxx , uxy , uyy ) = 0 (1)

and so on for higher-order equations.

Examples:

1st-order equations: xux + yuy = 0, xux + yuy = x2, uux + ut = u, u2
x + u2

y = 1.

2nd-order equations: uxx + 2uxy + uyy = 0, uxx + uyy = 0, utt − c2uxx = f (x , t).

3rd-order and 4th-order equations: ut + uux + uxxx = 0, utt + uxxxx = 0.
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Linear operator
It is possible to write a PDE in the operator form

Lxu(x) = f (x), x = (x1, x2, . . . ). (2)

Lx is called linear operator if it satisfies the property

Lx(au + bv) = aLxu + bLxv (3)

for any two functions u and v and for any two constants a and b.
Equation (2) is called linear if Lx is a linear operator.
If Lx is not linear, then (2) is called nonlinear equation
If f (x) 6= 0, equation (2) is called nonhomogeneous.
If f (x) = 0, equation (2) is called homogeneous equation.

Examples:

equations: xux + yuy = 0, uxx + 2uxy + uyy = 0, uxx + uyy = 0, and
utt + uxxxx = 0 are linear homogeneous equations

equations: xux + yuy = x2 + y2, utt − c2uxx = f (x , t) are linear inhomogeneous
equations.

equations uux + ut = u, u2
x + u2

y = 1, and ut + uux + uxxx = 0 are examples of
nonlinear equations

Computer Modeling Partial differential equations



Basic Concepts
Second-Order Equations

Definitions
Examples

Classical and weak solution of PDE

F (x , y , . . . , u, ux , uy , . . . , uxx , uxy , uyy , . . . ) = 0, (?)

A classical solution (or simply a solution) of (?) is a function

u = u(x , y , . . . ), x , y , · · · ∈ D

which is continuously differentiable such that all its partial
derivatives involved in the equation exist and satisfy (?) identically.

However, this notion of classical solution can be extended by
relaxing the requirement that u is continuously differentiable over
D. The solution u = u(x , y , . . . ) is called a weak (or generalized)
solution of (?) if u or its partial derivatives are discontinuous in
some (finite number of) points in D.
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General solution

To introduce the idea of a gene-
ral solution of a PDE, we solve a
simple equation for u = u(x , y)

uxy = 0. (4)

Integrating (4) with respect to x
(keeping y fixed), we obtain

uy = h(y). (5)

where h(y) is an arbitrary fun-
ction of y . We then integrate it

with respect to y to find

u(x , y) =

∫
h(y)dy + f (x), (6)

where f (x) is an arbitrary
function. Or, equivalently

u(x , y) = f (x) + g(y). (7)

where f (x) and g(y) are
arbitrary functions. The solution
(7) is called the general solution
of the second-order equation (4)
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Usually, the general solution of a PDE is an expression that involves arbitrary functions
(in contrast to the general solution of an ordinary differential equation which involves
arbitrary constants). Further, a simple equation uxy = 0 has infinitely many solutions.
This can be illustrated by considering the problem of construction of PDEs from given
arbitrary functions. For example, if

u(x , t) = f (x − ct) + g(x + ct), (8)

where f and g are arbitrary functions of (x − ct) and (x + ct), respectively, then

uxx = f ′′(x − ct) + g ′′(x + ct),
utt = c2f ′′(x − ct) + c2g ′′(x + ct) = c2uxx .

(9)

Thus, we obtain the second-order linear equation, called the wave equation,

utt − c2uxx = 0. (10)

We see that the function u(x , t) = f (x − ct) + g(x + ct) satisfies (10) irrespective of
the functional forms of f (x − ct) and g(x + ct), provided f and g are at least twice
differentiable functions. Thus, the general solution of equation (10) is given by
u(x , t) = f (x − ct) + g(x + ct) which contains arbitrary functions.
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Initial and boundary conditions

In almost all cases, the general solution of a partial differential
equation is of little use since it has to satisfy other supplementary
conditions, usually called initial or boundary conditions.
The general solution of a linear partial differential equations
contains arbitrary functions.
This means that there are infinitely many solutions and only by
specifying the initial and/or boundary conditions can we determine
a specific solution of interest.
Usually, both initial and boundary conditions arise from the physics
of the problem.
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Cauchy (or initial) conditions

In the case of partial differential equations in which one of the
independent variables is the time t, an initial condition specifies
the physical state of the dependent variable u(x, t) at a particular
time t = t0 or t = 0. Often u(x, 0) and/or ut(x, 0) are specified to
determine the function u(x, t) at later times. Such conditions are
called the Cauchy or initial conditions. It can be shown that these
conditions are necessary and sufficient for the existence of a unique
solution. The problem of finding the solution of the initial-value
problem with prescribed Cauchy data on the line t = 0 is called the
Cauchy problem or the initial-value problem.
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Boundary conditions

In each physical problem, the governing equation is to be solved within a given domain
D of space with prescribed values of the dependent variable u(x, t) given on the
boundary ∂D of D.
There are three important types of boundary conditions which arise frequently in
formulating physical problems:

Dirichlet conditions where the solution u is prescribed on the boundary ∂D of
the domain D. The problem of finding the solution of a given equation
Lxu(x) = 0 inside D with prescribed values of u on ∂D is called the Dirichlet
boundary-value problem;

Neumann conditions, where valus of normal derivative
∂u

∂n
of the solution on the

boundary ∂D are specified. In this case, the problem is called the Neumann
boundary-value problem;

Robin conditions, where
(
∂u

∂n
+ au

)
is specified on ∂D. The corresponding

problem is called the Robin boundary-value problem.
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Well-posed PDE problem

A problem described by a partial differential equation in a given
domain with a set of initial and/or boundary conditions is said to
be well-posed (or properly posed) provided the following criteria
are satisfied:
existence: There exists at least one solution of the problem.
uniqueness: There is at most one solution.
stability: The solution must be stable in the sense that it depends
continuously on the data. In other words, a small change in the
given data must produce a small change in the solution.

The stability criterion is essential for physical problems. A
mathematical problem is usually considered physically realistic if a
small change in given data produces correspondingly a small
change in the solution.
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According to the Cauchy-Kowalewski theorem, the solution of an analytic Cauchy
problem for partial differential equation exists and is unique locally. However, a Cauchy
problem for Laplace’s equation is not always well-posed. A famous example of a
non-well-posed (or ill-posed) problem was first given by Hadamard.
The following Hadamar’s example deals with Cauchy’s initial-value problem for the
Laplace equation

∆u = ∇2u ≡ uxx + utt = 0, 0 < t <∞, x ∈ R (11)

with the Cauchy condition

u(x , 0) = 0 and ut(x , 0) =

(
1

n

)
sin nx , (12)

where n is an integer representing the wavenumber. These condition tend to zero
uniformly as n→∞. It is easily to verified that the unique solution of this problem is
given by:

u(x , t) =

(
1

n2

)
sinh nt sin nx (13)

As n→∞, this solution does not tend to the solution u = 0. In fact, solution (13)
represents oscillations in x with unbounded amplitude n−2 sinh nt which tends to
infinity as n→∞. In other words, although the data change by an arbitrary small
amount, the change in the solution is infinitely large. Thus, the problem is certainly
not well-posed, that is, the solution does not depend continuously on the initial data.
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Some Important Classical Linear Model Equations

We start with a special type of second-order linear partial
differential equations for the following reasons:

second-order equations arise more frequently in a wide variety
of applications;

their mathematical treatment is simpler and easier to
understand than the first-order equations in general;

in almost all physical phenomena, the dependent variable
u = u(x , y , z , t) is a function of three space variable and time
variable t.
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The wave equation

describes the propagation
of a wave (or disturbance).

utt − c2∆u = 0 (14)

where

∆ = ∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

and c is a constant. The
wave equation arises in a
wide variety of physical
problems:

vibrating string, membrane,

longitudinal vibrations of an elastic
rod or beam,

shallow water waves,

acoustic problems for the velocity
potential for a fluid flow through
which sound can be transmitted,

transmission of electric signals
along a cable,

both electric and magnetic fields in
the absence of charge and dielectric.
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The heat or diffusion equation

describes the diffusion
of thermal energy in a
homogeneous medium.

ut − κ∆u = 0 (15)

where κ is the constant
of diffusivity.

It can be used to model the flow of a
quantity, such as heat, or a
concentration of particles.

It is also used as a model equation for
growth and diffusion, in general, and
growth of a solid tumor, in particular.

It describes also the diffusion of
vorticity from a vortex sheet.
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The Laplace equation

∆u = 0 (16)

This equation is used to describe:

elecrostatic potential in the absence of charges,

gravitational potential in the absence of mass,

equilibrium displacement of an elastic membrane,

velocity potential for an incompressible fluid flow,

temperature in a steady-state heat conduction problem

and many other physical phenomena.
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The Poisson equation and the Helmholtz equation

∆u = f (x , y , z) (17)

where f (x , y , z) is a given function
describing a source or sink. This is an
inhomogeneous Laplace equation, and
hence, the Poisson equation is used to
study all phenomena described by the
Laplace equation in the presence of
external sources or sinks.

∆u + λu = 0 (18)

where λ is a constant.
This is a time-independent
wave equation with λ as a
separation constant.
In particular, its solution in
acoustics represents an
acoustic radiation potential.

Computer Modeling Partial differential equations



Basic Concepts
Second-Order Equations

Definitions
Examples

The telegraph equation

utt − c2uxx + aut + bu = 0 (19)

where a, b, and c are constants.
This equation arises in the study of propagation of electrical signals
in a cable of transmission line. Both current I and voltage V
satisfy en equation of the form (19)
This equation also arises in the propagation of pressure wave in the
study of pulsatile blood flow in arteries and in one-dimentional
random motion of bugs along a hedge.
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The Klein-Gordon (KG) equation

Klein (1927) and Gordon (1926) derived a relativistic equation for
a charged particle in an electromagnetic field. It is of conservative
dispersive type and played an important role in our understanding
of the elementary particles.

�ψ +

(
mc2

h

)
ψ = 0, where � ≡ ∂2

∂t2 − c2∆ (20)

is the d’Alembertian operator, h(= 2π~) is the Planck constant,
and m is a constant mass of the particle.
This equation is also used to describe dispersive wave phenomena
in general.
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The time-independent Schrödinger equation in quantum
mechanics

(
~2

2m

)
∆ψ + (E − V )ψ = 0 (21)

where h(= 2π~) is the Planck constant, m is the mass of the
particle whose wave function is ψ(x , y , z , t), E is a constant, and
V is the potential energy.
If V = 0, the Schrödinger equation reduces to the Helmholz
equation.
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The linear Korteweg-de Vries (KdV) equation
and the linear Boussinesq equation

ut + αux + βuxxx = 0 (22)

where α and β are constants.
This equation describes the
propagation of linear, long, water
waves and of plasma waves in a
dispersive medium.

utt + α2∆u + β2∆u = 0 (23)

where α and β are constants.
This equation arises in elasticity
for longitudinal waves in bars,
long water waves, and plasma
waves.
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The biharmonic wave equation

utt + c2∇4u = 0 (24)

where c is a constant.
In elasticity, the displacement of a thin elastic plate by small
vibrations satisfies this equation. When u is independent of time t,
the biharmonic wave equation reduces to what is called the
biharmonic equation

∇4u = 0 (25)

This describes the equilibrium equation for the distribution of
stresses in an elastic medium satisfied by Airy’s stress function
u(x , y , z). In fluid dynamics, this equation is satisfied by the
stream function ψ(x , y , z) in a viscous fluid flow.
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The electromagnetic wave equations

for the electric field E and the polarization P are

E0(Ett − c2
0Exx) + Ptt = 0, (26)

(Ptt + ω2
0P)− E0ω

2
pE = 0, (27)

where E0 is a permittivity (or dielectric constant) of free space, ω0

is a natural frequency of the oscillator, c0 is the speed of light in a
vacuum, and ωp is the plasma frequency.
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Second-Order Equations

Definition of Second-Order PDE

The general second-order linear partial differential equation in two independent variables
x , y is given by

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G , (?)

where A, B, C , D, E , F , and G are given functions of x and y or constants.

The classification of second-order equations is based upon the possibility of reducing
equation (?) by a coordinates transformation to a canonical or standard form at a
point. Due to this classification we consider the following three types of PDE:

hyperbolic equation

parabolic equation

elliptic equation
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Method of characteristics

The method of characteristics is a
technique for solving partial differential
equations. The method is to reduce a
partial differential equation to a family
of ordinary differential equations along
which the solution can be integrated
from some initial data given on a
suitable hypersurface.
For a second-order PDE the method of characteristics discovers
surfaces (called characteristic surfaces or just characteristics) along
which the PDE becomes an ordinary differential equation (ODE).
Once the ODE is found, it can be solved along the characteristic
surfaces and transformed into a solution for the original PDE.
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Method of characteristics

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G (?)

We consider the tranformation from x , y , to ξ, η defined by

ξ = φ(x , y), η = ψ(x , y) (28)

where φ and ψ are twice continuously differentiable and the Jacobian
J(x , y) = φxψy − ψxφy is nonzero in a domain of interest so that x , y can be
determined uniquely form the system (28). Then, by the chain rule,

ux = uξξx + uηηx , uy = uξξy + uηηy ,

uxx = uξξξ
2
x + 2uξηξxηx + uηηη2

x + uξξxx + uηηxx ,
uyy = uξξξ

2
y + 2uξηξyηy + uηηη2

y + uξξyy + uηηyy ,
uxy = uξξξxξy + uξη(ξxηy + ξyηx ) + uηηηxηy + uξξxy + uηηxy ,

Substituting these results in equation (?) gives

A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗, (??)

where

A∗ = Aξ2
x + Bξxξy + Cξ2

y , D∗ = Aξxx + Bξxy + Cξyy + Dξx + Eξy ,
B∗ = 2Aξxηx + B(ξxηy + ξyηx ) + 2Cξyηy , E∗ = Aηxx + Bηxy + Cηyy + Dηx + Eηy ,
C∗ = Aη2

x + Bηxηy + Cη2
y , F∗ = F and G∗ = G .
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Now, the problem is to determine ξ and η so
that the equation (??) takes the simplest
possible form. We choose ξ and η such that
A∗ = C∗ = 0 and B∗ 6= 0. Or, more explicitly,

A∗ = Aξ2
x + Bξxξy + Cξ2

y = 0 (29)

C∗ = Aη2
x + Bηxηy + Cη2

y = 0 (30)

These two equations can be combined into a
single quadratic equation for ζ = ξ or η

A

(
ζx

ζy

)2

+ B

(
ζx

ζy

)
+ C = 0 (31)

We consider level curves ξ = φ(x , y) =
constant = C1 and η = ψ(x , y) = constant
= C2. On these curves

dξ = ξxdx + ξydy = 0, dη = ηxdx + ηydy = 0,

that is, the slopes of these curves are given by

dy

dx
= −

ξx

ξy
,

dy

dx
= −

ηx

ηy
. (32)

Thus, the slopes of both level curves are the
roots of the same quadratic equation which is
obtained from (31) as

A

(
dy

dx

)2

− B

(
dy

dx

)
+ C = 0 (33)

and the roots of this equation are given by

dy

dx
=

1

2A
(B ±

√
B2 − 4AC). (34)

These equations are known as the
characteristic equations for (?), and their
solutions are called the characteristic curves or
simply characteristics of (?). The solution of
the two ordinary differential equations (34)
defines two distinct families of characteristics
φ(x , y) = C1 and ψ(x , y) = C2.
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Classification of PDE

A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗, (??)

Case 1. Equations for which B2 − 4AC > 0 are called hyperbolic.
In this case we get two real and distinct families of characteristics φ(x , y) = C1
and ψ(x , y) = C2, where C1 and C2 are constants of integration of the
equations dξ = 0 and dη = 0. Since A∗ = C∗ = 0, and B∗ 6= 0, and dividing by
B∗, equation (??) reduces to the form

uξη = −
1

B∗
(D∗uξ + E∗uη + F∗u − G∗) = H1 (say) (35)

If the new independent variables α = ξ − η, β = ξ + η are introduced, then

uξ = uααξ + uββξ = uα + uβ , uη = uααη + uββη = uα − uβ ,
(uη)ξ = (uη)ααξ + (uη)ββξ = (uα − uβ)α · 1 + (uα − uβ)β · 1 = uαα − uββ

Consequently, equation (35) becomes

uαα − uββ = H1(α, β, u, uα, uβ) (say), (36)

and is called the canonical form of the hyperbolic equation.
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A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗, (??)

Case 2. Equations for which B2 − 4AC = 0 are called parabolic.
There is only one family of real characteristics whose slope is given by

dy

dx
=

B

2A
(37)

Integrating this equation gives ξ = φ(x , y) = const. (or η = ψ(x , y) = const.).
Since B2 = 4AC and A∗ = 0, we obtain

0 = A∗ = Aξ2
x + Bξxξy + Cξ2

y = (
√
Aξx +

√
Cξy )2.

It then follows that

B∗ = 2Aξxηx +B(ξxηy +ξyηx )+2Cξyηy = 2(
√
Aξx +

√
Cξy )(

√
Aηx +

√
Cηy ) = 0

for an arbitrary value of η which is independent of ξ.
Dividing (??) by C∗ 6= 0 yields

uηη = H2(ξ, η, u, uξ, uη) (38)

This is known as the canonical form of the parabolic equation. On the other
hand, if we choose η = ψ(x , y) = constant as the integral of (37), equation (??)
assume the form

uξξ = H∗2 (ξ, η, u, uξ, uη) (39)
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A∗uξξ + B∗uξη + C∗uηη + D∗uξ + E∗uη + F∗u = G∗, (??)

Case 3. Equations for which B2 − 4AC < 0 are called elliptic. In this case, equation

dy

dx
=

1

2A
(B ±

√
B2 − 4AC). (40)

has no real solutions. So there are two families of complex characteristics. Since
roots ξ, η of (40) are complex conjugates of each other, we introduce the new

variables as α =
1

2
(ξ + η), β =

1

2i
(ξ − η), so that ξ = α+ iβ and η = α− iβ.

We transform (??) into the form

A∗∗uαα + B∗∗uαβ + C∗∗uββ = H4(α, β, u, uα, uβ) (41)

where the coefficients of this equation assume the same form as the coefficients
of (?). It can be easy to verified that A∗ = 0 and C∗ = 0 take the form

A∗∗ − C∗∗ ± iB∗∗ = 0 ⇔ A∗∗ = C∗∗ and B∗∗ = 0.

Thus, dividing by A∗∗, equation (41) reduces to the form

uαα + uββ = H5(α, β, u, uα, uβ) (42)

which is called the canonical form of the elliptic equation.
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In summary

Auxx + Buxy + Cuyy + Dux + Euy + Fu = G (?)

We state that the equation (?) is called hyperbolic, parabolic, or elliptic at a point
(x0, y0) accordingly as

B2(x0, y0)− 4A(x0, y0)C(x0, y0) >=< 0. (43)

If it is true at all points in a given domain, then the equation is said to be hyperbolic,
parabolic, or elliptic in that domain.

Finally, it has been shown above that, for the case of two independent variables, a
transformation can always be found to transform the given equation to the canonical
form. However, in the case of several independent variables, in general, it is not
possible to find such a transformation

These three types of partial differential equations arise in many areas of mathematical
and physical sciences. Usually

the boundary value problems are associated with elliptic equations

the initial-value problems arise in connection with hyperbolic and parabolic
equations.
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Example

The equation xuxx + uyy = x2 is elliptic for
x > 0, parabolic for x = 0, and hyperbolic for
x < 0. Indeed, since A = x , B = 0, C = 1, then

B2 − 4AC = −4x

{
< 0 for x > 0,
= 0 for x = 0,
> 0 for x < 0.

The characteristics equations are

dy

dx
=

B ±
√
B2 − 4AC

2A
= ±

1
√
−x

(44)

Hence y = ±2
√
−x + c = const., or

ξ = y + 2
√
−x = constant, (45)

η = y − 2
√
−x = constant. (46)

These represents two branches of the
parabolas (y − c)2 = −4x where c is a
constant.

x

y

0

Fig. 1 Characteristics are parabolas for
x < 0.
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Example continued
For x < 0, we use the transformations ξ = y + 2

√
−x , η = y − 2

√
−x to reduce the

equation xuxx + uyy = x2 to the canonical form. We find

ξx = −
1
√
−x

, ξy = 1, ξxx = −
1

2

1

(−x)3/2
, ξyy = 0, ηx = +

1
√
−x

, ηy = 1,

ηxx =
1

2

1

(−x)3/2
, ηyy = 0, (ξ − η) = 4

√
−x , (ξ − η)4 = (16x)2.

Consequently, the equation xuxx + uyy = x2 reduces to the form

x(uξξξ
2
x+2uξηξxηx+uηηη

2
x+uξξxx+uηηxx )+(uξξξ

2
y+2uξηξyηy+uηηη

2
y+uξξyy+uηηyy ) = x2.

x

[
uξξ

(
−

1

x

)
+ 2uξη

(
1

x

)
− uηη

(
1

x

)
−

1

2

1

(−x)3/2
uξ +

1

2

1

(−x)3/2
uη

]
+[uξξ + 2uξη + uηη] = x2.

4uξη+
1

2

1
√
−x

(uξ−uη) =
1

162
(ξ−η)4 ⇒ uξη =

1

4

(
1

(16)2
(ξ − η)4 −

1

2

1

(ξ − η)
(uξ − uη)

)
.

This is the first canonical form.
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Example continued

For x > 0, we use the transformations ξ = y + 2i
√
x , η = y − 2i

√
x so that

α = 1
2 (ξ + η) = y , β = 1

2i (ξ − η) = 2
√
x . Clearly,

αx = 0, αy = 1, αxx = 0, αyy = 0, αxy = 0, βx =
1
√
x
, βy = 0, βxx = −

1

2

1

x3/2
, βyy = 0.

So, equation xuxx + uyy = x2 reduces to the canonical form

x(uααα2
x + 2uαβαxβx + uβββ

2
x + uααxx + uββxx )

+(uααα2
y + 2uαβαyβy + uβββ

2
y + uααyy + uββyy ) =

(
β

2

)4

,

uαα + uββ −
1

2

1
√
x
uβ =

(
β

2

)4

, thus uαα + uββ =
1

β
uβ +

(
β

2

)4

This is the desired canonical form of the elliptic equation.

Computer Modeling Partial differential equations



Basic Concepts
Second-Order Equations

Definition and classification
Analytical solution
Numerical solutions

Example continued

Finally, for the parabolic case (x = 0), equation xuxx + uyy = x2

reduces to the canonical form

uyy = 0.

In this case, the characteristic determined from dx
dy = 0 is x = 0.

That is, the y−axis is the characteristic curve, and it represents a
curve across which a transition from hyperbolic to elliptic form
takes place.
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The Method of Separation of Variables

The Method of Separation of Variables is widely used to solve initial boundary-value
problems involving linear partial differential equations.
Let us assume that the dependent variable u(x , y) is expressed in the separable form

u(x , y) = X (x)Y (y), (47)

where X and Y are functions of x and y , respectively.
Then, in many cases, the partial differential equation may be reduced to two ordinary
differential equations for X and Y .
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Example: Transverse Vibration of a String
We consider the one dimensional linear wave equation

utt = c2uxx , 0 < x < `, t > 0, (?)

where c2 = T∗/ρ, T∗ is a constant tension, and ρ constant line density of the string.
The initial and boundary conditions are

u(x , 0) = f (x), ut(x , 0) = g(x), 0 ¬ x ¬ `, (48)

u(0, t) = 0 = u(`, t), t > 0, (49)

where f and g are the initial displacements and initial velocity, respectively.
According to the method of separation of variables, we assume a separable solution of
the form

u(x , t) = X (x)T (t) 6= 0, (50)

where X is a function of x only, and T is a function of t only.
Substituting this solution in equation (?) yields

1

X

d2X

dx2
=

1

c2T

d2T

dt2
(??)
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Example continued

1

X

d2X

dx2
=

1

c2T

d2T

dt2
(??)

Since, the left hand side of this equation is a function of x only and the right-hand
side is a function of t only, it follows that (??) can be true only if both sides are equal
to some constat value. We then write

1

X

d2X

dx2
=

1

c2T

d2T

dt2
= λ =⇒

d2X

dx2
= λX ,

d2T

dt2
= λc2T (51)

where λ is an arbitrary separation constant. We solve this pair of equations by using
the boundary conditions u(0, t) = 0 = u(`, t), t > 0:

u(0, t) = X (0)T (t) = 0, for t > 0, (52)

u(`, t) = X (`)T (t) = 0, for t > 0. (53)

Hence, we take T (t) 6= 0 to obtain

X (0) = 0 = X (`). (54)
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Example continued

d2X

dx2
= λX , X (0) = 0 = X (`) (? ? ?)

There are three possible cases: (i) λ > 0, (ii) λ = 0, (iii) λ < 0.

For case (i), λ = α2 > 0. The solution of (? ? ?) is

X (x) = Aeαx + Be−αx , (55)

which together with the boundary condition provides to A = B = 0. This leads
to a trivial solution u(x , t) = 0.

For case (ii), λ = 0. The solution of (? ? ?) is

X (x) = Ax + B (56)

Then, we use the boundary condition to obtain A = B = 0. This also leads to
the trivial solution u(x , t) = 0.
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Example continued

d2X

dx2
= λX , X (0) = 0 = X (`) (? ? ?)

For case (iii), λ < 0, and hence, we write
λ = −α2 so that the soltuion of equation
(? ? ?) gives

X (x) = A cosαx + B sinαx (57)

whence, using the boundary condition, we
derive the nontrivial soltuion

X (x) = B sinαx (58)

where B is an arbitrary nonzero constant.
Clearly, since B 6= 0 and X (`) = 0,

sinα` = 0 (59)

which gives the solution for the parameter
α

α = αn =

(
nπ

`

)
, n = 1, 2, 3, . . . (60)

Note that n = 0, (α = 0) leads to the
trivial solution u(x , t) = 0, and hence, the
case n = 0 has to be excluded.
We see that there exists an infinite set of
discrete values of α for which the problem
has a nontrivial solution. These values αn

are called the eigenvalues, and the
corresponding solutions are

Xn(x) = Bn sin
(
nπx

`

)
. (61)
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Example continued

We next solve
d2T

dt2
= λc2T , (? ? ? ?)

with λ = −α2
n to find the solution for Tn(t) as

Tn(t) = Cn cos(αnct) + Dn sin(αnct) (62)

where Cn and Dn are constants of integration. Combining

Xn(x) = Bn sin
(
nπx

`

)
Tn(t) = Cn cos(αnct) + Dn sin(αnct) (63)

yields the solution from u(x , t) = X (x)T (t) as

un(x , t) =

[
an cos

(
nπct

`

)
+ bn sin

(
nπct

`

)]
sin
(
nπx

`

)
, (64)

where an = CnBn, bn = BnDn are new arbitrary constants and n = 1, 2, 3, . . .
These solution un(x , t), corresponding to eigenvalues αn = ( nπ

`
), are called the

eigenfunctions.
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Exemple continued

un(x , t) =

[
an cos

(
nπct

`

)
+ bn sin

(
nπct

`

)]
sin
(
nπx

`

)
, (65)

Finally, since the problem is linear, the most general solution is obtained in the form

u(x , t) =

∞∑
n=1

(
an cos

nπct

`
+ bn sin

nπct

`

)
sin
(
nπx

`

)
, (66)

provided the series converges and it is twice continuously differentiable with respect to
x and t.
The arbitrary coefficients an and bn are determined from the initial conditions

u(x , 0) = f (x) =

∞∑
n=1

an sin
(
nπx

`

)
, ut(x , 0) = g(x) =

(
πc

`

) ∞∑
n=1

nbn sin
(
nπx

`

)
These are the Fourier series expansions of the functions f (x) and g(x). Thus an and
bn are given by

an =
2

`

∫ `

0

f (x) sin
(
nπx

`

)
dx , bn =

2

nπc

∫ `

0

g(x) sin
(
nπx

`

)
dx

Hence the problem is completely solved.
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Graphical representation of the solution

We examine now the graphical representation of the solution

u(x , t) =

∞∑
n=1

(
an cos

nπct

`
+ bn sin

nπct

`

)
sin
(
nπx

`

)
, (67)

in the context of the free vibration of a string of length `. The eigenfunctions

un(x , t) =

(
an cos

nπct

`
+ bn sin

nπct

`

)
sin
(
nπx

`

)
, (R)

are called the nth harmonic. The first harmonic (n = 1) is called the fundamental
harmonic and all other harmonics (n > 1) are called overtones.
In order to describe waves produced in the plucked string with zero initial velocity
(ut(x , 0) = 0), we write the solution (R) in the form

un(x , t) = an sin
(
nπx

`

)
cos
(
nπct

`

)
, n = 1, 2, 3 . . . (68)
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Graphical representation of the solution

un(x , t) = an sin
(
nπx

`

)
cos
(
nπct

`

)
, n = 1, 2, 3 . . . (69)

These solutions are called standing waves
with amplitude an sin( nπx

`
) which vanishes

at

x = 0,
`

n
,

2`

n
, . . . , `.

These are called the nodes of the nth
harmonic.

0 !

n = 1

n = 2

n = 3

Fig. 1 Several harmonics of vibration in a
string.
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Unidimensional problem
Assume that c and f are two continuous functions on the interval [0, 1]. We want to
find a function u twice continuously differentiable on [0, 1] such, that

− u′′(x) + c(x)u(x) = f (x) for 0 < x < 1, u(0) = u(1) = 0 (?)

An example of physical situation for this problem is deflection of a beam of a unit
length, of the ends x = 0 and x = 1, stretched along the axis by the force P, subjected
to a linear charge density f (x) and simply resting on its ends. Thus, the deflection
moment u(x) at the point x is a solution of the problem (?) with c(x) = P/EI (x),
where E is the Young’s modulus of the material and I (x) is the principal moment of
inertia of a beam’s section at the point x .

Another example is the vertical displacement u(x) at the point x of a tightrope
stretched between the ends x = 0 and x = 1 subjected to a unit tension and a vertical
charge density f (x); in this case, we have c(x) = 0, ∀x ∈ [0, 1].
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Finite Difference Method

−u′′(x) + c(x)u(x) = f (x) for 0 < x < 1, u(0) = u(1) = 0. (?)

Let N be an integer, h =
1

(N + 1)
and we note the discretization points as xj = jh,

j = 0, 1, 2, . . . ,N + 1.

In order to find the numerical solution of the problem (?) by the finite difference
method, we have to find the values uj being the approximation of u(xj ) and satisfying
the following formula:

−uj−1 + 2uj − uj+1

h2
+ c(xj )uj = f (xj ), 1 ¬ j ¬ N,

u0 = uN+1 = 0
(70)

The problem (70) is called the discrete problem of (?).
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Finite Difference Method

If we suppose that u and f are two column vectors of size N, and A is the N × N
three-diagonal matrix such, that:

u =

 u1
u2
. . .
un

 , f =

 f1
f2
. . .
fn

 ,A =
1

h2


2 + c1h2 −1 0 . . . 0
−1 2 + c2h2 −1 . . . 0

0 −1 2 + c3h2
. . .

...
...

...
. . .

. . . −1
0 0 . . . −1 2 + cNh

2

 ,

where ci = c(xi ), then the discrete problem is equivalent to the following linear system
of N equations with N unknowns:

Au = f . (71)

Theorem 1. Convergence. Assume that c(x) ­ 0, ∀x ∈ [0, 1] and the solution u of
(?) is four times continuously differentiable. Then existes a constant C independent of
N such, that

max
1¬j¬N

|u(xj )− uj | ¬ Ch2. (72)
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The weak formulation
Let us consider the problem (?) −u′′(x) + c(x)u(x) = f (x) for 0 < x < 1,
u(0) = u(1) = 0. We multiply the first equation by a function v continuously
differentiable on the interval [0, 1] and integrate on the interval [0, 1]:

−
∫ 1

0

u′′(x)v(x)dx +

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f (x)v(x)dx . (73)

By integration by parts of the first term, we get∫ 1

0

u′(x)v ′(x)dx − u′(1)v(1) + u′(0)v(0) +

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f (x)v(x)dx .

(74)
If we suppose that the function v is null for x = 0 and x = 1, we get the following
equality ∫ 1

0

u′(x)v ′(x)dx +

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f (x)v(x)dx . (??)

Assume now, that V is a space of all the continuous functions g such, that its
derivative g ′ is piecewise continuous and g(0) = g(1) = 0. Since the sum of two
functions from V is also the function of V , as well as, the product of a function from
V by a real number, thus V is a vector space.
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The weak formulation

Now the problem

−u′′(x) + c(x)u(x) = f (x) for 0 < x < 1, u(0) = u(1) = 0, (?)

can be written in the equivalent form: Find u ∈ V such that∫ 1

0

u′(x)v ′(x)dx +

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f (x)v(x)dx , ∀v ∈ V . (??)

The problem (??) is called weak problem or variational problem.

The solutions u of the weak problem (??) are less regular as the solutions to the
differential problem (?), thus the solution to the weak problem is called the
weak solution.

However, the solution of the differential problem (?) is the solution of the weak
problem (??).
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The Galerkin method
We present now the Galerkin method which is based on the weak formulation

Find u ∈ V such, that:∫ 1

0

u′(x)v ′(x)dx +

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f (x)v(x)dx , ∀v ∈ V .
(??)

and is the departure point for the finite element method.

Let us suppose that ϕ1, ϕ2, . . . , ϕN are N functions linearly independent in the vector
space V , then we can construct a subspace Vh spanned on the linear combination of
the functions ϕ1, ϕ2, . . . , ϕN . Thus, Vh is a space of the functions g which can be
expressed as a linear combination of the basic functions ϕ1, ϕ2, . . . , ϕN as follows:

g(x) =

N∑
i=1

giϕi (x), where gi are N real numbers. (75)

So, if we suppose that uh and vh are also the function from the subspace Vh, then we
can formulate an approximation of the problem (??) as follows:

Find uh ∈ Vh such, that:∫ 1

0

u′h(x)v ′h(x)dx +

∫ 1

0

c(x)uh(x)vh(x)dx =

∫ 1

0

f (x)vh(x)dx ,
(? ? ?)

for any function vh ∈ Vh. Computer Modeling Partial differential equations
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The Galerkin method


Find uh ∈ Vh such, that for any vh ∈ Vh :∫ 1

0

u′h(x)v ′h(x)dx +

∫ 1

0

c(x)uh(x)vh(x)dx =

∫ 1

0

f (x)vh(x)dx ,
(? ? ?)

Since the function uh ∈ Vh, then it can be written as a linear combination of the
functions ϕ1, ϕ2, . . . , ϕN as:

uh(x) =

N∑
i=1

uiϕi (x), (76)

where u1, u2, . . . , uN are N real numbers to be determined. Taking vh = ϕj , 1 ¬ j ¬ N
in (? ? ?), then the problem (? ? ?) is equivalent to the following problem:

Find the coefficients u1, u2, . . . , uN such, that:
N∑
i=1

ui

(∫ 1

0

ϕ′i (x)ϕ′j (x)dx +

∫ 1

0

c(x)ϕi (x)ϕj (x)dx

)
=

∫ 1

0

f (x)ϕj (x)dx ,

for all j = 1, 2, . . . ,N.
(77)
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The Galerkin method


Find the coefficients u1, u2, . . . , uN such, that:
N∑
i=1

ui

(∫ 1

0

ϕ′i (x)ϕ′j (x)dx +

∫ 1

0

c(x)ϕi (x)ϕj (x)dx

)
=

∫ 1

0

f (x)ϕj (x)dx ,

for all j = 1, 2, . . . ,N.
(78)

We denote by A = Aji a N × N matrix of coefficients:

Aji =

∫ 1

0

ϕ′i (x)ϕ′j (x)dx +

∫ 1

0

c(x)ϕi (x)ϕj (x)dx , (79)

by u we note a vector of N components u1, u2, . . . , uN and by f = fj , a vector of N
components:

fj =

∫ 1

0

f (x)ϕj (x)dx . (80)

Thus, the problem (77) can be rewritten in a form of a linear system:

Au = f .
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Finite Element Method of the first order

−u′′(x) + c(x)u(x) = f (x) for 0 < x < 1, u(0) = u(1) = 0. (?)

Let us divide the interval [0, 1] by N + 1 parts (N is an integer) and take h =
1

N + 1
,

xi = ih with i = 0, 1, 2, . . . ,N + 1.

We define, for i = 1, 2, . . . ,N the following functions:

ϕi (x) =



x − xi−1

xi − xi−1
if xi−1 ¬ x ¬ xi ,

x − xi+1

xi − xi+1
if xi ¬ x ¬ xi+1,

0 if x ¬ xi−1 or x ­ xi+1.
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Finite Element Method of the first order

ϕi (x) =



x − xi−1

xi − xi−1
if xi−1 ¬ x ¬ xi ,

x − xi+1

xi − xi+1
if xi ¬ x ¬ xi+1,

0 if x ¬ xi−1 or x ­ xi+1.

Functions ϕ1, ϕ2, . . . , ϕN are linearly independent, so we choose them to span the
subspace Vh of the vector space V .

Therefore, we say that:

x0, x1, x2, . . . , xN+1 are the nodes of the discretization,

[x0, x1], [x1, x2], [xN , xN+1] are the geometrical elements,

ϕ1, ϕ2, . . . , ϕN are the base functions of subspace Vh of type finite elements of
first order associated with the interior nodes x1, x2, . . . , xN .

The finite element method is the Galerkin method with the functions ϕi ,
i = 1, 2, . . . ,N defined above.
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Finite Element Method of the first order

The boundary value problem:

−u′′(x) + c(x)u(x) = f (x) for 0 < x < 1, u(0) = u(1) = 0. (?)

The weak formulation of the problem (?):
Find u ∈ V such, that:∫ 1

0

u′(x)v ′(x)dx +

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f (x)v(x)dx , ∀v ∈ V .
(??)

The corresponding finite element method is
Find uh ∈ Vh such, that for any vh ∈ Vh :∫ 1

0

u′h(x)v ′h(x)dx +

∫ 1

0

c(x)uh(x)vh(x)dx =

∫ 1

0

f (x)vh(x)dx .
(? ? ?)
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Finite Element Method of the first order

Writing uh(x) =

N∑
i=1

uiϕi (x), and taking vh = ϕj , j = 1, 2, . . . ,N, we see that the

finite element method is equivalent to the following linear system for the unknowns
u1, u2, . . . , uN :

Find the coefficients u1, u2, . . . , uN such, that:
N∑
i=1

ui

(∫ 1

0

ϕ′i (x)ϕ′j (x)dx +

∫ 1

0

c(x)ϕi (x)ϕj (x)dx

)
=

∫ 1

0

f (x)ϕj (x)dx ,

for all j = 1, 2, . . . ,N.
(81)
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Finite Element Method of the first order


Find the coefficients u1, u2, . . . , uN such, that:
N∑
i=1

ui

(∫ 1

0

ϕ′i (x)ϕ′j (x)dx +

∫ 1

0

c(x)ϕi (x)ϕj (x)dx

)
=

∫ 1

0

f (x)ϕj (x)dx ,

for all j = 1, 2, . . . ,N.
(82)

And if we denote by A = Aji a N × N matrix of coefficients:

Aji =

∫ 1

0

ϕ′i (x)ϕ′j (x)dx +

∫ 1

0

c(x)ϕi (x)ϕj (x)dx , (83)

by u a vector of N components u1, u2, . . . , uN and by f = fj , a vector of N
components:

fj =

∫ 1

0

f (x)ϕj (x)dx , (84)

thus, the problem (82) can be rewritten in a form of the linear system:

Au = f .
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Finite Element Method of the first order
Calculation of the coefficients A = Aji , and f = fj :

We have: Aji =

∫ 1

0

ϕ′i (x)ϕ′j (x)dx +

∫ 1

0

c(x)ϕi (x)ϕj (x)dx .

It is easy to verify that∫ 1

0

ϕ′i (x)ϕ′j (x)dx =

{
2/h if i = j ,
−1/h if |i − j | = 1,
0 otherwise.

(85)

In order to find the values of

∫ 1

0

c(x)ϕi (x)ϕj (x)dx and

∫ 1

0

f (x)ϕj (x)dx , we can use

the following formula of numerical integration:∫ 1

0

`(x)dx = h

(
1

2
`(x0) + `(x1) + `(x1) + · · ·+ `(xN) +

1

2
`(xN+1)

)
. (86)

Thus, we get∫ 1

0

c(x)ϕi (x)ϕj (x)dx =

{
hc(xj ) if i = j ,
0 otherwise,

and

∫ 1

0

f (x)ϕj (x)dx = hf (xj ).
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