A Grid-based Parallel Maple

Dana Petcu®?, Diana Dubu®?, Marcin Paprzycki®:*

! Computer Science Department, Western University of Timigoara, Romania
2 Institute e-Austria, Timigoara, Romania,
8 Computer Science Department, Oklahoma State University, USA,
4 Computer Science Department, SWPS, Warsaw, Poland
{petcu,ddubu}@info.uvt.ro, marcin.paprzycki@swps.edu.pl

Abstract. Popularity and success of computational grids will depend,
among others, on the availability of application software. Maple2g is
a grid-oriented extension of Maple. One of its components allows the
access of grid services within Maple, while another one use of multiple
computational units. The latter component is discussed in this paper.
It is based on a master-slave paradigm, and it is implemented using
Globus Toolkit GT3, mpiJava and MPICH-G2. Preliminary experiments
are reported and discussed. These are proving that a reasonable time
reduction of computational-intensive applications written in Maple can
be obtained by using multiple kernels running on different grid sites.

1 Introduction

Computer algebra systems (CAS) can be successfully used in prototyping sequen-
tial algorithms for symbolical or numerical solution of mathematical problems as
well as efficiently utilized as production software in large domain of scientific and
engineering applications. It is especially in the latter context, when computation-
ally intensive problems arise. Obviously, such applications of CAS can become
less time consuming if an efficient method of utilizing multiple computational
units is available. This can be achieved in a number of ways: (a) parallelisation
provided “inside” of a CAS or (b) parallelization facilitated by the environment
in which multiple copies of the CAS are executing; furthermore, utilization of
multiple computational units can occur through (c) computations taking place
on a parallel computer, or (d) utilization of distributed resources (i.e. grid based
computing). Since coarse grain parallelism has been proved to be efficient in
an interpreted computation environment such as the CAS, in this paper we are
particularly interested in the case of running multiple copies of the CAS working
together within a grid. To be able to facilitate this model of parallelism, a CAS
interface to a message-passing library is needed and in our research we have
developed such an interface for Maple.

Maple is a popular mathematical software that provides an easy to use inter-
face to solve complicated problems and to visualize the results of computations.
Our main reason for choosing Maple is that, despite its robustness and user
friendliness, we were not able to locate efforts to link Maple with grids. Se-
cond, it is well known that Maple excels other CAS in solving selected classes of

problems like systems of nonlinear equations or inequalities [11]. Furthermore,
Maple has already a socket library for communicating over the Internet. Finally,
distributed versions of Maple have been recently reported in [6] and [9].

We intend to provide an environment where utilization of multiple computa-
tional units is possible within the Maple environment such that the programmer
does not have to leave the familiar CAS interface. While several parallel or dis-
tributed versions of Maple, mentioned in Section 2, were developed for clusters of
computers, our goal is to “port” Maple to the computational grid. Success of our
project will allow multiple grid users with Maple installed on their computers,
to pool their resources and form a distributed Maple environment.

We have therefore proceeded to develop Maple2g: the grid-wrapper for Maple.
It consists of two parts: one which is CAS-dependent and another, which is
grid-dependent. In this way, any change in the CAS or the grid needs to be
reflected only in one part of the proposed system. The CAS-dependent part is
relatively simple and can easily be ported to support another CAS or a legacy
code. Maple2g should therefore be portable to any new commercial version of
Maple, including the Socket package. The system only relies on basic interfaces to
the Maple kernel. More details about Maple2g architecture are given in Section 3.
We continue by describing, in Section 4, the proposed approach to distributed
computing. Finally, results of our experiments are presented in Section 5, while
conclusions and future improvements are enumerated in Section 6.

2 Parallel and distributed versions of Maple

With the increasing popularity of parallel and distributed computing, researchers
have been attempting at building support for parallel computing into Maple. We
are aware of the following attempts to supplement Maple with parallel and/or
distributed computation features.

[[Maple|| is a portable system for parallel symbolic computations built as an
interface between the parallel programming language Strand and Maple [10]. Su-
garbush combines the parallelism of C/Linda with Maple [2]. Maple was ported
also to the Intel Paragon architecture [1]. Five message passing primitive were
added to the kernel and used to implement a master-slave relationship amongst
the nodes. The manager could spawn several workers and asynchronously await
the results. Finally, FoxBox provides an MPI-compliant distribution mecha-
nism allowing parallel and distributed execution of FoxBox programs; it has
a client/server style interface to Maple [3].

All these attempts took place in the 1990th and are all but forgotten. In
recent years we observe a renewed interest parallel/distributed Maple.

Distributed Maple is a portable system for writing parallel programs in
Maple, which allows to create concurrent tasks and have them executed by
Maple kernels running on separate networked computers. A configurable pro-
gram written in Java starts and connects external computation kernels on va-
rious machines and schedules concurrent tasks for execution on them. A small
Maple package implements an interface to the scheduler and provides a high
level parallel programming model for Maple [9].

Parallel Virtual Maple (PVMaple) was developed to allow several indepen-
dent Maple kernels on various machines connected by a network to cooperate in
solving a problem. This is achieved by wrapping Maple into an external system
which takes care of the parallel execution of tasks: a special binary is responsible
for the message exchanges between Maple processes, coordinates the interaction
between Maple kernels via PVM daemons, and schedules tasks among nodes [6].
A Maple library implements a set of parallel programming commands in Maple
making the connections with the command messenger. The design principles are
very similar to those of the Distributed Maple.

The above mentioned parallel or distributed Maple projects make use of
message-passing for interprocessor communication and provide message-passing
interfaces to the user. Commands, like send and receive, are available so that
a user can write a parallel Maple program using the message-passing program-
ming model. These commands are implemented either in user written subrou-
tines callable by Maple or in script files written in Maple’s native programming
language. They utilize low level message-passing routines from the standard
MPI/PVM libraries, simple communication functions, or file synchronization
functions (in the case of a communication via a shared file system). Actually, ex-
isting parallel /distributed versions Maple can be regarded as a message-passing
extension of Maple. A recent more comprehensive description of the available
parallel and distributed versions of Maple can be found in [9].

None of the attempts at adding parallel/distributed features to Maple, that
we were able to located tried to introduce Maple to the grids. It is the latter idea
that became focus of our work. Our experiments with PVMaple showed suffi-
cient efficiency in solving large problems to follow this design paths in Maple2g
development. As will be seen below, the later has similar facilities with PVMaple.

3 Maple2g architecture

Rewriting a CAS kernel in order to supplement its functionality with grid ca-
pabilities can be a complicated and high-cost solution. Wrapping the existing
CAS kernel in an interface between the grid, the user and the CAS can be done
relatively easily as an added functionality to the CAS. In addition, it can also be
adapted on-the-fly when new versions of the CAS in question become available.
In this way Maple2g is a prototype grid-enabling wrapper for Maple.

Maple2g allows the connection between Maple and computational grids based
on the Globus Toolkit. The prototype consists of two parts. A CAS-dependent
part (m2g) is the Maple library of functions allowing the Maple user to interact
with the grid or cluster middleware. A grid-dependent part (MGProzy) is the
middleware, a package of Java classes, acting as interface between m2g and the
grid environment. The m2g functions are implemented in the Maple language,
and they call MGProxy which accesses the Java CoG API [5]. A preliminary
description of fundamental Maple2g concepts is present in [7].

Maple2g has three operating modes: user mode, for external grid-service ac-
cess, server mode, for exposing Maple facilities as grid services, and parallel mode
for parallel computations in Maple using the grid.

In the current version of Maple2g we have implemented a minimal set of
functions allowing the access to the grid services:

m2g_connect () : connection via Java COG to the grid;

m2g _getservice(c,l) : search for a service ¢ and retrieve its location [;
m2g_jobsubmit (¢,¢): job submission on the grid based of the command c;
m2g_results(t): retrieve the results of the submitted job labeled ¢.

More details about the implementation of the grid services access procedures
from Maple illustrated by several examples can be found in [8]. Let us now
proceed to present some details of utilizing Maple2g in parallel on the grid.

4 Coupling Maple kernels over grid - Maple2g approach

The computational power of a CAS can be augmented by using several other
CAS kernels (the same or different CASs) when the problem to be solved can
be split between these kernels or a distributed-memory parallel method is used
in order to solve it. The usage of a standard message-passing interface for inter-
kernel communication allows the portability of the parallel version of a CAS in
particular an easy deployment on clusters and grids (Figure 1).

The two extreme approaches to design the interaction with the message-
passing interface are minimal, respectively full, access to the functions of the
message-passing interface. In the first case the set of functions is restricted to
those allowing to send commands and receive results from the remote kernels.
In the second case it is possible to enhance the CAS with parallel or distributed
computing facilities, allowing the access of the CAS to other parallel codes than
the ones written in the CAS language (the message-passing interface can be used
as interpreter between parallel codes written in different languages). The first
approach has been followed in our Maple2g prototype.

Parallel codes using MPI as the message-passing interface can be easily por-
ted to grid environments due to the existence of the MPICH-G2 version which
runs on top of the Globus Toolkit. On other hand, the latest Globus Toolkit GT3
is built in Java, and the Java clients are easier to write. This being the case, we
selected mpiJava as the message-passing interface between Maple kernels.

In Maple2g a small number of commands have been implemented and made
available to the user, for sending commands to other Maple kernels and for
receiving their results (Table 1).

CAS1
User Master interface

—— 11K

Grid/cluster/parallel middleware

1
Grid/cluster/parallel <L 1r JL 9P

. Slave interface Slave interface
environment
CAS2 CAS 3

Fig. 1. Coupling CAS kernels over the grid using a master-slave approach

Table 1. Maple2g functions/constants for remote process launch/communications

Function/const. Description

m2g_maple(p) Starts p processes MGProxy in parallel modes

m2g_send(d, t,c) Send at the destination d a message labeled ¢ containing the command
¢; d, t are numbers, ¢, a string; when d is "all”, c is send to all kernels

m2g recv(s,t) Receive from the source s a message containing the results from the
a previous command labeled ¢; when s is ’all’, a list is returned with
the results from all kernels which have executed the command ¢

m2g_rank MGProxy rank in the MPI World, can be used in a command

m2g_size Number of MGProxy processes, can be used in a command

with(m2g)

- m2g maple(n)

e prunjava n MGProxy

o
MPICH-G2

Globus Toolki

Fig. 2. From a m2g command to a grid request

~— ‘mpirun -np n MGProxy

globusrun -w -f MGProxy.rsl

Maple2g facilities are similar to those introduced in the PVMaple [6]. The
user’s Maple interface is seen as the master process, while the other Maple kernels
are working in a slave mode. Command sending is possible not only from the
user’s Maple interface, but also from one kernel to another (i.e. a user command
can contain inside a send/receive command between slaves).

Figure 2 shows how the m2g_maple command is translated in a grid request.

MGProxy is activated from user’s Maple interface with several other MG-
Proxy copies by m2g_maple command. The copy with the rank 0 enters in user
mode and normally runs in the user environment, while the others enter in server
mode. Communication between different MGProxy copies is done via mpiJava.

5 Test results

We have tested the feasibility of Maple2g approach to development of distributed
Maple applications on a small grid based on 6 Linux computers from two loca-
tions: 4 PCs located in Timisoara, Romania; each with a 1.5 GHz P4 processor
and 256 Mb of memory, connected via a Myrinet switch at full 2Gb/s and 2 com-
puters located at the RISC Institute in Linz®; one with a P4 processor running
at 2.4 GHz and 512 Mb, and a portable PC with a 1.2 GHz PIII processor and
512 Mb, connected through a standard (relatively slow) Internet connection.
Note that the one of the possible goals of using the Maple kernels on the grid
is to reduce the computation time (it is not to obtain an optimal runtime, like

® In the frame of the IeAT project supported by Austrian Ministries BMBWK project
no. GZ 45.527/1-VI/B/7a/02, BMWA project GZ no. 98.244/1-1/18/02

>with(m2g) ; m2g_MGProxy_start();
[m2g_connect ,m2g_getservice,m2g_jobstop,m2g_jobsubmit,m2g_maple,m2g_rank,
m2g_recv,m2g_resu1ts,m2g_send,m2g_size,m2g_MGProxy_end,m2g_MGProxy_start]
Grid connection established
>p:=4: a:=1: b:=2000: m2g_maple(n);
Connect kernel 1: successful
Connect kernel 2: successful
Connect kernel 3: successful
Connect kernel 4: successful
>m2g_send ("all",1,cat("s:=NULL:a:=",a,":b:=",b,": for i from a+m2g_rank",
" to b by m2g_size do if isprime(i*2°i-1) then s:=s,i fi od: s;"):
>m2g_recv("all",1);
[[81,249],[2,6,30,362,462,822],[3,75,115,123,751],[384,512]]
>m2g_MGProxy_end () ;
Grid connection closed

Fig. 3. Maple2g code and its results searching all the Woodall primes in [a, b]

on a cluster or a parallel computer. When a grid user executes a parallel Maple
program, other computers typically become available as “slaves”. Taking into
account the possible relative slowness of the Internet (and unpredictable con-
nection latency), it would be costly to pass data frequently among the computa-
tional nodes. This being the case, the best possible efficiency for embarrassingly
parallel problems; for example, when each slave node receives a work package,
performs the required computation, and sends the results back to the master.
In what follows we present two examples of such computations, which therefore
can be treated as the “best case” scenarios.

There are several codes available on Internet to solve in parallel open pro-
blems like finding prime numbers of specific form [4]. For example, currently
the Woodall numbers, the primes of the form 2! — 1, are searched in the inter-
val [10°,10%]. Figure 3 presents the Maple2g code and its results searching the
Woodall primes in a given interval [a, b] using p = 4 Maple computational units.

A second example involves graphical representation of results of a computa-
tion. Given a polynomial equation, we count the number of Newton iterations
necessary to achieve a solution with a predescribed precision and starting from a
specific value on the complex plane. If we compute these numbers for the points
of a rectangular grid in a complex plane, and then we interpret them as colors,
we may obtain a picture similar to that from Figure 4. The same figure displays
the Maple2g code in the case of using 4 kernels; vertical slices of the grid are
equally distributed among these kernels.

We have run our experiments on two basic combinations of available compu-
ters. First, using 4 machines clustered in Timisoara and, second, using 2 machines
in Timigoara and 2 in Linz. We have experimented with a number of possible
approaches to the solution of the two problems, where both problems come in two
different sizes representing a “small” and a “large” problem. Table 2 summarizes
the results and the notations used there refers to the following case studies:

Sequential: the Woodall prime list and the plot were constructed without any
splitting technique and the results come form one of the PC’s in Timigoara.

>with(m2g) : m2g_MGProxy_start(); no_procs:=4; ;
>m2g_maple(no_procs): d:="all"; Y - g
>m2g_send(d,1,"f:=x->x"T+x"6+5*x"5+3*x"4+87*x"3 -NQHL
+231#x°2+83%x+195: ") ; a
>m2g_send(d, 2, "newton:=proc(x,y) local z,dif,m; %_¥
dif:=1; z:=evalf (x+y*I);
for m to 30 while abs(dif)>0.1*10"(-8) do
dif:=f(z)/D(f) (z); z:=z-dif od; m end:");
>m2g_send(d,3,"plot3d(0,-5+10*m2g_rank/m2g_size. .
-5+10* (m2g_rank+1) /m2g_size, -5..5, grid=[160/m2g_size,160],
style=patchnogrid,orientation=[90,0],color=‘newton‘);"):
>plots[display3d] (m2g_recv(d,3)); m2g_MGProxy_end();

Fig. 4. Maple2g code and the graphical result in measuring the levels of Newton ite-
rations to solve in the complex plane a polynomial equation of degree seven

Ideal: the maximum possible reduction of the time using p processors;
Cycle: the Woodall prime list or the plot were constructed in a sequential man-
ner, but in a cycle with p steps. The time per step is variable. We registered
the maximum of the time value of each step (on a cluster’s PC).
MPI-cluster: The codes from the Figs. 3 and 4 are used on p processors of the
cluster; here mpiJava is installed over MPICH version; Globus is not used.
G2-cluster: Same codes were used on p processors of the cluster in Timigoara,
here mpiJava is installed over MPICH-G2 using Globus Toolkit 3.0.
G2-net: Same codes were used on p different processors running the mpiJava
based on MPICH-G2: in the case of p = 2, one PC in Timigoara and the
faster machine in Linz are used; in the case of p = 4, two PC’s in Timisoara
and two computers in Linz are used. The parallel efficiency is computed.
Overall, it can be said that a reasonable parallel efficiency for the larger problem
has been achieved: for the Woodall primes: 73% for 2 processors and 44% for 4
processors; for Newton iteration visualization: 75% for 2 processors and 40% for 4
processors. As expected, efficiency is improving as the problem size is increasing.
At the same time the results are somewhat disturbing when one considers
the current state of grid computing. On the local cluster, the results based on

Table 2. Time results

Problem Woodall primes Newton iterations
p Implementation [a,b]=[1,2000] [a,b]=[1,4000] grid=160 x 160 grid=300 x 300
1 Sequential 236 s 3190 s 208 s 1804 s
2 Ideal 118 s 1595 s 104 s 902 s
Cycle 122 s 1643 s 105 s 911 s
MPI-cluster 135 s 1725 s 123 s 1020 s
G2-cluster 153 s 1846 s 138 s 1071 s
G2-net 185 s 2197 s 160 s 1199 s
4 Tdeal 59 s 797 s 52 s 451 s
Cycle 65 s 885 s 55 s 473 s
MPI-cluster 79 s 1027 s 73 s 654 s
G2-cluster 107 s 1263 s 94 s 784 s

G2-net 160 s 1831 s 138 s 1129 s

mpiJava and MPICH are substantially better than these obtained when the
mpiJava and MPICH-G2 are used. This indicates a considerable inefficiency
in the MPICH-G2 package. Furthermore, our results indicate that currently,
realistic application of grids over the Internet makes sense only for very large
and easy to parallelize problems (like seti@home). For instance, when machines
residing at two sites were connected then the efficiency dropped by about 18%.
Obviously, in this case this is not the problem with the grid tools, but with
the Internet itself. However, since the grid is hailed as the future computational
infrastructure, and since our two problems represented the best case scenario,
it should be clear to everyone that, unfortunately, we are far away from the
ultimate goal of the grid paradigm.

6 Conclusions and future developments

At this stage, the proposed extension of Maple exists as a demonstrator system.
Maple2g preserves the regular Maple instruction set and only add several new
instructions. Further work is necessary to make it a more comprehensive package
and to compare it with similar tools build for clusters. In this paper we have
shown that utilizing Maple2g allows developing grid-based parallel applications.
Our initial test have also indicated satisfactory efficiency of Maple2g, especially
when native MPI tools are used (instead of their Globus based conuterparts). In
the near future we plan intensive tests on grids on a large domain of problems to
help guide further development of the system. Among others, the master-slave
relationship between nodes will be extended to allow slaves to become masters
themselves and thus facilitate the development of hierarchical grid applications.

References

1. Bernardin, L.: Maple on a massively parallel, distributed memory machine. In
Procs. 2nd Int. Symp. on Parallel Symbolic Computation,Hawaii (1997), 217-222.

2. Char B. W.: Progress report on a system for general-purpose parallel symbolic
algebraic computation. In ISSAC ’90, ACM Press, New York (1990).

3. Diaz A., Kartofen E.: FoxBox: a system for manipulating symbolic objects in black
box representation. In ISSAC 98, ACM Press, New York (1998).

4. Internet-based Distributed Computing Projects, www.aspenleaf.com/distributed/.

5. Java CoG Kit, http://www-unix.globus.org/cog/java/.

6. Petcu D.: PVMaple — a distributed approach to cooperative work of Maple pro-
cesses. In LNCS 1908, eds. J.Dongarra et al., Springer (2000), 216-224

7. Petcu D., Dubu D., Paprzycki M.: Towards a grid-aware computer algebra system,
In LNCS 3036, eds. M.Bubak, J.Dongarra, Springer (2004), 490-494.

8. Petcu D., Dubu D., Paprzycki, M.: Extending Maple to the grid: design and im-
plementation. Procs. ISPDC’2004, Cork, July 5-7, 2004, IEEE series, in print.

9. Schreiner W.,Mittermaier C.,Bosa K.: Distributed Maple—parallel computer alge-
bra in networked environments.J.Symb.Comp.35(3),Academic Pr.(2003),305-347.

10. Siegl K.: Parallelizing algorithms for symbolic computation using |[Maple|. In
Procs. 4th ACM SIGPLAN Symp. ACM Press, San Diego (1993), 179-186.

11. Wester M.: A critique of the mathematical abilities of CA systems. In CASs - A
Practical Guide, ed. M.Wester, J.Wiley (1999), math.unm.edu/ wester/cas_review

