Parallel Application of Levenshtein Distance todbsish Similarity Between Strings
Pawet Kobzdéj Dariusz Waligéra Kinga Wielebiisk&, Marcin Paprzyckf"

®Department of Mathematics and Computer Science, Adam Mickiewicz University, ul.
Umultowska, 61-614 Poznari, Poland, {d115627, d115713, d118985} @atos.wmid.amu.edu.pl
PComputer Science Department, Oklahoma Sate Uniwersity, Tulsa, OK 74106, USA,
mar cin@cs.okstate.edu

Abstract

This paper presents results of parallelizing aorétlgm to calculate the modified Levenshtein
measure (edit distance) as a method of establigimdarity between two character strings.
The proposed approach was implemented using thechtimunication library. Results illus-

trating efficiency of parallelization are presensedi discussed.

1. Introduction

Determining the similarity of strings has many aggions that include spell-checking [1],
examining correctness of pronunciation and aftsitbetween dialects [2], analyzing the DNA
structure [3] or Web mining [4], to mention jusfeav. There exist many methods that allow
establishing presence of a string inside of anaitrarg e.g. Knuth-Morris-Pratt [5] or Boyer-
Moore algorithms [6]. However, what is often neededot establishing a fact that one string
is a substring of another, but rather a measusinufarity between them. A standard example
of such a situation is the case of plagiarism dietecwhere the plagiarized text is likely to
have some words changed, some deleted, some exchat In such a case algorithms like
Rabin-Karp [7] will not produce needed results. rEfigre, a different approach is required
and some form of approximate string matching hdset@applied. It is worth mentioning that
there exist three related problems: (a) string matcwith “don’t care” symbols, (b) string
matching withk mismatches and (c) string matching witldifferences. The first involves a
meta-character matching “anything,” the secondvadlmatches where up kocharacters are
different, the third requires that the pattern ia®dit distance from the text less then or equal
tok[8, 9, 10].

In our work we have decided, however, to experimetit the general problem of establish-
ing a “similarity” between two strings (finding thia certain areas they closely resemble each
other). For this purpose we have selected a madifevenshtein measure, which allows to
assess similarity between strings by considering imany changes must be introduced to one
string in order to transform it into another. Mgreecisely, we have used tledit distance
which is an extension of the original string simtlameasure proposed by Levenshtein [11].
He considered three basic text editing operatiomsertion of a letter, deletion of a letter and
change of a letter. Edit distance as described in [12], adds one nedit operation to the
above mentioned sdransposition of two adjacent |etters. Therefore, if we assume thaand
w are words of the lengthandj respectively andV is a substring of word that ends at posi-
tion j, andw; — is the letter at positign then the edit distance betwesandw is described by
the formula:

“Corresponding author. Work at Adam Mickiewicz Unisiey was sponsored by a scholarship from the Ful-
bright Commission. Computer time grant from the mzSupercomputing and Networking Center is kindly
acknowledged.



ed(s*, w*h) = fed(é, w) (NO CHANGE) ifS+1= Wisa
1+min{ed(s™, w?), (TRANSPOSITION)
ed(s*t, w), (INSERTION)
< eds, Wy (DELETION) if S= W1 andsi = w,
1+min{ed(s, w), (CHANGE)
ed(s*, w), (INSERTION)
keol(g, why (DELETION) otherwise

where: _
ed(s” W) =j, for Osj<length(w),
ed(s,w?) =i, for Oxi< length(s),
ed(s*w) = ed(s,w™) = max{ength(w), length(s)).

To explain how the edit distance is calculatedifetonsider an example:

s: abcdef length§) = 6

w: acb lengthiv) = 3
kI
c| B B ] N ]|B
6|6| 6| 6| 6/ 6 -1
0| 1| 2| 3| 4 5/ 6/ 0
a 61| 0| 1| 2| 3 4 5 1
ac 16| 2| 1| 1| 1] 2| 3 4 2
acb | g | 3| 2| 1| 1| 2| 3 4 3
10 1 2 3 4 5 6

Table 1. Edit distances between various substofgso strings.

Let us now look into calculations performed foeavfselected cells in Table 1:

part ofw | part ofs |cell | Calculations operation condition

‘a ‘a (2,1 |0=0 no change H§+1= W1

‘ac’ ‘a (2,1) |1 +min(1,2,0)=1 deletion otherwise

‘ac’ ‘ab’ (2,2) |1+min(0,1,1) =1 change otherwise

‘ach’ ‘abc’ (3,3) |1 +min(0,1,1) =1 transposition, SE wj:1 ands. 1= w,

Naturally, if the value oéd(s, w) is small then the two strings are similar. We sag that
stringsabc andacb are similar (edit distance 1), while stringlscdef andacb are not (edit
distance 4).

Obviously, when strings to be compared are large th large amount of work is required
(somewhat similarly to that required for the brédece string comparison algorithms [13]).
More precisely, when strings of lendin(s) andlen(w) are considered, the total amount of
work required to calculate their edit distanceqsa to 4ten(s)*len(w). This being the case,
one of the possible solutions is to apply parait@hputers to reduce time of computations.
Observe, however, that the process of establishifigpmplete” edit distance between two



strings may not be exactly what is required. Oftem are interested in findingthere two
strings are somewhat similar to each other (e.ghéncase of plagiarism detection). In this
case, we would like to be able to establish a ctitia of similarity measures that describe the
“localizable” similarity between two strings (sels@Figure 1). This is the research problem
pursued here. We assume that for two strimgsds, wherelen(s) >> len(w), we have to es-
tablish a semi-continuous localized measure of thienilarity. We will therefore utilize the
modified Levenshtein measure (edit distance) lgaalid report a collection of such measures
to characterize the similarity between two stringshe next section we discuss our approach
used to parallelize computation of edit distanneSéction 3 we present and analyze results of
our experiments on a 12 processor SGI Power Clygl@omputer and on a homogeneous
cluster consisting of 23 PC’s and on heterogeneluster consisting of 28 PC'’s.

2. Parallelization of computation of string similarity

For parallelization of the local-global edit distanrcomputation we have selected the master-
slave approach. As specified above, we assume ti@ethe length ofv is substantially
smaller than that of. The master process(or) reads the two texts/strgngndw) edit dis-
tance between which is to be computed. Next, itiseéhe shorter text to all slave proc-
ess(es/ors) (there must be at least one slavegwauece the master does not perform actual
computations). Finally, the longer texis divided by the master into parts of size:

len(w) + overlap

and successively sent to the slave processesvélap is usually about 30% den(w), see
below). This approach allows us to employ a sinigten of dynamic load balancing, which is
important particularly in the case when computatiteike place in a heterogeneous environ-
ment. Having received text and “its” initial part ofs, each slave process computes the edit
distance and sends the result to the master pfockdsa return it receives the next partsab
examine and continues to do so until all the remgirfiragments have been checked. This
process can be summarized in the following pseudig-:c

for each slave i
nmast er - send an appropriate part of string s to slave i

sl ave - receive part of (s) and process it
whil e not end_of (s)
sl ave j - send an outcone of processing the part of (s) to naster
nmast er - receive an outcone from sl ave j
nast er -~ send a part of string s to slave j
sl ave j - receive part of (s) and process it

We have considered master process performing safoelations, but we came to the con-
clusion that it may aggravate potential load balapproblems as slave processes could have
been forced to wait for the master to finish itskvio be able to service their requests.

Let us now return to the description of the problmare trying to address in this paper.
We are not interested in calculating a completesmeabetween two strings (characterized by
a single number, which due to the fact that the simgs considerably differ in length, would
have to be large and would completely obscure thelasity characteristics of the two
strings). Rather, we are interested in being ableepresent similarity of two strings (to find
out where, in the longer string, there exist pamsilar to the shorter string). This being the
case, beside stringsandw, we have to consider also the size of thierlap as well as the
length of a step.

The size of theverlap determines the size of the examined fragmerst Bbr example, an
overlap of 0.3 means that the length of a givegrrants ofs under consideration will be:
lengthfv)*1.3. Observe that too small an overlap and tlhosshort fragments afmay lead to
a situation in which the sought “similar” part ®tvill not fit into a single fragment and will



not be successfully located. Conversely, too bigwarlap causes the differences between the
edit distances for individua fragments becoming negligible (just large numbseg, below —
Figure 1 and discussion following it) thus hindgrthe interpretation of results.

The second parameter is the length of a step.térménes the distance between the begin-
nings of each pair of fragments. The smaller tlep,sthe greater the accuracy of the results,
but also the longer the calculation time. For ins& dividing the length of the step by two,
we achieve twice as many fragments to compare.ifial tests suggest that reasonable re-
sults are achieved for a step between 10% to 30%n(f). Let us illustrate the above consid-
erations by an example of partitioningsof

s: | am just reading the best publication on conmgastrings.
w: publish

partitioning ofs:

| am just reading the best publication on conmggstrings.

| am just reading the best publication on conmggstrings.

| am just reading the best publication on conmggstrings.

| am justreadingthe best publication on comparing strings.
and so on...

In this example we used an overlap in the sizenof ¢haracters (~ 30% of) and the step
equal to three. Let us also consider a practicaimgte of execution of our algorithm. Figure 1
depicts the result obtained for textd@i(s) = 2556 anden(w) = 397 characters.

350

w
o
o

Odlegto $¢ edycyjna

a1
o

0 rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr T T T T T T T T T T T T T T T T T T T T TTTT
qf], "bb Q)Q f],b‘ éb \')/ (,Jb
NN R DV QP
© Q 3 o) v Q
o) ™ Q> % A ™ 9
NN SN NN A

© o o D A O O > @
S F LS
AR IR )
N I AP O

Figure 1. Graphical representation of string sintya

From Figure 1, it can be concluded that the fragroéa between 648th to 1044th character
of sis very similar tow. It might seem strange that the smallest ediadis# is 37. This fol-
lows from the assumed overlap as well as from thallsdifferences between those texts. On
the other hand, the biggest edit distance is n@te8fl this is explained by the fact that there
are always some common words or at least parteesh tor groups of letters that appear in
both texts. It follows from our tests that takigotrandom texts of the lengththe average
value of edit distance would be approximately 8G% o



In general, from the point of view of implementaticalculating edit distance for two given
textsw ands consists in filling in an array of the size: lem@*length(w). Examining the
formula ofed (Section 1) we can see that each element depenfiginothers. As we are ex-
clusively interested in the extreme bottom rightnes value in the array, i.e. in our case the
distance between the substringsoénd the stringv, and not the intermediate values, only
three rows of the array have to be allocated aed ggclically. This leads to a considerable
reduction in the amount of memory needed for theutations.

As it should be obvious by now, the result of otogram is an array containing data which
reflects the edit distances between the shortémtend the fragments of the longer texBy
choosing the smallest value (shortest distancegntbe determined whether and, if so where,
sis most similar tav (the two texts are most similar).

Time of Calculations
3500000000 ]
3000000000 5000 500 H
\ —B—50000 i 5000
2500000000 A—50000i 500 H
[%2]
g 2000000000 -
Q
[
é 1500000000
=
1000000000 -
500000000
) o~
0 [
2 3 4 5 6 7 8 9 10 11 12
processors

Figure 2. Performance on the SGI Power Challeng@paitation time

Speedup

—&— 5000 i 500
| | —=— 50000 i 5000
8 - —>—50000 i 500

/)'/'

6 7
processors

Figure 3. Performance on the SGI Power Challenugedup



3. Experimental data

The first series of experiments was performed d2 grocessor SGI Power Challenge XL.
It is a 10 years old, shared memory machine, watkli9z MIPS R8000 processors and 1GB
of RAM. Code was implemented in C and the SGI C miten was used with -64 -mips4 -
r8000 -O3 options. Parallelization was achievedugh the MPI communication library and
SGI’s native MPI was used. We have run three sefiexperiments for strings of length 5000
and 500, 50000 and 5000 and 50000 and 500. Iné&-@uve present computation time for all
three cases for 1-11 slave processors, while iaréi§ we present obtained speedup.

The second series of experiments was performed duster of 23 1.5 GHz Pentium 4
based PCs, with 256 Mbytes of memory each. Computere connected via a Catalyst 6500
switch (100mbit/s, full duplex). Figures 4 and ®g®#nt the execution time and speedup ob-
tained on that machine.

Time of calculation
800000000

—— 50000, 5000
—4&— 5000, 500
—6—50000, 500

700000000

600000000

=~
//

500000000

400000000

300000000 -

microseconds

200000000 -

100000000

FaY

04

processors

Figure 4. Performance on the homogeneous clusierpatation time

Speedup

—o— 50000 and 5000

21 A 1)
—B—5000 and 500
" —A— 50000 and 500

—linear

11

2 4 6 8 10 12 14 16 18 20 22
processors

Figure 5. Performance on the homogeneous clugteedsip

The final series of experiments was performed twetarogeneous cluster of 18 computers
with P4 1.5 GHz processor and 256 Mb of RAM anccathputers with P4 1.8 GHz proces-
sor and 512 Mb of RAM. These computers were cardeihrough a pair of switches similar
to that used to set-up the heterogeneous clusteernents were performed with the largest



test case (5000/50000) only. Figures 6 and 7 ptékerexecution time and speedup obtained
on that machine.

Time of calculation

800

700 A

600 -
4 500
j
= o0\
3 400
8
o a
2 300

200 A

100 ——¢ —o . S

0 T T T T T T T T T T T T T T T T T
2 3 45 6 7 8 9 101112 14 16 18 20 22 24 26 28
number of computers

Figure 6. Performance on the heterogeneous clusterputation time

Speedup
11 A )
9 .
7 .
5 .
3 —o— experimental
—=linear
1 <' T T T T T T T T T T T T T T T T T
2 3 4 5 6 7 8 9 1011 12 14 16 18 20 22 24 26 28
number of computers

Figure 7. Performance on the heterogeneous clisgteedup

In all of our tests we obtained a reasonable spee8or small number of processors it is
almost linear. The best results were obtained erhttmogeneous cluster. It is worth mention-
ing, that these results were obtained late at ragh&in empty machine that was set-up for the
purpose of our experiments. The results collectethe SGI Power Challenge have been col-
lected on a relatively full machine. This may expltne relatively unimpressive speedup ob-
tained for the larger number of processors. The sitllation where the results are not particu-
larly impressive is the case of the heterogenetusier. Here we had to deal with two levels
of heterogeneity; first, two different types of BG@nd, second, with a double switch providing
the infrastructure for the cluster. Clearly, theulés are acceptable for up to 12 computers. As
the number of machines increases, we can seehthapeedup stops increasing. This effect
will require further studies. Furthermore, to impeathe performance we need to consider a
more refined approach to load balancing.



6. Concluding remarks

In this paper we have discussed how parallel coenputan be utilized to establish similari-
ties between two strings. The proposed approachbassed on local utilization of modified
Levenshtein measure and obtaining a semi-continpmigre of the relationship between two
strings. We have implemented the proposed algordghthexperimented with it on three dif-
ferent parallel computers. In all cases we havainbtl a reasonable efficiency.

In the near future we plan to pursue a number dftathal questions. First, for the shared
memory computer we plan to experiment with an Opriddsed implementation. Second, we
need to refine the load balancing strategy to im@ithe performance of the algorithm on het-
erogeneous clusters. Third, we plan to study iaibite effects of the size of the overlap and
the step in the case of large texts. Finally, wiktwi to apply computation of edit distance to
finding themes in baroque fugues.

Bibliography

[1] M. Wypych (2002) Stochastic Spelling Correction of Texts in Polish, Institute of
Linguistics, Adam Mickiewicz University, Pozfha Poland; "Speech and Language
Technology. Volume 6", Pozha

[2] J. Nerbonne, W. J. Heeringa, P. Kleiweg (1988ix Distance and Dialect Proximity, in:
D. Sankoff and J. Kruskal (edsJ}jme Warps, Sring Edits and Macromolecules: The
Theory and Practice of Sequency Comparison, CSLI, Standford, pp. v-xv.

[3] http://lwwwz2.toki.or.id/book/AlgDesignManual/BAOBOOKS5/NODE204.HTM

[4] A. ScherbinaApplication of Levenstein Metric to Web Usage Mining, Institute for System
Programming, Russian Academy of Science, Procesdafgthe ¥ BIS Conference,
Poznan University of Economics Press, to appear

[5] D. E. Knuth, J. H. Morris Jr., V. R. Pratt (I9#Fast pattern matching in strings, SIAM J.
Comput., 6(1), 323-350

[6] R. S. Boyer, J. S. Moore (1977) A fast striegushing algorithm, CACM, 20, 762-772

[7] R. M. Karp, M. O. Rabin (1987fficient randomized pattern-matching algorithms, IBM
J. Res. Dev., 31(2), 249-260

[8] A. H. Wright, Approiximate String Matching using Within-Word Parallelism, Computer
Science University of Montana

[9] http://www.cs.mu.oz.au/~mijl/thesis/nodel7.html

[10] http://www?2.toki.or.id/book/AlgDesignManual/BOK/BOOK2/NODE46.HTM

[11] V. I. Levenshtein (1966Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics, Doklady 10(8), 707-710

[12] J. Daciuk (1998)ncremental Construction of Finite-State Automata and Transducers,
and their Use in Natural Language Processing, Ph.D. Thesis, Technical University of
Gdansk, Poland.

[13] T. H. Cormen, C. E. Leiserson, R. L. RivestSiein (2001)ntroduction to Algorithms,

(second edition) MIT Press, Cambridge, MA



