COMPARISON OF PERFORMANCE OF WARD SYSTEMS'
NEURAL NETWORKS APPLIED TO A MULTIFONT

RECOGNITION PROBLEM

STUDENT PAPER

Rick Niess, Lenny Scardino, William Douglas, Marcin Paprzycki
Department of Computer Science and Statistics
University of Southern Mississippi
Hattiesburg, MS 39406-5106
Rick.Niess@usm.edu

ABSTRACT

Results of performance comparison of the three Ward Systems proprietary
neural network architectures and a simple, three-layer, backpropagation neural
network applied to a simplified pattern recognition problem are presented and
discussed. The varying parameters are the size of the input data and the number
of nodes in the hidden layer slabs.

INTRODUCTION

In spite of their relative youth (relative to other areas of computer science), neural
networks (NNs) are quickly becoming popular tools for solving problems not easily
solved in an algorithmic manner (see Rumelhardt et. al. 1989, Looney 1997 and the
references collected there). NNs themselves are based on the biological network structure
found in the human brains. The human brain contains billions of neurons, each
interconnected with those around it in many different ways. It is this massively parallel
arrangement which allows us to recognize and reason. However, current NNs are
considerably less complex than this. Most of them only utilize a few thousand neurons
or less. However they turn out to be very useful as decision making tools when dealing
with problems in which the input data has some known or unknown correlation to the
desired output.

In this paper, we focus on only one application: a simplified version of the multifont
recognition problem. In particular, we will consider the character recognition of the
twenty-size uppercase letters of the Latin alphabet represented in a number of unique
fonts (see DATA GENERATION below). In the experimental setup it is assumed that one
letter is to be recognized at a time and that each image presented does indeed represent
a letter. The aim of or work is to report on an attempt to compare the performance

240

CCSC: South Central Conference

characteristics of the three Ward Systems’ NN architectures available in the NeuroShell
2.0 package (Ward 1998) when applied to a pattern recognition model-problem. This
software has been used in earlier work (Bowers and Paprzycki 1999, Bowers et. al,,
1999a, Bowers et. al. 1999b, Bowers et. al. 1999c, Paprzycki et. al. 1999). Results
reported there were obtained for a relatively small input data set (limited primarily by the
available computing power).

The remaining part of this paper is organized as follows. In the next section we
briefly introduce the three Ward NN architectures used in our experiments, (details for
all architectures should be found in the literature cited). Since the basic three-layer
backpropagation NN is a very well known architecture, we leave out its description. We
follow with a description of how the data was generated. Finally, we describe the
experiments performed and discuss their results.

Hidden
slab
1

Input Chutput

Hidden

alah
2

Figure : A simple WNN
WARD SYSTEMS NEURAL NETWORK ARCHITECTURES

As a part of the NeuroShell package Ward Systems included three proprietary NN
architectures named Ward Networks (WNNs). While they use the general
backpropagation-type learning algorithm, their uniqueness is in the fact that they contain
multiple parallel groups (slabs) of neurons in the hidden layer, each of which uses a
different activation function. The idea behind this approach is that each separate slab (due
to the different activation function) will “detect” different characteristics of the input data.
These different “views” on the input are then combined in the output layer thus improving
the overall pattern recognition capabilities of the network. There are three variants of this
architecture available in the NeuroShell package. All three are three-layer architectures
(input, output, and one hidden layer) but with differing numbers of parallel slabs in the

241

JCSC 135, 3 (March 2000)

hidden layer and with different arrangements of connections. For lack of proper names,
we refer to them hereafter as simple, moderate, and advanced corresponding to their
placing (left, middle, and right respectively) in the NeuroShell network selection window.
For all architectures, we used (20*20 = 400) input nodes (each node corresponding to one
element of the input vector, see next section) with the default /inear [-1,1] activation
function and 26 output nodes (corresponding to the 26 letters of the alphabet) with the
default /logistic activation function.

The simple architecture (see Figure 1) uses two parallel slabs in the hidden layer.

Input

CCSC: South Central Conference

Hiddena
Slab

Figure : A moderate WNN

Inpnat

I

Hidden
Slab
2

PR,

Hidden \
pi Slab p| Output
&
| b
x‘*«.
‘x\\
\ Hidden
Glab
3
Hidden
lab
” | \
(Jump Connection)
Chatput

\

Figure @ An advanced WNN

243

JCSC 15, 3 (March 2000)

Both receive input directly from the input layer and connect directly to the output layer.
One hidden slab uses a Gaussian activation function and the other Gaussian complement
function.

The moderate architecture (see Figure 2) uses three parallel slabs in the hidden layer
that receive input from the input layer and connect to the output layer. Two of the slabs
use Gaussian and Gaussian compliment as in the simple architecture, while a third slab
uses a tanh activation function.

The advanced architecture (see Figure 3) uses only two parallel slabs that each receive
input from the input layer and each connect to the output layer. As with the simple
architecture, Gaussian and Gaussian compliment activation functions are used in these
slabs. However, there is also a “jump connection” directly from the input slab to the
output slab.

DATA GENERATION

As noted in the recent paper (Paprzycki et. al. 1999) we developed a digitizer based
on FreeType 1.2, a TrueType font rendering library (FreeType 1999), to create our data.
Using this digitizer, letters were centered in a 20x20 “bit-map” allowing a one-pixel
border around the map (so the effective letter image was at most 18x18). We began with
a very large number of fonts (initially 2450). We manually compared these fonts to
remove identical and similar fonts that exist under different names. Only the basic forms
were allowed (no italic or script fonts have been used). After a third screening, we ended
up with 710 unique fonts for use in this experiment. We then processed the fonts with our
digitizer to obtain data in the format required by the NeuroShell environment (each letter
represented as a sequence of 400 digits 0 and 1, followed by a 26 digit vector
representing the true output). The resulting data was divided into 6 groups of fonts
numbering 100, 200, ..., and 600 which were used as training sets. The remaining 110
fonts were used as a testing set (this set was not shown to the network during training).
We divided the data into groups alphabetically (based on the font filenames). Since there
is no relationship between the name of the font and its shape, this approach did not have
any effect on the results.

EXPERIMENTAL RESULTS
Performance Comparison of Three WNN Architectures

We experimented with all three forms of Ward Nets available in the NeuroSheli
environment (see above). In each case the control variables were the amount of input data
(100, 200, ..., 600 fonts) and the total number of nodes in the hidden layer. According to
the NeuroShell documentation, the total number of neurons in all slabs in the hidden layer
combined should correspond to the number of neurons in a single hidden layer in the
simple backpropagation architecture. This value is calculated according to the formula “#
of neurons in the hidden layer = 1/2 (Inputs + Outputs) + square root of the number of
patterns in the Training [set]” (NeuroShell online documentation). Thus we have divided

244

CCSC: South Central Conference

the total number of neurons corresponding to 100, 200, 300 and 400 neurons in the single
hidden layer evenly between the slabs. This resulted in using 50, 100, 150, and 200 nodes
per slab in the simple and advanced WNNs and 34, 68, 102, and 136 nodes per slab in the
hidden layer for the moderate WNN. In addition, for comparison we also used the
NeuroShell-recommended default values for the number of neurons in the hidden layer
as calculated using the above formula (see the Tables). We used the default values for all
the remaining pafameters (learning rate, stopping criteria, etc). Tables 1 through 6
summarize the results for the simple (Tables 1 and 2), moderate (Tables 3 and 4), and
advanced (Tables 5 and 6) WNN architectures. In each pair of tables we report the percent
of correct answers obtained first, when the training data was shown to the trained network
and, second, when the test set was shown to it.

Table 1: Correct answers; simple WNN; training set recognition in %.

Fonts 50 100 150 200 default 100
nodes/ nodes/ nodes/ nodes/ nodes/
slab slab slab slab slab
1.69 5.69 5.88 7.65 4.88 (130 200
nodes)
1.88 2.5 7.83 6.31 4.38 (138 300
nodes)
1.44 4.73 6.53 5.64 4.41 (146 400
nodes)
1.67 4.59 3.22 6.63 2.39 (152 500
nodes)
2.25 6.05 4.34 5.26 6.41 (158
nodes)
600 1.47 6.44 5.33 3.84 7.14 (162 nodes)

Table 2: Correct answers; simple WNN; test set recognition in %.

Fonts 50 nodes/ 100 150 200 default 100
slab nodes/ nodes/ nodes/ nodes/
slab slab slab slab
1:22 4.26 4.76 5.49 4.65 (130 200
nodes)
1.64 2.55 7.31 5.8 3.74 (138 300
nodes)

245

JCSC 15, 3 (March 2000)

1.26 4.16 6.92 5.14 4.37 (146 400
nodes)

1.78 3.85 2.52 6.43 2.13 (152 500
nodes)

2.17 6.43 3.84 4.97 5.66 (158 600
nodes)

1.19 6.12 5.52 3.53 7.06 (162
nodes)

It is easy to notice that the performance of the simple architecture is very poor
regardless of the amount of training data and number of nodes in the hidden layer. Using
larger data sets seems to improve recognition of both the training and test sets slightly as
does increasing the number of nodes in the hidden layers. We do, however, notice that for
training sets of size 400 fonts and smaller, using 200 nodes in the hidden layer notably
increases recognition over those for the suggested default numbers of nodes in the hidden
layer. Similarly, for the test set, the suggested default value is clearly not the best
possible.

Table 3: Correct answers; moderate WNN; training set recognition in %.

Fonts 34 nodes/ 68 nodes/ 102 136 default 100
slab slab nodes/ nodes/ nodes/
slab slab slab
90.23 95.31 94.92 96.04 95.38 (86 nodes) 200
85.65 91.67 92.19 04.23 93.28 (92 nodes) 300
87.21 91.71 92.83 93.79 90.01 (97 nodes) 400
86.35 93.12 92.57 94.05 94,15 10 500
nodes)
86.7 93.68 94.14 94,28 93.68 (105
nodes)
600 85.97 91.56 91.26 92.7 92.82 (108 nodes)

Table 4: Correct answers; moderate WNN; test set recognition in %.

Fonts 34 68 102 136 default 100
nodes/ nodes/ nodes/ nodes/ nodes/
slab slab slab slab slab
78.29 81.08 80.38 80.94 80.14 (86 nodes) 200
80.42 84.3 84.09 85 85.31 {92 nodes} 300

CCSC: South Central Conference

81.5 85.52 86.6 86.47 84.58 (97 nodes) 400

81.47 85.84 86.92 87.13 87.13 (101 500
nodes)

82.73 87.52 87.52 88.7 86.95 (105 600
nodes)

82.69 86.22 86.85 86.82 88.22 (108
nodes)

Comparing all results presented here. the moderate architecture appears to be the
best of the three. We note that using larger training sets seems to degrade the network’s
ability to recognize its training set while enhancing its ability to recognize the test set. We
interpret this behavior as an increase of the network ability to generalize. We also note
that the increase in accuracy plateaus somewhere near using 68 nodes per slab in the
hidden layer. It can be observed, again, that the proposed default value of neurons per
slab, while resulting in a relatively good architecture, does not necessarily lead to the best
performance.

Table 5: Correct answers; advanced WNN; training set recognition in %.
Fonts 50 nodes/stab 100 150 200 Default 100
nodes/slab nodes/slab nodes/slab nodes/slab

68.54 57.96 64.46 65.38 65.38 (130 nodes) 200

63.15 57.48 58 55.63 51.88 (138 nodes) 300

60.58 66.01 52.49 65.14 55.54 (146 nodes) 400

63.3 65.56 64.26 62.01 59.55 (152 nodes) 500

66.76 61.27 63.76 54.28 54.34 (158 nodes)

600 58.9 58.72 60.04 60.45 62.71 (162 nodes)

Table 6: Correct answers; advanced WNN; test recognition in %.

Fonts 50 100 150 200 Default 100
nodes/slab nodes/slab nodes/slab nodes/slab nodes/slab

57.45 57.41 50.42 57.55 54.79 (130 nodes) 200

57.97 53.39 54.05 51.71 46.68 (138 nodes) 300

57.97 61.75 50.17 61.26 51.57 (146 nodes) 400

60.94 61.85 60.35 58.29 55.87 (152 nodes) 500

63.04 58.18 61.85 51.75 51.26 (158 nodes)

600 56.29 56.33 56.69 59.13 60.8 (162 nodes)

247

JCSC 15, 3 (March 2000)

Comparing the results of the last two experiments reported earlier with these, it could
be easily observed that the advanced architecture, while significantly better than the
simple architecture, falls behind the moderate architecture. Increasing the number of
nodes in the hidden layers appears raise network’s competency slightly with the exception
of a drop in accuracy when using 150 nodes per slab in the hidden layer. We will
investigate this phenomenon in further experiments.

Performance Comparison Between WNNs and Simple Backpropagation Neural
Network (BPNN)

In order to gain perspective on the performance of the three WNNs we have chosen
to compare their performance to that of the simple three-layer BPNN. The results are of
interest as the BPNN is one of the simplest and oldest NN architectures. It is also the
architecture that the WNNs are based on and intended to improve upon. In our
experiments with BPNNs, we have used the same methodology as above. The only
factors taken into consideration were input data size and number of neurons in the hidden
layer.

Table 7: Correct answers; simple BPNN; training set recognition in %.

Fonts 100 200 300 400 Default 100
nodes/slab nodes/slab nodes/slab nodes/slab nodes/slab

96.19 96.69 96.81 96.77 96.42 (259 nodes) 200

94.48 95.81 96.1 96.69 96.31 (277 nodes) 300

95.72 94.56 96.36 95.96 96.71 (292 nodes) 400

94.31 95.92 96.4 97.12 96.23 (304 nodes) 500

95.67 95.51 95.81 96 95.68 (315 nodes)

600 92.74 93.87 95.49 93.84 95.33 (325 nodes)

Table 8: Correct answers; simple BPNN; test set recognition in %.

Fonts 100 200 300 400 default 100
nodes/slab nodes/slab nodes/slab nodes/slab nodes/slab

82.55 82.45 82.62 82.66 82.62 (259 nodes) 200

85.91 86.15 86.68 87.24 86.75 (277 nodes} 300

88.01 87.38 88.18 87.55 88.5 (292 nodes) 400

88.53 8§9.34 89.48 89.48 89.37 (304 nodes)

500 89.67 89.23 89.68 89.69 89.62 (315 nodes)

600 88.46 88.99 90.45 89.37 90.24 (325 nodes)

248

CCSC: South Central Conference

Since the results of the experiments with the BPNN turn out to be relatively good,
we will compare them only with the best WNN (moderate architecture). Before we
proceed, it should be noted that, since the simple BPNN has only one slab in the hidden
layer, the number of its nodes appears to be larger. This is, however, not the case as the
total number of neurons in the hidden layer (when all slabs are taken into account) is the
same (it may be off by one or two when the division is not exact). We can see that, across
the board, the BPNN outperforms the WNN while following nearly identical
improvement patterns. Interestingly, BNN seems to be somewhat “more stable” and less
dependent on both the size of the input and the number of nodes in the hidden layer.
Moreover, the performance difference between the default number of neurons and the
"arbitrarily” selected numbers is almost negligible.

CONCLUDING REMARKS

We have experimented with the three Ward Systems proprietary neural network
architectures as applied to the pattern recognition model-problem. We have found that one
of them (moderate) is highly competent in solving our simplified problem, while the
simple architecture does not perform well at all. We plan to investigate the reason for
such a poor performance of the simple architecture further.

We have also compared the performance of WNNs with that of a simple, three-layer
backpropagation network. We have found that the backpropagation architecture is slightly
less dependent on the size of the input and the number of nodes in the hidden layer and
across the board slightly outperforms the Ward Networks. While our experiments do not
allow us to make serious generalizations, we can state that Ward Systems attempt to
improve the backpropagation architecture did not result in an obvious success for our
model problem.

REFERENCES

Looney, C.G. 1997. Pattern Recognition Using Neural Networks. New York: Oxford
University Press.

Bowers, S., Costeines, A. and Paprzycki, M. 1999a. Applying Probabilistic Neural
Networks to the Multifont Recognition Problem with Large Training Set, in: Kumar, A.N.
et. al. {eds.) Proceedings of the Twelfth International Florida Al Research Society
Conference, 336-339, Menlo Park: AAAI Press.

Bowers, S., Costeines, A. and Paprzycki, M. 1999b. Evaluating the Performance of Three
Neural Network Architectures Applied to the Pattern Recognition Problem, Proceedings
of the 15" Annual Conference on Applied Mathematics, 29-36, Edmond: University of
Central Oklahoma.

Bowers, S., Morrison, J. and Paprzycki, M. 1999c. Comparing Performance of Neural
Networks Recognizing Machine Generated Characters, Proceedings of the First Southern
Symposium on Compuiting, to appear, Hattiesburg: University of Southern Mississippi.

249

JCSC 15, 3 (March 2000)

Bowers, S. and Paprzycki, M. 1999. Applying PNN’s to the Multifont Pattern
Recognition Problem. in: Bainov, D., (ed.) Proceedings of the 9" Colloquium on
Difference Equations. 311-318, Utrecht: VSP.

Burger, C.. Traver. R.. 1999. Applying Neural Networks to Risk Assessment.
http://www.audit.uic.edw/DEPT/IAART5.HTM

FreeType 1999. http://www freetype.org/

Paprzycki, M. Niess, R., Thomas, 1., Scardino L., and Douglass, W. 1999. Comparing
Performance of Neural Networks Applied to a Simplified Recognition Problem,
Proceedings of the Thirteens International Florida Al Research Society Conference, to
appear.

Rumelhardt, D.E., McClelland D.L., and the PDCP Research Group. 1986. Parallel
Distributed Processing. Cambridge: MIT Press.

Ward. 1998. http://www.wardsystems.com

250

