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Abstract. In this paper we compare the performance of four solvers for
systems of nonlinear algebraic equations applied to the random vibra-
tion test, which requires a solution of a system of 512 or more equations.
Experimental results obtained for two test cases are presented and dis-
cussed.

1 Introduction

In the early 1990’s, A. Kucaba-Pietal and L. Laudanski studied digital simu-
lation of samples of stationary Gaussian stochastic processes possessing multi
modal spectra applied to dynamic loads arising in an airplane in gusty flying
conditions [8]. In this problem, the numerical solution of the equations describ-
ing the disturbed motion of an elastic airframe result in a detailed description
of the vertical displacement of any point chosen on the airplane under atten-
tion. Obtained results can also be transformed into a time history of stresses at
the same place. There exist two possible approaches to this problem. Method
of harmonics, developed by S. O. Rice and method of filtration developed by
N. Wiener and, independently, Y. A. Kchinchin [8]. In the original study, the
method of filtration was used and the impulsive characteristics of a nonrecursive
filter h(t) was related to the correlation function K (7) of the output stochastic
process {y(¢)} obtained via filtering of the input stochastic process {z(t)}. The
resulting equation had the following form:

N N
K(r) = E[Z h(k)x(t — k) Z h(n)z(t + T —n)]. (1)
k=0 n=0

Due to the fact that {z(¢)} is a white noise the problem was simplified to a
system of nonlinear algebraic equations:

N
K(j) =Y _ h(i)h(j) for j =0,1,.., N, (2)
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and expanded into its explicit form:
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In 1994, the authors were able to solve this system for up to 64 equations (with
the solution time of approximately 10 minutes on a desktop PC), while it was
estimated that a minimum of 512 equations would be required, with a quality
solution available for 1024 or more equations. The main reason for this relative
failure (in addition to the weakness of computer hardware available at this time
in Poland) was the fact that the proposed solution methods were not robust
enough to handle the problem.

This earlier research has prompted us to investigate the state of the art
in the area of solvers for nonlinear algebraic equations. The results of these
investigations (which started in 1998) have been summarized in a number of
papers (for more details see [4] and references quoted there). After completing
the assessment stage we decided to go back to the original problem and see
if we can solve it for the appropriately large system sizes by using the more
sophisticated solution methods.

In this paper we summarize the results obtained so far. Section 2 contains
a brief description of the preliminary work that lead us to the selection of four
solvers and a summary of their functionalities. In Section 3 we describe the
experimental data. Finally, in Section 5 we summarize our results and sktech
future research directions.

2 Solver selection and descriptions

2.1 Preliminary work

We have investigated a number of algorithms and software packages designed to
solve systems of nonlinear algebraic equations. In Table 1 we list the algorithms
tested in our search to find “the best possible” solver.

Table 1: Algorithms for solution of systems of nonlinear algebraic

equations
1. Augmented Lagrangian method 7. Line Search method
2. Brown’s method 8. Powell’s method

3. Broyden’s method 9. Reduced-gradient method




Table 1: Algorithms for solution of systems of nonlinear algebraic

equations
4. Characteristic Bisection method 10. Tensor method
5. Continuation method 11. Trust Region method
6. Homotopy method

Algorithms listed in Table 1 have appeared as stand-alone, or as combina-
tions, in a number of shareware packages found, among others, in the NETLIB
repository and in the ACM TOMS. The list of solvers and algorithms constitut-
ing them is presented in Table 2.

Table 2: Software packages for solving systems of nonlinear alge-
braic equations

Package Algorithms
1.CHABIS [13] Characteristic Bisection method
2. CONTIN [11] Continuation method
3. HOMPACK [12] Homotopy method
4. LANCELOT [2] Augmented Lagrangian method
5. MINOS [9] Reduced-Gradient method
6. MINPACK’S HYBRID [10] Trust Region, Broyden’s, and Powell’s methods
7. SLATEC’s SOS [5] Brown’s method
8. TENSOLVE [1] Tensor, Trust Region and Line Search methods

In previous papers, we have reported on the results of testing solvers listed in
Table 2 (as well as additional, in house developed codes) on a set of 22 standard
test problems [3]. Unfortunately we were not able to locate a single "best" solver.
However, we were able to remove some solvers from further consideration and
reduced the field to codes based on hybrid Newton, homotopy, continuation,
tensor, augmented Lagrangian and reduced-gradient methods. Implementations
of these methods were obtained from the NETLIB repository [15] and the NEOS
server [14].

2.2 Test Problem I

In the original study [7] an artificial sample problem was developed with an
integer answer-set and we have decided to use it as a starting point. We have
taken h(i) =14, for i = 1..N and substituted it to (3) and calculated the values
of K to generate our Test Problem I. When attempting at a solution we have
experimented with a number of possible starting vectors (including zero, one and
random numbers) and found that the convergence was reached most often when
the starting vector ho(i) = 1 for i = 1..N was used. The aim of Test Problem I
was to select the solvers for our final testing suite that would allow us to solve
larger problems. We have found that only the following four solvers converged



for more than N = 64 equations: HYBRID, TENSOLVE, LANCELOT, and
MINOS.

It should be noted that the remaining solvers listed in Table 2 have also
been tried for this and for the real-world data (see Test Problem II below) and
the results were similar (no convergence beyond N = 64). We will now briefly
describe the selected four solvers. We assume that a system of N nonlinear
algebraic equations f(z) = 0 is to be solved where x is N-dimensional vector
and 0 is the zero vector.

2.3 Solvers

HYBIRD is part of the MINPACK-1 suite of codes. HYBRID’s design is based
on a combination of a modified Newton method [10] and the trust region method
[14]. Termination occurs when the estimated relative error less than or equal the
defined by the user tolerance (we used the suggested default value of the square
root of the machine precision).

TENSOLVE [1] is a modular software package for solving systems of nonlin-
ear equations and nonlinear least-square problems using the tensor method. It
is intended for small to medium-sized problems (up to 100 equations and un-
knowns) in cases where it is reasonable to calculate the Jacobian matrix or its
approximations. This solver provides two different strategies for global conver-
gence; a line search approach (default) and a two-dimensional trust region ap-
proach. The stopping criteria is meet when the relative size of xp411 — X is less
than the macheps? or ||f(zg41)||oc is less than macheps?, or the relative size
of f'(xp41)T f(Xpt1) is less than macheps? and unsuccessfully if the iteration
limit is exceeded.

LANCELOT (Large And Nonlinear Constrained Extended Lagrangian Opti-
mization Techniques) is a package of standard Fortran subroutines and utilities
for solving large-scale nonlinearly constrained optimization problems [2]. The
LANCELOT package uses an augmented Lagrangian approach to handle all con-
straints other than simple bounds. The bounds are dealt with explicitly at the
level of an outer-iteration sub-problem, where a bound-constrained nonlinear
optimization problem is approximately solved at each iteration.

The algorithm for solving the bounded problem combines a trust region ap-
proach adapted to handle the bound constraints, projected gradient techniques,
and special data structures to exploit the (group partially separable) structure of
the underlying problem. The software additionally provides direct and iterative
linear solvers (for Newton equations), a variety of preconditioning and scaling
algorithms for more difficult problems, quasi-Newton and Newton methods, pro-
vision for analytical and finite-difference gradients, and an automatic decoder
capable of reading problems expressed in Standard Input Format (SIF) or a
Modeling Language for Mathematical Programming (AMPL). For our experi-
ments, the Web-based NEOS version of this software was used. Each nonlinear
problem was converted to an AMPL minimization problem.



MINOS [9] is a software package for solving large-scale optimization problems
(linear and nonlinear programs). It is especially effective for linear programs
and for problems with a nonlinear objective function and sparse linear con-
straints (e.g., quadratic programs). MINOS can also process large numbers of
nonlinear constraints. The nonlinear functions should be smooth but need not
be convex. For linear programs, MINOS uses a sparse implementation of the pri-
mal simplex method. For nonlinear objective functions (and linear constraints),
MINOS uses a reduced-gradient method with quasi-Newton approximations to
the reduced Hessian. For problems with nonlinear constraints, MINOS uses a
sparse SLC algorithm (a projected Lagrangian method). It solves a sequence
of sub-problems in which the constraints are linearized and the objective is an
augmented Lagrangian (involving all nonlinear functions). Convergence is rapid
near a solution.

MINOS makes use of nonlinear function and gradient values. The solution
obtained will be a local optimum (which may or may not be a global optimum).
If some of the gradients are unknown, they will be estimated by finite differences.
If the linear constraints have no feasible solution, MINOS terminates as soon as
infeasibility is confirmed. Infeasible nonlinear constraints are difficult to diagnose
as with LANCELOT, the Web-based NEOS version of this software was used
with AMPL input.

3 Experimental Results

3.1 Test Problem I

The results from Test Problem I are summarized in Table 3. Here, N denotes
the number of equations, IC' - the number of iterations required for convergence,
FC — the number of function calls required for convergence, and time/sec — the
number of CPU seconds used (on a 900 MHz Pentium III workstation) and NC
- represents non-convergence.

Table 3: Results for the Test Problem I

Hybrid Lancelot
N IC FC time/Sec |IC FC time/sec
128 10 110 1 49 50 34.68
256 10 160 2 161 162 905.4
512 10 210 3 NC - -
1024 |10 310 12 NC - -

Minos Tensolve
N IC FC time/Sec |IC FC time/sec
128 1977 4182 19.2 602 1367 2.44
256 7340 14771 564.07 1216 2646 11.75
512 24205 47580 8346.04 4591 9422 171.02
1024 |NC - - NC - -




Comparing the performance of the four solvers we can observe that:

— HYBRID converges for the largest number of equations, is the fastest, and
is very accurate.

— LANCELOT converges only for up to N = 256 and is the slowest.

— MINOS converges for up to N = 512 and produces a different solution than
the remaining three solvers.

— TENSOLVE converges for up to N = 512 and is not as accurate as LANCELOT
and HYBRID.

As noted, HYBRID, LANCELOT, and TENSOLVE produced the same ba-
sic solution while MINOS produced an alternate solution. This result appears
consistently since N = 4, where the three solvers produced the expected integer
answer while MINOS produced a different result (see also [7]).

3.2 Test Problem II

The aim of Test Problem II was to apply real-world data requiring up to 512
equations to the solvers selected from Test Problem I. For this case the coefficient
vector, K (7), consisted of the floating-point correlation data. For the starting
vector we used h0(i) = 1 (we have tried, again, a number of possible starting
vectors and found that one most often results in convergence). The results from
these tests are summarized in Table 4 (the meaning of all symbols is the same
as in Table 3, above). For each of the calculated results we have calculated also
the component-wise error. In Table 4 we depict the minimum and maximum
component-error for the solution obtained by each of the solvers. It should be
noted that HYBRID converged only when the solution vector calculated by
TENSOLVE was used as its starting vector and this fact needs to be kept in
mind while looking at the data.

Table 4: Results for the Test Problem II

Hybrid Lancelot
N |IC FC time/sec |IC FC time/sec
128 |10 110 1 161 162 111.5
256 |10 160 2 164 165 633.09
512 |21 2095 90 201 206 5140.05
Hybrid Tenslove
N |IC FC time/sec |IC FC time/sec
128 {1068 2737 19.22 28 3818 4
256 1383 3881 131.52 16 4381 20
512 2310 6508 1068.88 |12 6692 117

Before we proceed with summarizing our observations let us note that we have
obtained three separate answers. For obvious reasons HYBRID and TENSOLVE
produced a similar solution vectors, however both MINOS and LANCELOT



produced alternate solutions. We illustrate this in Table 5, where the initial and
final components of solution vectors produced by all four solvers are presented.

Table 5: Partial View of Final Solution Vectors for N = 512

LANCELOT MINOS TENSOLVE HYBRID
1 -0.0596631 0.141907 -0.135745775 |-0.137628574
2 -0.0336641 0.072495 -0.080370211  |-0.079030645
3 -0.0176408 0.077313 -0.074520022 |-0.075754926

Results presented in Tables 4 and 5 lead us to the following observations:

— HYBRID is the "best" solver for the Test Problem I but cannot handle the
Test Problem II, but it can be used to improve accuracy of results produced
by TENSOLVE.

— LANCELOT is the slowest of the three converging solvers.

— MINOS is faster than LANCELOT and more accurate than TENSOLVE.

— TENSOLVE produces an "approximate solution" and is the fastest of the
three converging solvers.

4 Concluding Remarks

In this paper we have reported on our attempts at solution of an avionics-
engineering problem. Using modern robust solvers we were able to solve a system
of N =512 nonlinear algebraic equations. As previously, we have found no “sil-
ver bullet” but rather, that the solution depends on the interplay between the
problem, the solver and the starting vector. Here, even in the case of the same
problem with different “right hand sides” the behavior of individual solvers can
be very different; as illustrated by the HYBRID solver applied to Test Problems
I and II.

The most interesting result seems to be that, in the case of Test Problem
IT, all three globally convergent solvers have produced different solution vectors.
At this time we do not have an answer which of them (if any) has physical
interpretation (or, maybe, if all of them represent physically feasible solutions).
This lack of answer(s) should be viewed in the context of the avionics-engineering
problem itself. Finding a solution to this problem consists of solving two sub-
problems: (a) finding solutions to the system of nonlinear algebraic equations,
and (b) interpretation of the results in terms of the physics of flight. In this note
we have addressed the first sub-problem in a positive way. Addressing the second
sub-problem is outside of the scope of this note, but will be included in the next
step our research and we hope to be able to report on it shortly.

In addition to looking for physical interpretation of the results obtained from
the numerical study, we have a few more items that we will investigate. First,
we plan to solve the system of N = 1024 equations. Second, we plan to look into



the ways in which the three solvers find their answers (since all three of them
start from the same vector, it is interesting to see how they arrive into three
separate answers). Third, we will apply to our problem commercial solvers from
NAG and Visual Numerics libraries. Finally, we will apply to it a solver based
on the interval approach (INTLIB) [6] either as a solver in its own right, or, as
a verification tool for solutions located by other solvers.
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