

Proceedings of the Southern Conference on Computing
The University of Southern Mississippi, October 26-28, 2000

COMPARING SOLVERS FOR LARGE SYSTEMS OF NONLINEAR ALGEBRAIC
EQUATIONS

Deborah Dent* Marcin Paprzycki∗ Anna Kucaba-PiętalΗ

Abstract. The solution of systems of nonlinear algebraic equations is a problem which complexity grows as
the number of equations increases. The number of engineering problems, which led to these systems, is increasing
each year. In this paper we compare the performance of four advanced solvers for systems of nonlinear algebraic
equations which have been collected from Internet repositories. We are particularly interested in their performance
when the number of equations is large (100+). We have collected test problems from literature and the Internet and
found that most popular problems consist of systems of 2-4 equations but a few of the popular test problems are
defined in such a way that they can be extended to a large system of nonlinear algebraic equations.

In the paper we report on results of our experiments in applying the nonlinear solvers to these test problems
for an increasing number of equations. All of the solvers that we are using were designed to handle small and
medium sized (up to 100) problems. Since the source code was available we were able to extend their
functionality to handle problems with up to 200 equations and test the solvers’ efficiency by comparing their
convergence rates and sensitivity to starting vectors.

In the paper, we first describe the solvers and the algorithms on which the solvers are based. This is
followed by the presentation of our experimental results. We end our discussion with conclusions and a
description of future research directions.

1. Introduction. The motivation for this work stems from a real-world avionics problem that

requires a solution to a large system of nonlinear algebraic equations [7,8]. Due to the lack of
convergence, algorithms applied there were unable to solve systems of more than 64 equations. At the
same time it was estimated that, to model the engineering problem at hand, a system of about 500-1000
equations would have to be solved. This prompted us to search for existing software capable of solving
our problem. In our earlier work [4,5,6], we have reported on our attempts at comparing the
performance of non-commercial nonlinear system solvers based on Newton’s method and its
modifications, bisection, continuation, hybrid, homotopy and tensor methods were applied to 22 test
problems collected from literature and the Internet. We have found that: (a) the simple algorithms
(which work well in the case of a single nonlinear equation) like bisection or Newton's method and its
modifications perform poorly when applied to systems of equations, (b) in-house developed simple
implementations of known algorithms are only slightly less efficient than state of the art library codes.
We have also found a few facts related to the test problems. (1) While some test problems are relatively
popular, different researchers use different problems to test their algorithms and their implementations.
(2) Typical test problems (in their default formulation) consist of systems of 2-4 equations and only
very few reach 10 equations. In our literature and Internet search we have not located tests
corresponding to the real-life engineering problems of 100+ equations (e.g. the avionics problem
mentioned above). (3) Test problems involving non-smooth functions (e.g. arising in electrical
engineering) are not represented in the test sets we encountered (however, since interest is directed
toward solving large systems of equations, the non-smooth cases have been omitted from our
considerations). (4) Out of the 22 popular test problems (in their default formulation) five are easily
solvable by all solvers (including the simplest) and thus have no real value when used to test

∗ School of Mathematical Sciences, University of Southern Mississippi, Hattiesburg, MS 39406-5106,
{deborah.dent, m.paprzycki}@usm.edu

Η Department of Fluid Mechanics and Aerodynamics, Technical University of Rzeszow,
Anpietal@ewa.prz.rzeszow.pl

2 Deborah Dent, Marcin Paprzycki And Anna Kucaba-Piętal

algorithms. (5) Only nine of the 22 collected test problems can be used to generate large systems of
nonlinear algebraic equations.

This note will report results of our experiments in applying four non-commercial advanced
nonlinear solvers, to the latter group of test problems, for an increasing number of equations (up to
200). These solvers were applied to the nine test problems in a way that is to resemble an engineer
approaching a solution to a real-life problem. It was thus assumed that the potential user is not a highly
trained numerical analyst and/or programmer who is able and/or willing to invest time into studying
intricacies of methods and their implementations (e.g. working toward finding a proper homotopy map,
which is the necessary step to assure the most efficient work of the homotopy method based solver).
Rather, we envision the user as someone who will be applying the codes as more or less black-box
solvers, likely to follow the default settings provided by the solvers and aiming at finding a verifiable
solution to the problem. (This assumption should be kept in mind when reading the remaining parts of
this note.)

The solvers’ efficiency as well as their numerical properties was assessed by comparing their
convergence rates (measured in number of function evaluations and iterations) and sensitivity to the
starting vectors. All four solvers were designed to handle small and medium sized (up to 100 equations)
problems (and this observation applies all solvers that we have located). Since the source codes were
available we were able to extend their functionality above this limit and attempt at solving problems
with up to 200 equations.

This note is organized as follows. Section 2 briefly describes the solvers and the algorithms on
which the solvers are based. In section 3, we summarize the results of numerical experiments. The
paper concludes with a description of future research directions.

2. Solvers and Algorithms for Systems of Nonlinear Algebraic Equations. As mentioned above,
we have found that only more sophisticated algorithms are capable of solving test systems of nonlinear
algebraic equations outside of the group of five easy ones. We have thus excluded codes based on
Newton’s method and its modification (e.g. Brown’s method) and bisection from further considerations.
This left us non-commercial versions of codes based on the hybrid algorithm, homotopy, continuation,
and tensor methods. These algorithms are all documented in ACM TOMS and their implementations
were obtained from the NETLIB repository [11]. We have thus modified (to handle up to 200
equations) the following software packages:

 HYBRD, a combination of trust region and Powell’s (modified Newton) method,
 CONTIN, an implementation of the continuation method,
 HOMPACK, an implementation of the homotopy method,
 TENSOLVE, an implementation of the tensor method combined with the trust region and

line-search options.

We will now briefly summarize these algorithms and the solvers (in all cases the references cited and
[13] should be consulted for the details). We assume that a system of n nonlinear algebraic equations
f(x)=0 is to be solved where x is n-dimensional vector and 0 is the zero vector.

2.1 HYBRD. HYBRD is part of the MINPACK-1 suite of codes. HYBRD1’s design is based on a

combination of a modified Newton method [12] and the trust region method [10]. Termination occurs
when the estimated relative error less than or equal the defined by the user tolerance (we used the
suggested default value of the square root of the machine precision).

2.2 CONTIN. CONTIN [10], also know as PITCON [14] implements a continuation algorithm

with an adaptive choice of a local coordinate. The continuation method is designed to be able to target
more complicated problems and is the subject of various research efforts [1,15,10]. This method is
expected to be slower than line-search and the trust region methods, but it is to be useful on difficult
problems for which a good starting point is difficult to establish. The method defines an easy problem

3 Deborah Dent, Marcin Paprzycki And Anna Kucaba-Piętal

for which the solution is known along with a path between the easy problem and the hard problem that
is to be solved. The solution of the easy problem is gradually transformed to the solution of the hard
problem by tracing this path. The path may be defined as by introducing an addition scalar parameter λ
into the problem and defining a function

(2.1) h(x, λ)=f(x) – (1-λ)*f(x0),

where x0∈⎥n. The problem h(x,λ)=0 is then solved for values of λ between 0 and 1. When λ=0, the
solution is clearly x=x0. When λ=1, we have that h(x,1)=f(x), and the solution of h(x,λ) coincides with
the solution of the original problem f(x)=0. The convergence rate of the continuation methods varies,
but the method does not require a good choice of the initial vector x0.

2.3 HOMPACK. HOMPACK [17,18] is a suite of subroutines for solving nonlinear systems of

equations by homotopy methods [3,18]. The homotopy and continuation methods are closely related. In
the homotopy method, a given problem f(x)=0 is embedded in a one-parameter family of problems
using a parameter λ assuming values in [0,1]. Like the continuation method, the solution of an easy
problem is gradually transformed to the solution of the hard problem by tracing a path. There are three
basic path-tracking algorithms for this method: ordinary differential equation based, normal flow, and
quasi Newton augmented Jacobian matrix. The original problem corresponds to λ=1 and a problem
with a known solution corresponds to λ=0. For example, the set of problems

(2.2) ,)0()1()(),(0xxx =−+= ffG λλ ,10 ≤≤ λ

for fixed x0∈⎥n forms a homotopy. When λ=0, the solution is x(λ=1). Similarly to the continuation
method, the vector but proper implementation of this method involves defining the homotopy h(z,t) and
finding a numerical method for tracking the paths defined by h(z,t)=0.

The homotopy method is carried out via three qualitatively different algorithms: ODE-based (code
FIXPDF), normal flow (code FIXPNF), and augmented Jacobian (code FIXPQF). The code is available
in both Fortran 77 [18] and Fortran 90 [17]. The Fortran 77 version was used in our test. We tested all
three approaches and since the results were very close, we will report FIXPDF results only.

2.4 TENSOLVE. TENSOLVE [2] is a modular software package for solving systems of nonlinear

equations and nonlinear least-square problems using the tensor method. It is intended for small to
medium-sized problems (up to 100 equations and unknowns) in cases where it is reasonable to calculate
the Jacobian matrix or its approximations. This solver provides two different strategies for global
convergence; a line search approach (default) and a two-dimensional trust region approach. These two
methods are described in the following sections. The stopping criteria is meet when the relative size of
xk+1 – xk is less than the macheps2/3, or ||F(xk+1)||∞ is less than macheps2/3, or the relative size of J(xk+1)TF
(xk+1) is less than macheps1/3 and unsuccessfully if the iteration limit is exceeded.

3. Experiments and Results. All codes are implemented in Fortran 77 and were run in double
precision on a PC with a Pentium Pro 200 MHz processor. As specified above, out of the test problems
collected in [9,19] we have found only nine for which the number of equations n could be increased to
generate large systems of equations: (1) Watson function, (2) Chebyquad function, (3) Brown almost-
linear function, (4) Discrete boundary value function, (5) Discrete integral equation function, (6)
Trigonometric function, (7) Variably dimensioned function, (8) Broyden tridiagonal function, (9)
Broyden banded function. When applying the four solvers we have kept the default settings of all
parameters as suggested in the implementation (which matches our assumption of the solver being
treated like black-box software).

In our experiments we have used four different starting vectors (which correspond to what an
engineer could try to use in cases where the solution is unknown). First, for each of the test problems
(as they were described in the literature) a starting vector is provided as a part of their definition and we

4 Deborah Dent, Marcin Paprzycki And Anna Kucaba-Piętal

have utilized this data (results denoted as default). We first attempted to expand the size of each
problem to a maximum of 200 equations. Depending on the solver, for the default starting vector, some
of the problems could not be solved beyond a specific numbers of equations and this fact is illustrated
in Table 1 where the largest number of equations for which the solution was found is reported.

Table 1. Maximum Number of Equations Solvable by Each Solver for the default Starting Values

Problem #
Solver

#1 #2 #3 #4 #5 #6 #7 #8 #9

CONTIN 6 2 200 11 4 23 4 200 200
HYBRD 14 9 22 200 200 40 42 200 200
HOMPACK 9 9 9 9 100 1 1 100 100
TENSOLVE 30 18 200 200 200 200 200 200 200

The results are rather interesting as they show that, in the experimental setup used in our experiments
(codes used as black-box software and default parameter setup is applied); the tensor method
outperforms the other solvers (with the hybrid method coming second). This result illustrates the
overall relative weakness of the continuation method and the need for a more hands-on approach when
the homotopy method based solver is applied. In addition, it can be easily observed that problems #8
and #9 are the easiest to solve. Thus their usability as the test cases is limited not only when they are
used in their default setup [4,5,6] but also when the number of equations is large. The results indicate
that, out of the nine tested, problems #1 and #2 appear to be most difficult to solve.

We next wanted to observe the behavior of the solvers when the number of equations (in a given
problem) is increasing. Since only problems #8 and #9 were “solvable” by most solvers for up to n =
200 equations we have decided to use them in our experiment, and the results for the n = 50, 100, 150
and 200 equations are displayed in Table 2. We recorded the number of function calls (FC) and the
number of iterations (IT) for each solver. (Usually, solution time is important in analyzing performance,
but due to fast processors the time to complete the task for all of the problems was to small to record, so
we had to omit it). We were unsuccessful in modifying HOMPACK to handle more than 100 equations;
therefore, the results of HOMPACK for n=150 and 200 were reported as N/A.

Table 2. Comparison of Performance of Four Solvers;
Problems #8 and #9; n = 50, 100, …, 200 Equations

 n=50 n=100 n=150 n=200
Problem # Solvers FC IT FC IT FC IT FC IT

#8 CONTIN 626 4 1226 4 1826 4 2426 4
 HYBRD1 61 11 111 11 161 11 211 11
 TENSOLVE 204 3 404 3 604 3 804 3
 HOMPACK 215 104 355 172 N/A N/A N/A N/A

#9 CONTIN 886 4 1736 4 2586 4 3436 4
 HYBRD1 69 19 119 19 169 19 219 19
 TENSOLVE 255 4 505 4 755 4 1005 4
 HOMPACK 256 123 424 205 N/A N/A N/A N/A

We can observe that as the number of equations increases the number of function evaluations increases
as well, but the number of iterations remains constant. While this effect is clearly problem dependent,
in our experiments we have found that out of the nine problems studied, only for problem #1 as the
number of equations increased the number of iterations increased as well. Since this problem is
solvable only for up to n = 7 equations, in Table 3 we report the performance of the four solvers for n =
1, 2, …, 7 and for the default starting vector. Here, it can be observed that the number of iterations can
fluctuate (does not always increase steadily) i.e. observe performance of TENSOLVE for n = 5, 6, and

5 Deborah Dent, Marcin Paprzycki And Anna Kucaba-Piętal

7. Note also, that HOMPACK did not converge for n = 4 equations. We observed a similar effect
sporadically also in other experiments.

Table 3. Comparison of Performance of Four Solvers; Problem #1; n = 1, 2, …, 7 Equations

 n=2 n=3 n=4 n=5 n=6 n=7
Problem # Solvers IT IT IT IT IT IT

#1 CONTIN 5 5 5 5 6 8
 HYBRD1 12 15 19 29 38 53
 TENSOLVE 4 6 10 23 22 42
 HOMPACK 39 40 nc 63 97 141

In the final series of experiments we have observed the effect of various starting vectors on the
performance of the four solvers. Here we have tried a few “obvious” selections for starting vectors:
vectors of all zeroes (denoted zeroes), vector of ones (denoted ones) and vectors of random numbers
from the interval [0, 1] (denoted random) (in addition to the default values specified above). Figures 1
and 2 show the fluctuation in the resulting number of iterations required for convergence when the
different starting vectors were applied to problems #8 and #9 for n = 100 equations. In both figures lack
of convergence denoted is by nc (and the appropriate bar is removed from the graph). We can easily see
that CONTIN worked better with the initial values set equal to ones and zeroes and did not respond to
random at all (we have no explanation of this behavior). We can also observe that HYBRD is very
sensitive to the starting vector and does not respond well to starting vectors other than default.
TENSOLVE converged with all attempts but responded best to the default starting vector. HOMPACK
responded better to vectors other than default, which coincides with the authors’ comments in [16] that
the default starting vectors defined for these test sets were not well suited for HOMPACK.

Problem #8

0

5

10

15

20

25

N
um

be
r o

f I
te

ra
tio

ns

Figure 1. Sensitivity Analysis of Problem #8

Default 4 11 4 20

Zeros 1 nc 20 7

Ones 1 nc 6 7

Random nc nc 20 7

CONTIN HYBRD TENSOLVE HOMPACK

6 Deborah Dent, Marcin Paprzycki And Anna Kucaba-Piętal

Problem #9

0

5

10

15

20

25

N
um

be
r o

f I
te

ra
tio

ns

Figure 2. Sensitivity Analysis of Problem #9

4. Conclusions and Future Work. In this paper we have reported on our experiments comparing

performance of solvers for large (up to n = 200) systems of nonlinear algebraic equations. We have
found that:

1) solvability of the test problems depends on the solver and the starting vector,
2) problems which are not solvable using one method may be solvable by another method,
3) of the solvers tested, the tensor method based solver appeared to be most robust.

For the collected test problems we have found that:

1) problems #8 and #9 are relatively easy and thus do not provide useful information when used
to compare the solver performance,

2) the remaining problems are hard and neither of the solvers seems to be ready to easily solve
them; especially as the number of equations increases. In particular, problems #1 and #2 seems
to be very hard to solve and thus can be recommended as real benchmarks for the robustness
of new solvers that will be developed in the future.

Our future work will concentrate on expanding the tensor method based solver (as the most promising
one) to handle very large systems. We will also continue our search for solvers that can handle medium
to large systems of nonlinear algebraic equations as well as new interesting test problems that can be
recommended to study the robustness of the nonlinear solvers. We will apply these solvers to the
original avionics problem and observe their performance.

Default 4 19 4 20

Zeros 1 nc 10 5

Ones 1 nc 7 5

Random nc nc 10 5

CONTIN HYBRD TENSOLVE HOMPACK

 Comparing Solvers For Large Systems Of Nonlinear Algebraic Equations 7

REFERENCES

[1] E. Allgowerr and K. George, Numerical Continuation Methods, An Introduction, Springer-Verlag, Berlin, 1990, p.365.
[2] A. Bouaricha and R. Schnabel, Algorithm 768: TENSOLVE: A Software Package For Solving Systems of Nonlinear

Equations and Nonlinear Least-Squares Problems Using Tensor Methods, ACM Trans. Math. Software, 23, 2 (1997),
 pp. 174-195.
[3] R. L. Burden and J. D. Faries, Numerical Analysis, PWS-Kent Publishing Company, Boston, 1993, pp. 575-576.
[4] D. Dent, M. Paprzycki, and A. Kucaba-Pietal, Performance of Solvers for Systems of Nonlinear Algebraic Equations,
 Proceedings of 15th Annual Conf. on Applied Math (1999), pp. 67-77.
[5] D. Dent, M. Paprzycki, and A. Kucaba-Pietal, Studying The Numerical Properties of Solvers for Systems of Nonlinear
 Equations, Proceedings of the Ninth International Colloquium on Differential Equations (1999), pp. 113-118.
[6] D. Dent, M. Paprzycki, and A. Kucaba-Pietal, Testing Convergence of Nonlinear System Solvers, FSSC, 1 (1999),

 http://pax.st.usm.edu/cmi/fscc98_html/processed/.
[7] A. Kucaba-Pietal and L. Laudanski, L., Modeling Stationary Gaussian Loads, Scientific Papers of Silesian Technical
 University, Mechanics, 121 (1995), pp. 173-181.
[8] L. Laudanski, Designing Random Vibration Tests, Int. J. Non-Linear Mechanics, 31, 5 (1996), pp. 563-572.
[9] J. J. More, B. S. Garbow and K. E. Hillstrom, Algorithm 566, ACM Trans, Math. Software, 20, 3 (1994), 282-285.
[10] _______, NEOS Guide, http://www-fp.mcs.anl.gov/otc/Guide/, 1996.
[11] _______, Netlib Repository, http://www.netlib.org/liblist.html, 1999.
[12] M. J. D. Powell, A Hybrid Method for Nonlinear Algebraic Equations, in Polish. Gordon and Breach, Rabinowitz, 1979.
[13] W. C. Rheinboldt, Methods for Solving System of Nonlinear Equations, SIAM, Philadelphia, 1998.
[14] W. C. Rheinboldt and J. Burkardt, Algorithm 596: A Program for A Locally Parametrized Continuation Process, ACM
 Trans. Math. Software, 9 (1983), pp. 236-241.
[15] J. Stoer and R. Bulirsh, Introduction to Numerical Analysis, Springer, New York, 1993, p. 521.
[16] L. T. Watson, personal communication.
[17] L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan and H. F. Walker, Algorithm 777:HOMPACK 90: Suite of
 Fortran 90 Codes for Globally Convergent Homotopy Algorithms, ACM Trans. Math. Software 23, 4 (1997),
 pp. 514 – 549.
[18] L. T. Watson, S. C. Billups and A. P. Morgan, Algorithm 652:HOMPACK: A Suite of Codes for Globally Convergent
 Homotopy Algorithms, ACM Trans. Math. Software 13 (1987), pp. 281 – 310.
[19] U. N. Weimann, A Family of Newton Codes for Systems of Highly Nonlinear Equations, ZIB Technical Report TR-91-10,
 ZIB, Berlin, Germany, 1991.

http://www-fp.mcs.anl.gov/otc/Guide/

