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Abstract:  
Symbolic and algebraic computations are one of the fastest growing areas of scientific computing. In this paper we present an 
overview of the state-of-the-art in symbolic and algebraic computations on parallel and distributed computers and on grids. 
We give some background information, including typical application areas, and then give a list of past and on-going projects 
involving symbolic computations. We also attempt at concisely summarizing our findings. This article is based on the chapter 
on symbolic computations on grid that will appear in 2005 the book "Engineering the Grid: status and perspective", Editors 
Beniamino di Martino, Jack Dongarra, Adolfy Hoisie, Laurence Yang, and Hans Zima, Nova Science Publishers, Inc.. 
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1 Introduction 

There exist two basic approaches to computational 
solution of mathematical problems: numerical and 
symbolic. The numerical approach had an advantage 
of being capable of solving a substantially larger set of 
problems. However, the symbolic approach is 
systematically gaining more recognition as a viable 
tool for solving large-scale engineering problems. 
Symbolic solution of mathematical problems involves 
manipulations of symbolic objects, like logical or 
algebraic formulas, rules or programs. Unlike the 
numerical approach, one of the main goals of the 
symbolic approach is exactness. Typically, the final 
answer obtained through symbolic manipulations is 

either a rational number or a formula that represents 
an answer. 

Developments in symbolic computing have been 
lagging relatively to numerical computing, mainly due 
to the lack of available computational resources: most 
importantly computer memory, but also processor 
power. Continuous growth in the capabilities of 
computer hardware led to an increasing interest in 
symbolic computation and resulted, among others 
things, in development of sophisticated Computer 
Algebra Systems (CASs). These systems allow users 
to directly study computational problems on the basis 
of their mathematical formulations and to focus on the 
problems themselves instead of spending time 
transforming the problems into forms that are 
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numerically solvable. As an effect, symbolic 
computations are being applied in a number of diverse 
disciplines such as, among others, pure and applied 
mathematics, physics, engineering and economics 
[24]. Symbolic computation is also becoming a basis 
for advanced applications in many areas of computer 
science, such as computer aided design or software 
development, VLSI design, geometric modeling and 
reasoning, robot programming etc. Finally, symbolic 
methods have also become popular in life sciences, in 
particular in studying human genome. 

While the major purpose of the CAS is to manipulate 
formulas symbolically, many systems have 
substantially extended their capabilities. Nowadays, 
robust CASs offer other functionalities like numerical 
calculation, graphics, and simulations allowing a more 
comprehensive approach to problem solving. 
Furthermore, modern CASs are capable of solving 
very large problems. While, typically, CAS systems 
are utilized in an interactive mode, to solve large 
problems they can be also used in a “batch” mode and 
programmed using languages that are very close to 
common mathematical notation. Lists of existing 
CASs can be found in [8, 72, 73] and their facilities 
have been compared in [4, 76, 82]. 

As CASs become capable of solving large problems, 
they follow the course of development that has already 
been taken by numerical software: from sequential 
computers to parallel machines to distributed 
computing and finally to the grid. It is particularly the 
grid that has high potential as a discovery accelerator. 
Currently, its widespread adoption is still impeded by 
a number of problems, one of which is difficulty of 
developing and implementing grid-enabled programs. 
The aim of this paper is to present a comprehensive 
survey of the state-of-the-art of symbolic and 
algebraic computations involving parallel and 
distributed environments as well as the path leading 
toward grid-enabled CASs. 

2 Parallel and distributed symbolic 
computations 

Many users utilize Computer Algebra Systems as tools 
performing “small scale” mathematical calculations 
that would be tedious and error-prone when performed 
by hand. For them, CASs running on a single 
processor computer are quite satisfactory. However, 
some users employ CASs to solve large and very large 
problems. Here, the solution to the problem may 
involve, for instance, large scale symbolic 
computations requiring a significant amount of 
computational resources, or a combination of 

symbolic and numerical computations. These users 
often encounter the limitations of single-processor 
systems: processor speed and available memory. It is 
this class of users that could truly benefit from 
availability of parallel and distributed versions of 
CASs. 

It is well known, that the two main reasons driving the 
development of parallel computers are: (a) ability to 
reduce the wall-clock time i.e. the user waiting time 
for the solution (problems that are processor bound), 
and (b) ability to solve problems that cannot fit into 
memory of a “workstation” (problems that are 
memory bound). An argument has been formulated, 
that for the CASs it is the latter restriction that is the 
driving force for parallelization [47]. The argument 
relies on the following observations. Computation 
with algebraic terms involves interaction between the 
amount of available memory and the amount of 
memory required by the algorithm at any stage of the 
computation; the input size of a problem may be 
small, but its memory use in intermediate stages of the 
computation may grow considerably. This 
phenomenon is known as an intermediate expression 
swell and has been observed since the earliest CASs. 
However, parallelization of CASs is not easy to 
achieve. Symbolic computations tend to have 
unpredictable data dependencies, irregular data access 
patterns and varying dependent parameters – all these 
make it difficult to predict patterns of memory (and 
processor) usage. Moreover, in the case of distributed 
memory computers each processor has a local address 
space, and therefore it is quite possible for one 
processor to exceed its available memory, while there 
is still memory available “globally”. 

In this context, let us briefly look at algorithms that 
play a significant role in large-scale symbolic and 
algebraic computations. 

2.1 Parallel algorithms for symbolic computations 

Multi-precision integer arithmetic is one of the most 
important fields in symbolic and algebraic 
computations. It appears, among others, in 
factorizations [6] or Gröbner basis computations [35]. 
For parallel arithmetic in finite fields there exists an 
implementation on a massive parallel processor [74]. 
Modular integer multiplication [16] and 
exponentiation [52] have been also implemented on 
parallel architectures. Systolic algorithms for integer 
arithmetic were discussed in [35]. Furthermore, 
systems for multivariate integer arithmetic on 
distributed memory machines [71] and on the Internet 
[6] have been developed. Parallel implementation of 
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the Karatsuba algorithm for multi-precision integer 
multiplication was reported in [36]. 

The second class of algorithms that utilize significant 
amount of computational resources are 
implementations of polynomial arithmetic. Two 
categories of algorithms that can clearly benefit from 
multiple resources in parallel processing are (a) 
algorithms that depend on identification of similar 
terms such as the polynomial addition, and (b) 
knowledge based algorithms such as the symbolic 
differentiation [47]. The greatest common divisor is 
also an important operation on both integers and 
polynomials. Parallel integer GCD algorithms based 
on the Euclidean algorithm have been developed in 
[37]. Other parallel algorithms applicable to this 
problem, such as those proposed in [51], use Fast 
Fourier Transforms (FFTs). In [78] two aspects of 
parallelism in symbolic computing were discussed: 
implementation of parallel programs used in 
factorization of polynomials and automatic derivation 
and generation of parallel codes for finite element 
analysis. The first aspect illustrates the use of parallel 
programming to speed up symbolic manipulation, 
while the second one shows how symbolic systems 
can help create parallel software for scientific 
computation.  

The third class of algorithms that can benefit from 
extra memory and processing power availability in 
parallel systems are the Cramer's rule and the 
Gaussian elimination with back substitution used to 
solve sparse systems of linear equations [47]. Parallel 
computers with distributed memory can provide the 
memory required for large determinant calculations by 
Cramer's rule which is impractical on single-processor 
computers. In [47] several methods for calculation of 
the determinant were compared: the Gaussian 
elimination method, the Bareiss recurrence formula 
(for large dense systems), and the classical minor 
expansion (for large sparse systems) and their benefits 
assessed. 

Finally, the Gröbner basis algorithm has to be 
mentioned. Here, the size of the computation and the 
irregular data structures required make parallelization 
an attractive option for improving the algorithm 
performance. Several parallel implementations of the 
algorithm have been developed. That proposed in [3] 
consists of parameterized work distribution on shared 
memory architecture. In [9] application level threads 
are used on a distributed memory system. 
Implementations of the Gröbner basis algorithm on 
distributed memory systems have been reported in [47, 
68, 70]. 

While memory-bound algorithms are clearly the most 
important driving force for the development of parallel 
CASs, there is one more reason that becomes more 
important with every new release of each of the major 
CAS. As indicated above, CASs increase their utility 
not only through adding new symbolic capabilities, 
but also through adding new functionalities, such as: 
simulation environments, visualization, numerical 
modules etc. In this way, modern CASs become less 
of a computational engine and more of a problem 
solving environment: the CAS is seen as an interface 
to a number of computational kernels that are used 
depending on the user needs. This change poses a 
need for addressing the parallelization of processor 
bound tasks. As examples of such tasks we can list: 
rendering of images for an animation illustrating the 
evolution of a system, multivariable simulation 
illustrating the solution space of an optimization 
problem or numerical solution of partial differential 
equations that are intractable through symbolic 
computations. In these cases, all of the typical 
problems involved in parallelization of numerical 
computations appear also in the context of parallel or 
distributed CAS. Overall, all the above listed 
examples illustrate the growing need for support of 
parallel and distributed computing within CASs. 

The design and implementation of a robust and 
scalable CAS relies on the same principles as those 
applied in other large systems (e.g. modularity, 
abstraction), but there are also some specific 
development problems (identified, for instance, in 
[47]) that play an important role, when development 
of a parallel CAS is concerned: special treatment of 
object representation, domain specification, 
intermediate expression swell, algorithmic dependence 
on irregular data which are difficult to be dynamically 
partitioned, complexity of some of ensuing algebraic 
computations limiting ability to estimate resource 
requirements.  

2.2 Parallel and distributed CASs – state-of-the-art 
 It is a well known fact that developing completely 
new parallel or distributed systems, although efficient, 
in most cases is rather difficult. Moreover, usually 
only a few parallel algorithms within such a system 
are fully implemented and tested, making the resulting 
artifact too limited for practical uses. 

An alternative approach is to add parallelism to the 
existing software. While based on different 
requirements and targeting competing parallel 
architectures, several systems for parallel computer 
algebra have been developed in this way by following 
developmental strategies identified in [47]:  
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 develop CASs for shared memory 
architecture; 

 develop computer algebra hardware; 

 add parallel primitives for communication 
and cooperation to existing CASs; 

 build distributed memory systems based on 
standard communication middleware; 
build distributed systems for loosely coupled 
machines or across the Internet. 

We next present a summary of existing CASs and 
other symbolic computations systems or tools that 
have been extended towards parallel and distributed 
computations. We first discuss three most popular 
CASs: Maple [39], Matlab [43] and Mathematica 
[42] and subsequently present a combined list of 
smaller-scale or niche projects. 

2.2.1 Maple. There exist a large number of efforts 
to extend Maple to parallel and distributed 
environments and a comprehensive review can be 
found in [75]. Here, we present a few selected 
examples to illustrate the most important approaches 
taken by various research groups. 

A message passing interface to port Maple to the Intel 
Paragon was presented in [5]: a master-slave approach 
to distributed scheduling was used to maintain a single 
node access for interactive use of Maple. A parallel 
version of Maple running on a network of 
workstations was reported in [80]: it is a message-
passing system with primitives spawn and kill for 
creating and terminating processes, and procedures 
send, receive and reply for communication. ||Maple|| 
[67] is a portable system for parallel symbolic 
computations built as an interface between the parallel 
programming language Strand and the sequential 
CAS Maple. 

Distributed Maple [75] is a portable system for 
writing parallel programs in Maple, which allows the 
creation of concurrent tasks and have them executed 
by multiple Maple kernels running on separate 
networked computers. A configuration program 
written in Java starts and connects external 
computational kernels on separate machines and 
schedules concurrent tasks for execution on them. A 
package written in Maple implements an interface to 
the scheduler and provides a parallel programming 
model. The design principles behind PVMaple [65] 
are very similar to those of the Distributed Maple. 

Here, several independent Maple kernels residing on 
separate computers connected by a network cooperate 
to solve a given problem. Maple is wrapped into 
external software that manages execution of tasks. A 
special binary is responsible for the message 
exchanges between Maple processes, coordinates the 
interaction between Maple kernels via PVM daemons, 
and schedules tasks among nodes. A Maple library 
implements a set of parallel programming commands 
available within Maple itself and supports 
connections with the command messenger. 

2.2.2 Matlab. More than 20 different versions of 
parallel Matlab have been developed by different 
groups of researchers and an overview of them was 
presented in [10]. They can be compared according to 
their process-communication and user interfaces. A 
significant number of parallel versions of Matlab 
make use of message-passing for interprocessor 
communication and provide message-passing interface 
to the user. Commands like send and receive are 
based on standard MPI/PVM libraries and utilized in 
DP-ToolBox [20], MPITB/PVMTB [53], and 
MultiMatlab [54]. Simple communication functions 
have been used in Matlab Parallelization Toolkit 
[45], ParMatlab [62] and PMI [68], while file I/O 
synchronization functions via a shared file system has 
been implemented in MatlabMPI [44]. A few parallel 
Matlabs are designed for shared-memory systems and 
provide shared-memory programming interfaces – in 
MATmarks [46], for example, commands are 
provided for shared variable declaration and process 
synchronization. Other versions of Matlab are 
designed to release the user from parallel details by 
overloading several existing Matlab functions with 
their parallel versions – for example, the Matlab*p 
[11]. Another approach is to use Matlab compilers, 
like Conlab [14] or Otter [60]. These compilers can 
automatically translate a Matlab program into a 
parallel program written in C or another language. It is 
worth noting that the Symbolic Math Toolbox 
provided within Matlab uses the Maple kernel for 
symbolic computations.  

2.2.3 Mathematica. Parallel Computing Toolkit 
(PCT) [61] is an extension of Mathematica which 
allows communication between servers using rsh. A 
typical installation involves a master kernel, a license 
manager (to manage licenses and passwords), and one 
Mathematica kernel available on each computational 
node. The master kernel handles all input, output, and 
scheduling, and can be controlled interactively from 
front end or in batch mode. Parallel computation has 
four stages: extension load, launch of computational 
servers, execution of commands and stopping remote 
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servers. ParallelEvaluate is used for parallel 
evaluation of multiple expressions, ParallelMap for 
application of a function to several remote data 
objects, and ParallelTable for building tables. 
Variables and functions can be exported to remote 
servers using ExportEnviroment. The extension 
Parallel`VirtualShared` and the declaration 
SharedVariables simulate shared variables, but the 
access of each such variable is achieved through the 
network. 

Based on the PCT, gridMathematica [30] was 
constructed as a parallel computing solution for 
dedicated clusters facilitating parallel computing 
within Mathematica, and requiring only TCP/IP 
connectivity. Since it is focused on management of 
clusters of heterogeneous machines, a better name for 
this environment would be clusterMathematica. 

Distributed Mathematica [64], similar to 
Distributed Maple, is a system for writing parallel 
programs in Mathematica allowing to create 
concurrent tasks executed by Mathematica kernels 
running on networked computers.  

2.2.4 Special libraries and systems. Threads for 
parallel symbolic computations on a shared-memory 
computers were used in parallelizing the SAC-2 CAS, 
resulting in the ParSac-2 parallel system [38], written 
in C. It has been used to substantially improve 
performance of applications such as Gröbner basis 
computations [3], Karatsuba multiplication and FFT-
based methods. Paclib [33] is a parallel extension of 
Saclib, a library of C programs for computer algebra 
derived from the SAC-2 CAS. Here, parallelization 
was achieved through addition of lightweight 
processes, resulting in a general parallel CAS. 
Communication between processes is achieved 
through access to shared data. Since shared memory 
limits scalability, very large problems could not have 
been solved. Givaro [28] is a more recent C++ library 
that supports parallel programming for arithmetic and 
algebraic computations with basic algebraic objects, 
such as vectors, matrices and univariate polynomials. 

A special L-language designed for L-machines was 
provided for parallel programming of computer 
algebra algorithms in [7]. The L-machine consists of a 
reconfigurable assembly of processors, memory, a bus 
switch, and a sensor bit used for access rights to the 
shared memory and for synchronization. 

A dedicated machine called FLATS [29] was 
constructed for large scale CAS applications. It was 

equipped with special hardware for arbitrary precision 
arithmetic and parallel hashing in addition to the 
instruction set for executing Lisp primitives directly 
by the hardware. In [41] Lisp was extended with a tool 
for automatic identification of concurrency: the 
system accepts a Lisp program, analyses it for 
available concurrency and generates a program for 
parallel execution on a multi-processor comprising of 
networked workstations. This data flow analyzer can 
be also utilized to analyze a complete Lisp-based CAS 
such as the Reduce [69] and identify areas that can be 
parallelized. A different Lisp extension for a 
distributed network of workstations was given in [32] 
where explicit concurrency primitives were provided. 
Another system called Star/MPI [15] is available for 
Gnu Common Lisp and GAP [23]. 

The first version of Cabal [58] was written as a small 
system for polynomial algebra. It used the PVM 
communication library for parallelization. A later 
development switched to the MPI [48]. The memory 
model has been extended and several packages for 
multi-precision integers, matrix algebra and Gröbner 
basis computations were added. Applications of Cabal 
to large sparse systems of linear equations and to 
parallel Gröbner basis computations have been 
described in [47].  

MuPad [55], the multi-processing algebra data tool, is 
a CAS developed for shared memory parallel 
machines designed to be an efficient tool for fast 
access to large databases and to allow functional 
programming.  

Form [22], used in quantum field theory 
computations, is a program for symbolic manipulation 
of algebraic expressions that was tuned to handle very 
large expressions, involving millions of terms, arising 
in its application area. A parallel Form prototype 
ParForm, based on MPI, was presented in [21]. The 
Form user does not have to know anything about the 
mechanisms behind the parallel version to run existing 
programs in parallel (no need to modify the sequential 
versions of the programs) as parallelization is 
facilitated internally within the ParForm 
environment.  

The FoxBox system [18] provides client-server 
interfaces to several CASs running in distributed 
computing environments; distribute, wait, kill 
functions are compliant with the MPI. Finally, the 
DSC system [19] is designed for symbolic 
computation on heterogeneous network of 
workstations and across the Internet. It has a master 
scheduler to distribute tasks based on availability of 
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resources determined through some threshold 
conditions. DSC has been used in algebraic 
computing with large integers and sparse linear 
systems [17]. 

2.3 Web-enabled systems 

In number theory there exist a number of successful 
Internet projects [34] aiming, among others, at finding 
large prime numbers, factoring large numbers, 
computing digits of π, finding collisions on known 
encryption algorithms etc. For Gröbner basis 
computations, the online system OGB [49] has been 
recently deployed.  

A CAS web-wrapper component that can be used by 
multiple systems was reported in [81]. Here, shared-
memory parallelism was used to speed up Gröbner 
basis computations. Furthermore, a new algorithmic 
development in Gröbner basis computations, the 
fractal Gröbner walk, was made available to various 
CASs in the form of a single specialized 
implementation.  

MapleNet [40] is a software platform to enhance 
mathematics and related courses over the web. The 
client machine must be able to run Java applets. A 
publisher machine is responsible for creating and 
editing content of web pages and, when complete, 
uploading them to the server. To access web pages and 
the applets associated with them, users will connect to 
the server. It is also the server that manages concurrent 
Maple instances launched to serve client requests for 
mathematical computations and display services. 
Finally, the server facilitates additional services such 
as user authentication, logging information, and 
database access.  

webMathematica [82] offers access to Mathematica 
applications through a web browser. Mathematica 
can be seen as the computational engine for the 
webMathematica sites. webMathematica uses 
standard Java technologies: Java Servlet and 
JavaServer Pages. It allows a site to deliver HTML 
pages that incorporate Mathematica commands. 
When a request is made for one of these pages, the 
Mathematica commands are evaluated and the 
computed result is inserted “back” into the page. Input 
can come from commands forms, applets, JavaScript, 
and web-enabled applications. It is also possible to 
send data files to a server for processing. Output can 
use different formats such as HTML, images, 
Mathematica notebooks, MathML, XML, PostScript, 
and PDF.  

A framework for description and provision of web-
based mathematical services was recently designed 
within the Monet project [50]. Its aim was to 
demonstrate the applicability of the semantic web to 
the world of mathematical software. The key to such a 
framework is the ability to discover services 
dynamically based on published descriptions which 
express both their mathematical and non-mathematical 
attributes. The discovery service and subsequent 
interaction were mediated by software agents capable 
of recognizing the criteria which should determine 
how particular problems are to be solved, and 
extracting them from the user's problem description. A 
wrapper for the symbolic solver was also designed to 
provide an environment that encapsulates CASs and 
expose their functionalities through symbolic services. 
A symbolic service runs as an independent web 
service and is reachable through its own unique URL. 
All symbolic services are registered to the symbolic 
server and managed by the wrapper tool. The 
following technologies were used for implementing 
the symbolic solving services: Java, Axis, Tomcat, 
SOAP, WSDL, JSP, MSDL. Maple was chosen for 
the computing engine in the initial implementation, 
and Axiom was used to demonstrate the ability to 
incorporate different computational engines without 
major changes. 

3 Grid-enabled systems 

There exist a number of grid-oriented projects that 
involve CASs. Even though some of these projects 
have just been initiated, we report their existence and 
goals for completeness of the overview of the field as 
well as to illustrate its liveliness. 

Open source package NetSolve [1] was one of the 
earliest grid systems developed. Its initial motivation 
was focused on the usability, portability and 
availability of existing optimized software libraries for 
high-performance computing, particularly those for 
numerical linear algebra. NetSolve is a middleware 
between desktop systems equipped with simple APIs 
and the existing services supported by the grid 
architecture. One of the goals of NetSolve project is 
to create a system capable of integrating arbitrary 
computational resources. NetSolve APIs are available 
for Mathlab, Mathematica, and Octave [59]. 
Version 2.0, released in 2003, introduces GridSolve 
re-designed for interoperability with the grid. 

GridSolve is a GridRPC [56] based client-server 
agent system that enables users to solve complex 
scientific problems remotely using distributed 
resources on the grid. When a user submits a problem 
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to the NetSolve agent, the agent searches the grid, 
chooses a set of suitable services and requests that the 
problem be solved. After the task is completed the 
NetSolve agent returns the solution to the user. Load 
balancing and retry for fault-tolerance are handled 
automatically by the system. Access to different grids 
is made possible through proxies. At the present time, 
proxies for Globus and Condor-G are available. 

Ninf-G [57] is another GridRPC system 
implementing the Ninf system on top of the Globus 
Toolkit. In version 3, released in 2004, different Ninf 
client APIs were build, including one for 
Mathematica. 

Grid-Elimino [83] is a recent Java-based computation 
system for grids based on Globus and Iamc [79]. It 
contains a master program that controls the slave 
servers, i.e. Elimino instances running as grid 
services. Elimino is a stand-alone symbolic 
computation system. The client should be written in 
Java by the user and must describe the tasks for each 
Elimino instance.  

The Grid Enabled Numerical and Symbolic 
Services [26] project, Genss, was initiated in 2004 
and follows the ideas formulated in the Monet [50] 
project. It intends to combine grid computing and 
mathematical web services using a common open 
agent-based framework. Thus far research was 
focused in two areas: (1) matchmaking techniques for 
advertisement and discovery of mathematical services, 
and (2) design and implementation of an ontology for 
symbolic problems.  

The Geodise [27] system, implemented within the 
Matlab environment, is an engineering portal 
providing grid access to computational fluid dynamics 
and design optimization tools. Two different 
mechanisms are used to submit jobs to computing 
resources. The first one uses a web service interface to 
Condor [13]. The second one is implemented as a 
collection of Matlab functions. In the latter case, 
submission of jobs to Globus-enabled resources is 
achieved via Java CoG tools. The new Matlab 
functions allow users to run and control jobs on the 
grid, or to archive, query, and retrieve data. Special 
Matlab functions are used to notify the (mobile) user 
about the status of the job.  

Another on-going project [12] based on Java CoG 
builds two sets of software tools to enable access to 
Globus grid resources from Matlab. The first one is a 
set of wrappers necessary to invoke the CoG batch 

files directly from the Matlab command line. The 
second one is a set of Java CoG libraries providing 
the integration of user codes.  

Matlab*g [10] builds a parallel Matlab on a platform-
independent grid. It exploits a client-server 
architecture based on the distributed shared memory 
model. Each server receives a work package, performs 
computations, and sends results back to the client. 
Two types of operations are supported: distributed 
matrix computations and a parallel for-loop. First 
implementation of Matlab*g was based on Alice [2], 
grid-computing middleware using JavaSpaces. A 
more recent implementation is based on the Globus 
Toolkit.  

A grid extension of Matlab*p based on the mpich-G2 
and the Globus Toolkit is reported in [63]. It has three 
components: a server connection manager handling 
communications, a matrix manager handling the task 
distribution and a package manager registering the 
available services. 

 
The recent Maple2g package [66] allows the 
connection between Maple and computational grids 
based on the Globus Toolkit. It is a grid-enabling 
wrapper consisting of two parts, a CAS-dependent and 
a grid-dependent one: a library of Maple functions 
allowing the Maple user to interact with the grid 
middleware, and a package of Java classes, acting as 
an interface between the library and the grid 
environment. Using it, the user can augment Maple’s 
facilities with external modules, in particular being 
able to explore computational grid facilities, to 
connect to a specific grid service, to use that grid 
service, and to translate obtained results back into the 
Maple interface. Moreover, multiple Maple kernels 
can cooperate within a grid in a similar way like they 
would in a cluster.  
 
MathGridLink [77] is a software component designed 
to act as a middleware between Mathematica and the 
grid. MathGridLink allows both the development/ 
deployment of Mathematica computational services 
on the grid and the usage of any existing grid service 
from within Mathematica. MathGridLink is built on 
top of the Globus Toolkit 3 and it consists of three 
main components: a general purpose grid service 
client, a component used for grid service generation 
from Mathematica, and a specialized Mathematica 
kernel manager providing remote access to grid 
services implemented in Mathematica. 
 
The Grid-TLSE [31] project, started in 2003, aims to 
design an expert site for users who are searching for 
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sparse matrix solvers. The administrator interface, 
called Weaver is used to define, to deploy, and to 
exploit services over the grid. The web interface, 
called Websolve, allows a web browser to submit 
computational requests to a grid by using third-party 
software such as Matlab, Octave, Scilab, NetSolve and 
Diet.  
 
Finally, Gemlca [25] is a recent solution to deploy a 
legacy code application as a grid service without 
modifying the code. The Gemlca front-end, described 
in WSDL, offers grid services to deploy, query, 
submit, check the status of, and get the results back 
from computational jobs. In order to access a legacy 
code program, the user executes the Gemlca grid 
service client that creates a legacy code instance with 
the help of a legacy code factory. Following this, the 
system submits the job to the compute server through 
Globus Toolkit. 
 
As can be seen from the above presented summary of 
the state-of-the-art in parallel and distributed as well 
as grid-enabled CASs, this area is brimming with 
activities. In particular, very large body of research is 
devoted to facilitating symbolic computations on the 
grid.  

 
4 Conclusions 
 
We have tried to discuss recent developments in 
symbolic computations, in particular, computer 
algebra systems. We are particularly interested in 
initiatives leading to porting CASs to parallel and 
distributed computers as well and making them Web 
and grid enabled. We have presented a rather 
extensive list of past, present and future projects 
attempting to reach these goals. Our most important 
findings can be summarized as follows:  

 a growing interest in symbolic computations and 
computer algebra systems can be observed;  

 application of CASs to solution of large 
problems often demands application of parallel 
and/or distributed computers;  

 porting CASs to parallel and distributed 
computers is not a trivial task;  

 number of existing and newly started projects 
indicates fast growing interest in porting CASs 
to the Web and to the grids in particular;  

 real world applications of CASs on grids are in 

very early phases and efficiency of proposed 
tools will have to be further investigated and 
improved;  

 while most of project involving CASs and grids 
is in very early stages, existing tools are mature 
enough to allow for experimental work to be 
initiated and it is this type of work that is 
required to lay ground for the future 
developments.  

 

This article is based on the chapter “Symbolic 
Computation on Grid” in the book "Engineering the 
Grid: status and perspective", Editors Beniamino di 
Martino, Jack Dongarra, Adolfy Hoisie, Laurence 
Yang, and Hans Zima, Nova Science Publishers, Inc., 
which is to appear in 2005. 
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