
SETIT 2005
3rd International Conference: Sciences of Electronic,

Technologies of Information and Telecommunications
March 27-31, 2005 – TUNISIA

Survey of Symbolic Computations on the Grid
Dana Petcu*, Dorin Ţepeneu‡, Marcin Paprzycki†,

Tetsuya Mizutani‡ and Tetsuo Ida‡

* Institute e-Austria in Timişoara and Department of Computer Science,
Western University of Timisoara,

 B-dul Vasile Pârvan 4, Timişoara 300223, Romania
petcu@info.uvt.ro

†Oklahoma State University, Tulsa, Oklahoma, USA, and SWPS, Warszawa, Poland
 marcin@cs.okstate.edu

‡Department of Computer Science, University of Tsukuba,
Tennoudai 1-1-1, Tsukuba 305-8573, Japan

dorinte@score.cs.tsukuba.ac.jp

mizutani@cs.tsukuba.ac.jp

ida@cs.tsukuba.ac.jp

Abstract:
Symbolic and algebraic computations are one of the fastest growing areas of scientific computing. In this paper we present an
overview of the state-of-the-art in symbolic and algebraic computations on parallel and distributed computers and on grids.
We give some background information, including typical application areas, and then give a list of past and on-going projects
involving symbolic computations. We also attempt at concisely summarizing our findings. This article is based on the chapter
on symbolic computations on grid that will appear in 2005 the book "Engineering the Grid: status and perspective", Editors
Beniamino di Martino, Jack Dongarra, Adolfy Hoisie, Laurence Yang, and Hans Zima, Nova Science Publishers, Inc..

Key words: Symbolic Computation, Grid, Parallel and Distributed Computing, Computer Algebra System

1 Introduction

There exist two basic approaches to computational
solution of mathematical problems: numerical and
symbolic. The numerical approach had an advantage
of being capable of solving a substantially larger set of
problems. However, the symbolic approach is
systematically gaining more recognition as a viable
tool for solving large-scale engineering problems.
Symbolic solution of mathematical problems involves
manipulations of symbolic objects, like logical or
algebraic formulas, rules or programs. Unlike the
numerical approach, one of the main goals of the
symbolic approach is exactness. Typically, the final
answer obtained through symbolic manipulations is

either a rational number or a formula that represents
an answer.

Developments in symbolic computing have been
lagging relatively to numerical computing, mainly due
to the lack of available computational resources: most
importantly computer memory, but also processor
power. Continuous growth in the capabilities of
computer hardware led to an increasing interest in
symbolic computation and resulted, among others
things, in development of sophisticated Computer
Algebra Systems (CASs). These systems allow users
to directly study computational problems on the basis
of their mathematical formulations and to focus on the
problems themselves instead of spending time
transforming the problems into forms that are

SETIT2005

numerically solvable. As an effect, symbolic
computations are being applied in a number of diverse
disciplines such as, among others, pure and applied
mathematics, physics, engineering and economics
[24]. Symbolic computation is also becoming a basis
for advanced applications in many areas of computer
science, such as computer aided design or software
development, VLSI design, geometric modeling and
reasoning, robot programming etc. Finally, symbolic
methods have also become popular in life sciences, in
particular in studying human genome.

While the major purpose of the CAS is to manipulate
formulas symbolically, many systems have
substantially extended their capabilities. Nowadays,
robust CASs offer other functionalities like numerical
calculation, graphics, and simulations allowing a more
comprehensive approach to problem solving.
Furthermore, modern CASs are capable of solving
very large problems. While, typically, CAS systems
are utilized in an interactive mode, to solve large
problems they can be also used in a “batch” mode and
programmed using languages that are very close to
common mathematical notation. Lists of existing
CASs can be found in [8, 72, 73] and their facilities
have been compared in [4, 76, 82].

As CASs become capable of solving large problems,
they follow the course of development that has already
been taken by numerical software: from sequential
computers to parallel machines to distributed
computing and finally to the grid. It is particularly the
grid that has high potential as a discovery accelerator.
Currently, its widespread adoption is still impeded by
a number of problems, one of which is difficulty of
developing and implementing grid-enabled programs.
The aim of this paper is to present a comprehensive
survey of the state-of-the-art of symbolic and
algebraic computations involving parallel and
distributed environments as well as the path leading
toward grid-enabled CASs.

2 Parallel and distributed symbolic
computations

Many users utilize Computer Algebra Systems as tools
performing “small scale” mathematical calculations
that would be tedious and error-prone when performed
by hand. For them, CASs running on a single
processor computer are quite satisfactory. However,
some users employ CASs to solve large and very large
problems. Here, the solution to the problem may
involve, for instance, large scale symbolic
computations requiring a significant amount of
computational resources, or a combination of

symbolic and numerical computations. These users
often encounter the limitations of single-processor
systems: processor speed and available memory. It is
this class of users that could truly benefit from
availability of parallel and distributed versions of
CASs.

It is well known, that the two main reasons driving the
development of parallel computers are: (a) ability to
reduce the wall-clock time i.e. the user waiting time
for the solution (problems that are processor bound),
and (b) ability to solve problems that cannot fit into
memory of a “workstation” (problems that are
memory bound). An argument has been formulated,
that for the CASs it is the latter restriction that is the
driving force for parallelization [47]. The argument
relies on the following observations. Computation
with algebraic terms involves interaction between the
amount of available memory and the amount of
memory required by the algorithm at any stage of the
computation; the input size of a problem may be
small, but its memory use in intermediate stages of the
computation may grow considerably. This
phenomenon is known as an intermediate expression
swell and has been observed since the earliest CASs.
However, parallelization of CASs is not easy to
achieve. Symbolic computations tend to have
unpredictable data dependencies, irregular data access
patterns and varying dependent parameters – all these
make it difficult to predict patterns of memory (and
processor) usage. Moreover, in the case of distributed
memory computers each processor has a local address
space, and therefore it is quite possible for one
processor to exceed its available memory, while there
is still memory available “globally”.

In this context, let us briefly look at algorithms that
play a significant role in large-scale symbolic and
algebraic computations.

2.1 Parallel algorithms for symbolic computations

Multi-precision integer arithmetic is one of the most
important fields in symbolic and algebraic
computations. It appears, among others, in
factorizations [6] or Gröbner basis computations [35].
For parallel arithmetic in finite fields there exists an
implementation on a massive parallel processor [74].
Modular integer multiplication [16] and
exponentiation [52] have been also implemented on
parallel architectures. Systolic algorithms for integer
arithmetic were discussed in [35]. Furthermore,
systems for multivariate integer arithmetic on
distributed memory machines [71] and on the Internet
[6] have been developed. Parallel implementation of

SETIT2005

the Karatsuba algorithm for multi-precision integer
multiplication was reported in [36].

The second class of algorithms that utilize significant
amount of computational resources are
implementations of polynomial arithmetic. Two
categories of algorithms that can clearly benefit from
multiple resources in parallel processing are (a)
algorithms that depend on identification of similar
terms such as the polynomial addition, and (b)
knowledge based algorithms such as the symbolic
differentiation [47]. The greatest common divisor is
also an important operation on both integers and
polynomials. Parallel integer GCD algorithms based
on the Euclidean algorithm have been developed in
[37]. Other parallel algorithms applicable to this
problem, such as those proposed in [51], use Fast
Fourier Transforms (FFTs). In [78] two aspects of
parallelism in symbolic computing were discussed:
implementation of parallel programs used in
factorization of polynomials and automatic derivation
and generation of parallel codes for finite element
analysis. The first aspect illustrates the use of parallel
programming to speed up symbolic manipulation,
while the second one shows how symbolic systems
can help create parallel software for scientific
computation.

The third class of algorithms that can benefit from
extra memory and processing power availability in
parallel systems are the Cramer's rule and the
Gaussian elimination with back substitution used to
solve sparse systems of linear equations [47]. Parallel
computers with distributed memory can provide the
memory required for large determinant calculations by
Cramer's rule which is impractical on single-processor
computers. In [47] several methods for calculation of
the determinant were compared: the Gaussian
elimination method, the Bareiss recurrence formula
(for large dense systems), and the classical minor
expansion (for large sparse systems) and their benefits
assessed.

Finally, the Gröbner basis algorithm has to be
mentioned. Here, the size of the computation and the
irregular data structures required make parallelization
an attractive option for improving the algorithm
performance. Several parallel implementations of the
algorithm have been developed. That proposed in [3]
consists of parameterized work distribution on shared
memory architecture. In [9] application level threads
are used on a distributed memory system.
Implementations of the Gröbner basis algorithm on
distributed memory systems have been reported in [47,
68, 70].

While memory-bound algorithms are clearly the most
important driving force for the development of parallel
CASs, there is one more reason that becomes more
important with every new release of each of the major
CAS. As indicated above, CASs increase their utility
not only through adding new symbolic capabilities,
but also through adding new functionalities, such as:
simulation environments, visualization, numerical
modules etc. In this way, modern CASs become less
of a computational engine and more of a problem
solving environment: the CAS is seen as an interface
to a number of computational kernels that are used
depending on the user needs. This change poses a
need for addressing the parallelization of processor
bound tasks. As examples of such tasks we can list:
rendering of images for an animation illustrating the
evolution of a system, multivariable simulation
illustrating the solution space of an optimization
problem or numerical solution of partial differential
equations that are intractable through symbolic
computations. In these cases, all of the typical
problems involved in parallelization of numerical
computations appear also in the context of parallel or
distributed CAS. Overall, all the above listed
examples illustrate the growing need for support of
parallel and distributed computing within CASs.

The design and implementation of a robust and
scalable CAS relies on the same principles as those
applied in other large systems (e.g. modularity,
abstraction), but there are also some specific
development problems (identified, for instance, in
[47]) that play an important role, when development
of a parallel CAS is concerned: special treatment of
object representation, domain specification,
intermediate expression swell, algorithmic dependence
on irregular data which are difficult to be dynamically
partitioned, complexity of some of ensuing algebraic
computations limiting ability to estimate resource
requirements.

2.2 Parallel and distributed CASs – state-of-the-art
 It is a well known fact that developing completely
new parallel or distributed systems, although efficient,
in most cases is rather difficult. Moreover, usually
only a few parallel algorithms within such a system
are fully implemented and tested, making the resulting
artifact too limited for practical uses.

An alternative approach is to add parallelism to the
existing software. While based on different
requirements and targeting competing parallel
architectures, several systems for parallel computer
algebra have been developed in this way by following
developmental strategies identified in [47]:

SETIT2005

 develop CASs for shared memory
architecture;

 develop computer algebra hardware;

 add parallel primitives for communication
and cooperation to existing CASs;

 build distributed memory systems based on
standard communication middleware;
build distributed systems for loosely coupled
machines or across the Internet.

We next present a summary of existing CASs and
other symbolic computations systems or tools that
have been extended towards parallel and distributed
computations. We first discuss three most popular
CASs: Maple [39], Matlab [43] and Mathematica
[42] and subsequently present a combined list of
smaller-scale or niche projects.

2.2.1 Maple. There exist a large number of efforts
to extend Maple to parallel and distributed
environments and a comprehensive review can be
found in [75]. Here, we present a few selected
examples to illustrate the most important approaches
taken by various research groups.

A message passing interface to port Maple to the Intel
Paragon was presented in [5]: a master-slave approach
to distributed scheduling was used to maintain a single
node access for interactive use of Maple. A parallel
version of Maple running on a network of
workstations was reported in [80]: it is a message-
passing system with primitives spawn and kill for
creating and terminating processes, and procedures
send, receive and reply for communication. ||Maple||
[67] is a portable system for parallel symbolic
computations built as an interface between the parallel
programming language Strand and the sequential
CAS Maple.

Distributed Maple [75] is a portable system for
writing parallel programs in Maple, which allows the
creation of concurrent tasks and have them executed
by multiple Maple kernels running on separate
networked computers. A configuration program
written in Java starts and connects external
computational kernels on separate machines and
schedules concurrent tasks for execution on them. A
package written in Maple implements an interface to
the scheduler and provides a parallel programming
model. The design principles behind PVMaple [65]
are very similar to those of the Distributed Maple.

Here, several independent Maple kernels residing on
separate computers connected by a network cooperate
to solve a given problem. Maple is wrapped into
external software that manages execution of tasks. A
special binary is responsible for the message
exchanges between Maple processes, coordinates the
interaction between Maple kernels via PVM daemons,
and schedules tasks among nodes. A Maple library
implements a set of parallel programming commands
available within Maple itself and supports
connections with the command messenger.

2.2.2 Matlab. More than 20 different versions of
parallel Matlab have been developed by different
groups of researchers and an overview of them was
presented in [10]. They can be compared according to
their process-communication and user interfaces. A
significant number of parallel versions of Matlab
make use of message-passing for interprocessor
communication and provide message-passing interface
to the user. Commands like send and receive are
based on standard MPI/PVM libraries and utilized in
DP-ToolBox [20], MPITB/PVMTB [53], and
MultiMatlab [54]. Simple communication functions
have been used in Matlab Parallelization Toolkit
[45], ParMatlab [62] and PMI [68], while file I/O
synchronization functions via a shared file system has
been implemented in MatlabMPI [44]. A few parallel
Matlabs are designed for shared-memory systems and
provide shared-memory programming interfaces – in
MATmarks [46], for example, commands are
provided for shared variable declaration and process
synchronization. Other versions of Matlab are
designed to release the user from parallel details by
overloading several existing Matlab functions with
their parallel versions – for example, the Matlab*p
[11]. Another approach is to use Matlab compilers,
like Conlab [14] or Otter [60]. These compilers can
automatically translate a Matlab program into a
parallel program written in C or another language. It is
worth noting that the Symbolic Math Toolbox
provided within Matlab uses the Maple kernel for
symbolic computations.

2.2.3 Mathematica. Parallel Computing Toolkit
(PCT) [61] is an extension of Mathematica which
allows communication between servers using rsh. A
typical installation involves a master kernel, a license
manager (to manage licenses and passwords), and one
Mathematica kernel available on each computational
node. The master kernel handles all input, output, and
scheduling, and can be controlled interactively from
front end or in batch mode. Parallel computation has
four stages: extension load, launch of computational
servers, execution of commands and stopping remote

SETIT2005

servers. ParallelEvaluate is used for parallel
evaluation of multiple expressions, ParallelMap for
application of a function to several remote data
objects, and ParallelTable for building tables.
Variables and functions can be exported to remote
servers using ExportEnviroment. The extension
Parallel`VirtualShared` and the declaration
SharedVariables simulate shared variables, but the
access of each such variable is achieved through the
network.

Based on the PCT, gridMathematica [30] was
constructed as a parallel computing solution for
dedicated clusters facilitating parallel computing
within Mathematica, and requiring only TCP/IP
connectivity. Since it is focused on management of
clusters of heterogeneous machines, a better name for
this environment would be clusterMathematica.

Distributed Mathematica [64], similar to
Distributed Maple, is a system for writing parallel
programs in Mathematica allowing to create
concurrent tasks executed by Mathematica kernels
running on networked computers.

2.2.4 Special libraries and systems. Threads for
parallel symbolic computations on a shared-memory
computers were used in parallelizing the SAC-2 CAS,
resulting in the ParSac-2 parallel system [38], written
in C. It has been used to substantially improve
performance of applications such as Gröbner basis
computations [3], Karatsuba multiplication and FFT-
based methods. Paclib [33] is a parallel extension of
Saclib, a library of C programs for computer algebra
derived from the SAC-2 CAS. Here, parallelization
was achieved through addition of lightweight
processes, resulting in a general parallel CAS.
Communication between processes is achieved
through access to shared data. Since shared memory
limits scalability, very large problems could not have
been solved. Givaro [28] is a more recent C++ library
that supports parallel programming for arithmetic and
algebraic computations with basic algebraic objects,
such as vectors, matrices and univariate polynomials.

A special L-language designed for L-machines was
provided for parallel programming of computer
algebra algorithms in [7]. The L-machine consists of a
reconfigurable assembly of processors, memory, a bus
switch, and a sensor bit used for access rights to the
shared memory and for synchronization.

A dedicated machine called FLATS [29] was
constructed for large scale CAS applications. It was

equipped with special hardware for arbitrary precision
arithmetic and parallel hashing in addition to the
instruction set for executing Lisp primitives directly
by the hardware. In [41] Lisp was extended with a tool
for automatic identification of concurrency: the
system accepts a Lisp program, analyses it for
available concurrency and generates a program for
parallel execution on a multi-processor comprising of
networked workstations. This data flow analyzer can
be also utilized to analyze a complete Lisp-based CAS
such as the Reduce [69] and identify areas that can be
parallelized. A different Lisp extension for a
distributed network of workstations was given in [32]
where explicit concurrency primitives were provided.
Another system called Star/MPI [15] is available for
Gnu Common Lisp and GAP [23].

The first version of Cabal [58] was written as a small
system for polynomial algebra. It used the PVM
communication library for parallelization. A later
development switched to the MPI [48]. The memory
model has been extended and several packages for
multi-precision integers, matrix algebra and Gröbner
basis computations were added. Applications of Cabal
to large sparse systems of linear equations and to
parallel Gröbner basis computations have been
described in [47].

MuPad [55], the multi-processing algebra data tool, is
a CAS developed for shared memory parallel
machines designed to be an efficient tool for fast
access to large databases and to allow functional
programming.

Form [22], used in quantum field theory
computations, is a program for symbolic manipulation
of algebraic expressions that was tuned to handle very
large expressions, involving millions of terms, arising
in its application area. A parallel Form prototype
ParForm, based on MPI, was presented in [21]. The
Form user does not have to know anything about the
mechanisms behind the parallel version to run existing
programs in parallel (no need to modify the sequential
versions of the programs) as parallelization is
facilitated internally within the ParForm
environment.

The FoxBox system [18] provides client-server
interfaces to several CASs running in distributed
computing environments; distribute, wait, kill
functions are compliant with the MPI. Finally, the
DSC system [19] is designed for symbolic
computation on heterogeneous network of
workstations and across the Internet. It has a master
scheduler to distribute tasks based on availability of

SETIT2005

resources determined through some threshold
conditions. DSC has been used in algebraic
computing with large integers and sparse linear
systems [17].

2.3 Web-enabled systems

In number theory there exist a number of successful
Internet projects [34] aiming, among others, at finding
large prime numbers, factoring large numbers,
computing digits of π, finding collisions on known
encryption algorithms etc. For Gröbner basis
computations, the online system OGB [49] has been
recently deployed.

A CAS web-wrapper component that can be used by
multiple systems was reported in [81]. Here, shared-
memory parallelism was used to speed up Gröbner
basis computations. Furthermore, a new algorithmic
development in Gröbner basis computations, the
fractal Gröbner walk, was made available to various
CASs in the form of a single specialized
implementation.

MapleNet [40] is a software platform to enhance
mathematics and related courses over the web. The
client machine must be able to run Java applets. A
publisher machine is responsible for creating and
editing content of web pages and, when complete,
uploading them to the server. To access web pages and
the applets associated with them, users will connect to
the server. It is also the server that manages concurrent
Maple instances launched to serve client requests for
mathematical computations and display services.
Finally, the server facilitates additional services such
as user authentication, logging information, and
database access.

webMathematica [82] offers access to Mathematica
applications through a web browser. Mathematica
can be seen as the computational engine for the
webMathematica sites. webMathematica uses
standard Java technologies: Java Servlet and
JavaServer Pages. It allows a site to deliver HTML
pages that incorporate Mathematica commands.
When a request is made for one of these pages, the
Mathematica commands are evaluated and the
computed result is inserted “back” into the page. Input
can come from commands forms, applets, JavaScript,
and web-enabled applications. It is also possible to
send data files to a server for processing. Output can
use different formats such as HTML, images,
Mathematica notebooks, MathML, XML, PostScript,
and PDF.

A framework for description and provision of web-
based mathematical services was recently designed
within the Monet project [50]. Its aim was to
demonstrate the applicability of the semantic web to
the world of mathematical software. The key to such a
framework is the ability to discover services
dynamically based on published descriptions which
express both their mathematical and non-mathematical
attributes. The discovery service and subsequent
interaction were mediated by software agents capable
of recognizing the criteria which should determine
how particular problems are to be solved, and
extracting them from the user's problem description. A
wrapper for the symbolic solver was also designed to
provide an environment that encapsulates CASs and
expose their functionalities through symbolic services.
A symbolic service runs as an independent web
service and is reachable through its own unique URL.
All symbolic services are registered to the symbolic
server and managed by the wrapper tool. The
following technologies were used for implementing
the symbolic solving services: Java, Axis, Tomcat,
SOAP, WSDL, JSP, MSDL. Maple was chosen for
the computing engine in the initial implementation,
and Axiom was used to demonstrate the ability to
incorporate different computational engines without
major changes.

3 Grid-enabled systems

There exist a number of grid-oriented projects that
involve CASs. Even though some of these projects
have just been initiated, we report their existence and
goals for completeness of the overview of the field as
well as to illustrate its liveliness.

Open source package NetSolve [1] was one of the
earliest grid systems developed. Its initial motivation
was focused on the usability, portability and
availability of existing optimized software libraries for
high-performance computing, particularly those for
numerical linear algebra. NetSolve is a middleware
between desktop systems equipped with simple APIs
and the existing services supported by the grid
architecture. One of the goals of NetSolve project is
to create a system capable of integrating arbitrary
computational resources. NetSolve APIs are available
for Mathlab, Mathematica, and Octave [59].
Version 2.0, released in 2003, introduces GridSolve
re-designed for interoperability with the grid.

GridSolve is a GridRPC [56] based client-server
agent system that enables users to solve complex
scientific problems remotely using distributed
resources on the grid. When a user submits a problem

SETIT2005

to the NetSolve agent, the agent searches the grid,
chooses a set of suitable services and requests that the
problem be solved. After the task is completed the
NetSolve agent returns the solution to the user. Load
balancing and retry for fault-tolerance are handled
automatically by the system. Access to different grids
is made possible through proxies. At the present time,
proxies for Globus and Condor-G are available.

Ninf-G [57] is another GridRPC system
implementing the Ninf system on top of the Globus
Toolkit. In version 3, released in 2004, different Ninf
client APIs were build, including one for
Mathematica.

Grid-Elimino [83] is a recent Java-based computation
system for grids based on Globus and Iamc [79]. It
contains a master program that controls the slave
servers, i.e. Elimino instances running as grid
services. Elimino is a stand-alone symbolic
computation system. The client should be written in
Java by the user and must describe the tasks for each
Elimino instance.

The Grid Enabled Numerical and Symbolic
Services [26] project, Genss, was initiated in 2004
and follows the ideas formulated in the Monet [50]
project. It intends to combine grid computing and
mathematical web services using a common open
agent-based framework. Thus far research was
focused in two areas: (1) matchmaking techniques for
advertisement and discovery of mathematical services,
and (2) design and implementation of an ontology for
symbolic problems.

The Geodise [27] system, implemented within the
Matlab environment, is an engineering portal
providing grid access to computational fluid dynamics
and design optimization tools. Two different
mechanisms are used to submit jobs to computing
resources. The first one uses a web service interface to
Condor [13]. The second one is implemented as a
collection of Matlab functions. In the latter case,
submission of jobs to Globus-enabled resources is
achieved via Java CoG tools. The new Matlab
functions allow users to run and control jobs on the
grid, or to archive, query, and retrieve data. Special
Matlab functions are used to notify the (mobile) user
about the status of the job.

Another on-going project [12] based on Java CoG
builds two sets of software tools to enable access to
Globus grid resources from Matlab. The first one is a
set of wrappers necessary to invoke the CoG batch

files directly from the Matlab command line. The
second one is a set of Java CoG libraries providing
the integration of user codes.

Matlab*g [10] builds a parallel Matlab on a platform-
independent grid. It exploits a client-server
architecture based on the distributed shared memory
model. Each server receives a work package, performs
computations, and sends results back to the client.
Two types of operations are supported: distributed
matrix computations and a parallel for-loop. First
implementation of Matlab*g was based on Alice [2],
grid-computing middleware using JavaSpaces. A
more recent implementation is based on the Globus
Toolkit.

A grid extension of Matlab*p based on the mpich-G2
and the Globus Toolkit is reported in [63]. It has three
components: a server connection manager handling
communications, a matrix manager handling the task
distribution and a package manager registering the
available services.

The recent Maple2g package [66] allows the
connection between Maple and computational grids
based on the Globus Toolkit. It is a grid-enabling
wrapper consisting of two parts, a CAS-dependent and
a grid-dependent one: a library of Maple functions
allowing the Maple user to interact with the grid
middleware, and a package of Java classes, acting as
an interface between the library and the grid
environment. Using it, the user can augment Maple’s
facilities with external modules, in particular being
able to explore computational grid facilities, to
connect to a specific grid service, to use that grid
service, and to translate obtained results back into the
Maple interface. Moreover, multiple Maple kernels
can cooperate within a grid in a similar way like they
would in a cluster.

MathGridLink [77] is a software component designed
to act as a middleware between Mathematica and the
grid. MathGridLink allows both the development/
deployment of Mathematica computational services
on the grid and the usage of any existing grid service
from within Mathematica. MathGridLink is built on
top of the Globus Toolkit 3 and it consists of three
main components: a general purpose grid service
client, a component used for grid service generation
from Mathematica, and a specialized Mathematica
kernel manager providing remote access to grid
services implemented in Mathematica.

The Grid-TLSE [31] project, started in 2003, aims to
design an expert site for users who are searching for

SETIT2005

sparse matrix solvers. The administrator interface,
called Weaver is used to define, to deploy, and to
exploit services over the grid. The web interface,
called Websolve, allows a web browser to submit
computational requests to a grid by using third-party
software such as Matlab, Octave, Scilab, NetSolve and
Diet.

Finally, Gemlca [25] is a recent solution to deploy a
legacy code application as a grid service without
modifying the code. The Gemlca front-end, described
in WSDL, offers grid services to deploy, query,
submit, check the status of, and get the results back
from computational jobs. In order to access a legacy
code program, the user executes the Gemlca grid
service client that creates a legacy code instance with
the help of a legacy code factory. Following this, the
system submits the job to the compute server through
Globus Toolkit.

As can be seen from the above presented summary of
the state-of-the-art in parallel and distributed as well
as grid-enabled CASs, this area is brimming with
activities. In particular, very large body of research is
devoted to facilitating symbolic computations on the
grid.

4 Conclusions

We have tried to discuss recent developments in
symbolic computations, in particular, computer
algebra systems. We are particularly interested in
initiatives leading to porting CASs to parallel and
distributed computers as well and making them Web
and grid enabled. We have presented a rather
extensive list of past, present and future projects
attempting to reach these goals. Our most important
findings can be summarized as follows:

 a growing interest in symbolic computations and
computer algebra systems can be observed;

 application of CASs to solution of large
problems often demands application of parallel
and/or distributed computers;

 porting CASs to parallel and distributed
computers is not a trivial task;

 number of existing and newly started projects
indicates fast growing interest in porting CASs
to the Web and to the grids in particular;

 real world applications of CASs on grids are in

very early phases and efficiency of proposed
tools will have to be further investigated and
improved;

 while most of project involving CASs and grids
is in very early stages, existing tools are mature
enough to allow for experimental work to be
initiated and it is this type of work that is
required to lay ground for the future
developments.

This article is based on the chapter “Symbolic
Computation on Grid” in the book "Engineering the
Grid: status and perspective", Editors Beniamino di
Martino, Jack Dongarra, Adolfy Hoisie, Laurence
Yang, and Hans Zima, Nova Science Publishers, Inc.,
which is to appear in 2005.

References

[1] S. Agrawal, J. Dongarra, K. Seymour and S. Vadhiyar,
NetSolve: past, present, and future - A look at a grid
enabled server, in Making the Global Infrastructure a
Reality, Wiley Publishing, Berman, F., Fox, G., Hey, A.
eds., 2003, pp. 613-622,
http://icl.cs.utk.edu/news_pub/submissions/netsolve-
ppf.pdf.

[2] ALiCE, http://www.comp.nus.edu.sg/~teoym/alice.htm.

[3] B. Amrhein, O. Gloor and W. Küchlin, A case study of
multithreaded Gröbner basis completion. In Procs.
ISSAC96, ACM Press (1996), http://www-
sr.informatik.unituebingen.de/projects/pareqs/issac96.ps
.

[4] L. Bernardin, A review of symbolic solvers (1996),
http://www.inf.ethz.ch/personal/bernardi/
solve/review_A4.ps.

[5] L. Bernardin, Maple on a massively parallel,
distributed memory machine, in Procs. PASCO'97, M.
Hitz and E. Kaltofen, eds., ACM Press (1997), pp. 217–
222.

[6] R. P. Brent, Some parallel algorithms for integer
factorisation, in Procs. Euro-Par'99, P. Amestoy et al,
eds., LNCS 1685, Springer (1999),
http://web.comlab.ox.ac.uk/oucl/
work/richard.brent/pd/rpb193sp.pdf.

[7] B. Buchberger, The L-machine: An attempt at parallel
hardware for symbolic computation, in Procs. AAECC-
3, LNCS 229 (1986), Springer-Verlag, pp.333–347.

[8] Cain, http://research.mupad.de/CAIN/.

[9] S. Chakrabarti and K. Yelick, Implementing an
irregular application on distributed memory
multiprocessor, in Procs. 4th ACM SIGPLAN POPP'93,
ACM Press (1993), pp. 169-178,

SETIT2005

http://www.cs.berkley.edu/~yelick/soumen/grobner-
ppopp93.ps.

[10] Y. Chen and S. Fong Tan, Matlab*g: A grid-based
parallel Matlab, SMA, NUS, Singapore (2002),
http://ntu-cg.ntu.edu.sg/Grid_competition/report/grid-
9.pdf.

[11] R. Choy, Matlab*p 2.0: Interactive supercomputing
made practical. MS Thesis, EECS, MIT (2002),
http://www.cs.ucsb.edu/~gilbert/cs290iSpr2003/ChoyT
hesis.ps.

[12] CoG Kit Matlab Page, http://www-
unix.globus.org/cog/matlab/index.php.

[13] Condor, http://www.cs.wisc.edu/condor/.

[14] Conlab, http://www.cs.umu.se/research/conlab/.

[15] G. Cooperman, Star/MPI: binding a parallel library to
interactive symbolic algebra systems, in Procs.
ISSAC'95, ACM Press (1995), pp. 126–132.

[16] M. Diab, Systolic architectures for multiplication over
finite fields GF2m, in Procs. 8th Internat. Conference
Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, S. Sakata ed., LNCS 508, Springer
(1990), pp. 329–340.

[17] A. Diaz, M. Hitz, E. Kaltofen, A. Lobo and T. Valente,
Process scheduling in DSC and the large sparse linear
systems challenge, Journal of Symbolic Computation,
19:1-3 (1995), pp. 269–282, DISCO'93 Springer LNCS
722, pp. 66–80,
ftp://ftp.cs.rpi.edu/pub/kaltofen/DSC/DISCO93/jsc.ps,
http://www.math.unm.edu/ACA/1995/Proceedings/Sess
ions.html.

[18] A. Diaz and E. Kaltofen , FoxBox: A system for
manipulating symbolic objects in black box
representation, in Procs. ISSAC'98, O. Gloor ed., ACM
Press (1998), pp. 30–37,
http://www4.ncsu.edu/~kaltofen/bibliography/98/DiKa
98.ps.gz.

[19] A. Diaz, E. Kaltofen, K. Schmitz and T. Valente, DSC:
A system for distributed symbolic computation, in
Procs. ISSAC '1991, S. M. Watt ed., ACM Press (1991),
pp. 323–332,
http://www4.ncsu.edu/eos/users/k/kaltofen/bibliography
/91/DKSV91.ps.gz.

[20] DP-Toolbox, http://www-at.e-technik.uni-
rostock.de/dp/.

[21] D. Fliegner, A. Retey and J.A.M. Vermaseren,
Parallelizing the symbolic manipulation program
FORM (1999), http://arXiv.org/abs/hep-ph/9906426.

[22] Form, http://www.nikhef.nl/~form/.

[23] GAP, http://www-gap.dcs.st-and.ac.uk/~gap/.

[24] J. von zur Gathen and J. Gerhard, Modern Computer
Algebra (2003), 2nd edition Cambridge University
Press.

[25] Gemlca, http://www.cpc.wmin.ac.uk/GEMLCA.

[26] Genss, http://genss.cs.bath.ac.uk/index.htm.

[27] Geodise, http://www.geodise.org/.

[28] Givaro, http://www-lmc.imag.fr/Logiciels/givaro/.

[29] E. Goto et al, Design of a Lisp machine FLATS, in
Procs. ACM Symposium on Lisp and Functional
Programming, Pittsburgh(1982), pp. 208–215.

[30] gridMathematica,
http://www.wolfram.com/products/gridmathematica/.

[31] GridTLSE, http://www.enseeiht.fr/lima/tlse.

[32] R. H. Jr. Halstead, Parallel symbolic computing:
Languages, systems, and applications, Procs. US/Japan
Workshop, Cambridge, LNCS 748 (1992).

[33] H. Hong, A. Neubacher and W. Schreiner, The design of
the SacLib/PacLib Kernels, Proceedings of DISCO'93,
Gmunden, Austria, 1993, Springer, Berlin, Alfonso
Miola ed., LNCS 722, http://www.risc.uni-
linz.ac.at/people/schreine/papers/disco93.ps.gz.

[34] Internet-based Distributed Computing Projects,
http://www.aspenleaf.com/distributed/ap-math.html.

[35] T. Jebelean, Integer and rational arithmetic on MasPar,
in Design and Implementation of Symbolic
Computation Systems, J. Calmet and C. Limongelli
eds., LNCS 1128, Springer (1996), pp. 162–173.

[36] T. Jebelean, M. Dragan, D. Tepeneu and V. Negru,
Parallel algorithms for practical multiprecision
arithmetic using the Karatsuba method, Technical
Report 00-42, RISC (2000), ftp://ftp.risc.uni-
linz.ac.at/pub/techreports/2000/00-42.ps.gz.

[37] R. Kannan, G. Miller and L. Rudolph, Sublinear
parallel algorithm for computing the greatest common
divisor of two integers, SIAM Journal Comp., 16:1
(1987), pp.7–16.

[38] W. Küchlin, Parsac-2: parallel computer algebra,
Computer Algebra in Science and Engineering, World
Scientific, in J. Fleisher, J. Grabmeier, F. Hehl, W.
Küchlin, eds. 1995, http://www-sr.informatik.uni-
tuebingen.de/projects/pareqs/zif94.ps.

[39] Maple, http://www.maplesoft.com/.

[40] MapleNet, http://www.maplesoft.com/maplenet/.

[41] J. Marti and J. Fitch, The Bath concurrent LISP
machine, in Procs. of the European Computer Algebra
Conference on Computer Algebra, LNCS 162 (1983),
pp. 78–90.

SETIT2005

[42] Mathematica,
http://www.wolfram.com/products/mathematica/.

[43] Matlab, http://www.mathworks.com/.

[44] MatlabMPI, http://arXiv.org/abs/astro-ph/0107406.

[45] Matlab Parallelization Toolkit,
http://www.mathworks.com/matlabcentral/fileexchange
/ (utilities, distributed computing).

[46] MATmarks, http://polaris.cs.uiuc.edu/matmarks/.

[47] M. Matooane, Parallel systems in symbolic and
algebraic computation, PhD Thesis (2001), University
of Cambridge, Technical report No. 537,
http://www.cl.cam.ac.uk/ TechReports/UCAM-CL-TR-
537.pdf.

[48] M. Matooane and A. Norman, A parallel symbolic
computation environment: Structures and mechanics, in
Procs. Euro-Par '99, P. Amestoy et al, eds., LNCS 1685,
Springer (1999), pp. 1492–1495.

[49] M. McGettrick, OGB: Online Gröbner Bases (2003),
Technical report NUIG-IT-251103, National University
of Ireland, Galway, http://grobner.it.nuigalway.ie.

[50] Monet, http://monet.nag.co.uk.

[51] P.L. Montgomery, An FFT extension of the elliptic
curve method of factorization, PhD, Univ.California
Los Angeles (1992),
ftp://ftp.cwi.nl/pub/pmontgom/ucladissertation.ps.gz.

[52] M. Morii and Y. Takamatsu, Exponentiation in
finitefields using dual basis multiplier, in Procs. 8th
Internat. Conference Applied Algebra, Algebraic
Algorithms and Error- Correcting Codes, S. Sakata ed.,
LNCS 508, Springer (1990), pp. 354–366.

[53] MPI/PVM Toolbox for Matlab (MPITB/PVMTB),
http://atc.ugr.es/javier-bin/mpitb_eng and
http://atc.ugr.es/javierbin/pvmtb_eng.

[54] MultiMatlab,
http://www.cs.cornell.edu/Info/People/lnt/multimatlab.h
tml.

[55] MuPAD, http://research.mupad.de/.

[56] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C.
Lee and H. Casanova, GridRPC: A Remote Procedure
Call API for Grid Computing,
http://www.eece.unm.edu/~apm/
docs/APM_GridRPC_0702.pdf.

[57] Ninf, http://ninf.apgrid.org/.

[58] A. Norman and J. Fitch, Cabal: Polynomial and power
series algebra on a parallel computer, in Procs. 2nd
PASCO'97, M. Hitz and E. Kaltofen, eds., ACM press
(1997), pp. 196–203.

[59] Octave, http://www.octave.org/.

[60] Otter, http://www.cs.orst.edu/~quinn/papers/hpdc7.ps.

[61] Parallel Computing Toolkit,
http://www.wolfram.com/products/applications/parallel/
.

[62] ParMatlab, http://petrydpc.itm.mh.se/tools/.

[63] I. Patel and W. Mohiuddin, Matlab*p on the grid
(2003), http://pompone.cs.ucsb.edu/~imran/matlabpg/.

[64] C. Pau and W. Schreiner, Distributed Mathematica
(2000), http://www.risc.uni-linz.ac.at/soft-
ware/distmath/.

[65] D. Petcu, PVMaple – a distributed approach to
cooperative work of ||Maple|| processes, in
Procs.EuroPVM/MPI'00, J. Dongarra et al. eds., LNCS
1908, Springer (2000), pp. 216–224.

[66] D. Petcu, D. Dubu, M. Paprzycki, Extending Maple to
the Grid: Design and Implementation, in Procs.
ISPDC'04, J.Morrison et al. eds., IEEE Computer Press,
pp. 209-216

[67] R. Pirastu and K. Siegl, Parallel computation and
indefinite summation: A || Maple|| application for the
rational case, Journal of Symbolic Computation, 20:5-6
(1995), pp. 603–616, http://www.risc.uni-
linz.ac.at/research/combinat/risc/publications/rpiratsu/C
ONPAR94.pdf.

[68] Pmi,
ftp://ftp.mathworks.com/pub/contrib/v5/tools/PMI.

[69] Reduce, http://www.uni-koeln.de/REDUCE/.

[70] A. Reeves, A parallel implementation of Buchberger's
algorithm over zp for p≥31991, Journal of Symbolic
Computation, 26:2 (1998), pp. 229–244.

[71] J. L. Roch, PAC: Towards a parallel computer algebra
co-processor, Computer algebra and parallelism, ed.
Della Dora and J.Fitch, Academic Press (1989), pp. 33–
50.

[72] Sac,
http://www.symbolicnet.org/systems/Systems.html.

[73] SAL, http://www.sai.msu.su/sal/A/1/index.shtml.

[74] E. Sibert, H.F. Mattson and P. Jackson, Finite field
arithmetic using the connection machine, in Procs. 2nd
Intern. Workshop Computer Algebra and Parallelism
R.E. Zippel, ed., LNCS 584, Springer (1990), pp. 51–
61.

[75] W. Schreiner, C. Mittermaier and. Bosa, Distributed
Maple–parallel computer algebra in networked
environments, J. Symb. Comp. 35:3, Academic Press
(2003), pp. 305–347, ftp://ftp.risc.uni-
linz.ac.at/pub/techreports/2002/02-19.ps.gz.

SETIT2005

[76] P. Stewart, Symbolic computation – a review (1992),
http://www.bham.ac.uk/ctimath/
reviews/nov92/symbol.pdf.

[77] D.Tepeneu and T.Ida, MathGridLink – Connecting
Mathematica to the Grid, in Procs. 6th Intern.
Mathematica Symposium (IMS 2004), Banff, Alberta,
Canada, August 2004.

[78] P. S. Wang, Symbolic computation and parallel software
(1991), http://icm.mcs.kent.edu/ reports/1991/ICM-
9109-12-ab.pdf.

[79] P. S. Wang, S. Gray, N. Kajler, D. Lin and W. Liao,
IAMC architecture and prototyping: A progress report,
Proceedings of ACM ISSAC01, London-Ontario
(2001), http://
icm.mcs.kent.edu/research/IAMC.icm/issac01.pdf.

[80] S. M. Watt, A system for parallel computer algebra
programs, in Procs. Eurocal'85, B.F. Caviness ed.,
LNCS 204, Springer (1985), pp. 537–538.

[81] A. Weber, W. Küchlin, B. Eggers and V. Simonis,
Parallel computer algebra software as a web
component,
http://www.cs.ucsb.edu/conferences/java98/papers/alge
bra.pdf.

[82] webMathematica,
http://www.wolfram.com/products/webmathematica/.

[83] Y. Wu, W. Liao, P. Wang, D. Lin and G. Yang, An
Internet accessible grid computing system: Grid-
Elimino, Proceedings of IAMC 2003, Drexel University
(2003), http://
www.symbolicnet.org/conferences/iamc03/grid.pdf.

