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t. Whole genome 
omparison 
ompares (aligns) two genome se-quen
es assuming that analogous 
hara
teristi
s may be found. In thispaper, we present an SIMD version of the Smith-Waterman algorithmutilizing Streaming SIMD Extensions (SSE), running on Intel Pentiumpro
essors. We 
ompare two approa
hes, one requiring expli
it data de-penden
y handling and one built to automati
ally handle dependen
iesand establish their optimal performan
e 
onditions.1 Introdu
tionSequen
e similarity sear
hes are frequently performed in Computational Biol-ogy. They identify 
losely related geneti
 sequen
es, assuming that high degreeof similarity often implies similar fun
tion or stru
ture. To establish similarityan alignment s
ore is 
al
ulated. Exa
t algorithms to 
al
ulate the alignments
ore, based on the dynami
 programming, are very slow (even on fastest work-stations). Hen
e, heuristi
 alternatives are used; but they may not be able todete
t distantly related sequen
es. Among exa
t methods, the Smith-Watermanalgorithm is one of the most popular. However, due to its 
ompute-intensive na-ture, it is rarely used for large s
ale database sear
hes. In this paper we des
ribean e�
ient implementation of the Smith-Waterman algorithm that exploits the�ne-grained parallelism. We use Intel's MMX/SSE2 SIMD extensions to speedupthe algorithm within a single pro
essor.2 Related workParallelization of the Smith-Waterman algorithm pro
eeds on two fronts: �ne-grained and 
oarse-grained parallelism. In the �ne-grained approa
h the pairwise




omparison algorithm is parallelized and ea
h pro
essing element performs a partof matrix 
al
ulation to help determine the optimal s
ore. This approa
h waswidely used on single instru
tion multiple data parallel 
omputers at the timewhen they were very popular. For multiple instru
tion, multiple data 
omputers,subsets of the database are independently sear
hed by pro
essing elements.Five ar
hite
tures used for sequen
e 
omparison were des
ribed in Hughey [1℄:(1) spe
ial purpose VLSI, (2) re
on�gurable hardware, (3) programmable 
o-pro
essors, (4) super
omputers and (5) workstations. Spe
ial purpose VLSI pro-vides the best performan
e but is limited to a single algorithm. The Biologi
alInformation Signal Pro
essing (BISP) system was one of the �rst systoli
 ar-rays used for sequen
e 
omparison. Re
on�gurable hardware is typi
ally basedon Field Programmable Gate Arrays (FPGAs). They are more versatile thanspe
ial purpose VLSI and 
an be adapted to di�erent algorithms. A number ofFPGA systems, su
h as DeCypher [3℄, a

elerate Smith-Waterman algorithm,reporting several orders of magnitude speedup. These systems 
an easily beported to newer generations of FPGAs with only a minimum re-design. Pro-grammable 
o-pro
essors strive to balan
e the �exibility of re
on�gurable hard-ware with the speed and high density of pro
essing elements. Kestrel [19℄ is a512 element array of 8-bit PEs that was used for sequen
e alignment. For highperforman
e 
omputers let us mention the BLAZE [4℄, an implementation ofthe Smith-Waterman algorithm, written for the SIMD MasPar MP1104 
om-puter with 4096 pro
essors. As far as workstations are 
on
erned, Wozniak [5℄presented an implementation that used the SIMD visual instru
tion set of SunUltraSpar
 mi
ropro
essors to simultaneously 
al
ulate four rows of the dynami
programming matrix. Rognes and Seeberg [6℄ used the SIMD multimedia exten-sion instru
tions on Intel Pentium mi
ropro
essors to produ
e one of the fastestimplementations on workstations. Networks of workstations have also been usede�e
tively by Strumpen [7℄, who utilized a heterogeneous environment 
onsistingof more than 800 workstations, while Martins and 
olleagues [8℄ presented anevent-driven multithreaded implementation of the sequen
e alignment algorithmon a Beowulf 
luster 
onsisting of 128 Pentium Pro mi
ropro
essors.3 The Smith-Waterman algorithmInitially, Needleman and Wuns
h [9℄ and Sellers [10℄ introdu
ed the global align-ment algorithm based on the dynami
 programming approa
h. Smith and Wa-terman [11℄ proposed an O(M2N) algorithm to identify 
ommon mole
ular sub-sequen
es, whi
h took into a

ount evolutionary insertions and deletions. Later,Gotoh [12℄ modi�ed this algorithm to run at O(MN) by 
onsidering a�ne gappenalties. These algorithms depended on saving the entire M × N matrix inorder to re
over the alignment. The large spa
e requirement problem was solvedby Myers and Miller [13℄ who presented a quadrati
 time and linear spa
e algo-rithm, based on a divide and 
onquer approa
h. Finally, Aho, Hirs
hberg andUllman [14℄ proved that symbol 
omparing algorithms (to see if they are equalor not), have to take time proportional to the produ
t of their string lengths.



Let us now des
ribe the Smith-Waterman algorithm (an example of its oper-ation was depi
ted in Figure 1). Let us 
onsider two genomi
 sequen
es A and BT C G A C A T A
ACGGA
TCA

0 0 0 1 5 0 12 5 50 0 5 0 1 7 0 0 00 0 0 5 2 0 0 0 00 0 0 6 0 2 1 4 60 0 1 0 6 0 8 2 130 5 0 1 0 3 6 8 10 0 5 0 0 10 3 1 00 0 0 0 5 0 5 0 50 0 0 0 0 0 0 0 0
Fig. 1. Comparison Matrix: Optimal s
ore: 13, Mat
h: 5, Mismat
h: -4, Penalty: 0+7k.Optimal Alignment: A C A T A, A C - T Aof length M and N respe
tively, to be 
ompared using a substitution matrix ∂,and utilize the a�ne gap weight model. The gap penalty is given by: Wi + kWewhere Wi > 0 and We > 0. Wi is the penalty for initiating the gap and We isthe penalty for extension of the gap, whi
h varies linearly with the length of thegap. The substitution matrix ∂ lists the probabilities of 
hange from one �stru
-ture� into another in the sequen
e. There are two families of matri
es used in thealgorithm: the Per
ent A

epted Mutation (PAM) and the Blo
k SubstitutionMatri
es (BLOSUM). Maximization relation is used in order to 
al
ulate theoptimum lo
al alignment s
ore a

ording to the following re
urren
e relations(the highest value in the H matrix gives the optimal s
ore):

E(i, j) = H(i, j) = F (i, j) = 0, for i = 0 or j = 0

E(i, j) = max

{

E(i − 1, j) − We

H(i − 1, j) − Wi − We

}

F (i, j) = max

{

F (i, j − 1) − We

H(i, j − 1) − Wi − We

}
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These re
urren
es 
an be understood as follows: the E (F ) matrix holds thes
ore of an alignment that ends with a gap in the sequen
e A (B). When 
al-
ulating the E(i, j)th (F (i, j)th) value, both extending an existing gap by onespa
e, or initiating a new gap is 
onsidered. The H(i, j)th 
ell value holds the



best s
ore of a lo
al alignment that ends at position Ai, Bj . Hen
e, alignmentswith gaps in either sequen
e, or the possibility of in
reasing the alignment witha mat
hed or mismat
hed pair are 
onsidered. A zero term is added in orderto dis
ard negatively s
oring alignments and restart the lo
al alignment. Oneof possible many optimal alignments 
an be retrieved by retra
ing steps takenduring 
omputation of matrix H , from the optimal s
ore ba
k to the zero term.To quantify the performan
e of dynami
 programming algorithms, the mea-sure: millions of dynami
 programming 
ell updates per se
ond (MCUPS ) hasbeen de�ned. It represents the number of 
ells in the H matrix 
omputed perse
ond, and in
ludes all memory operations and 
orresponding E/F matrix 
ellevaluations.4 SIMD-based approa
hMultimedia extensions have been added to the Instru
tion Set Ar
hite
tures(ISAs) of most mi
ropro
essors [15℄. They exploit low-level parallelism, where
omputations are split into subwords, with independent units operating on themsimultaneously (a form of SIMD parallelism). Intel introdu
ed the PentiumMMXmi
ropro
essor [16℄ in 1997. The MMX (MultiMedia eXtensions) te
hnologyaliased the eight 64-bit MMX registers with the �oating point registers of the x87FPU, allowing up to eight byte operations performed in parallel. SIMD pro
ess-ing was enhan
ed with the addition of the SSE2 (Streaming SIMD Extensions)in the Pentium 4 mi
ropro
essor. It allows handling sixteen simultaneous byteoperations in 128-bit XMM registers. Note however that be
ause of the smallernumber of available bits, over�ows or under�ows o

ur more frequently. Theyare handled by two methods: wraparound arithmeti
, whi
h trun
ates the mostsigni�
ant bit; and saturation arithmeti
. In the latter 
ase the result saturatesat an upper or lower bound and the result is limited to the largest/smallestrepresentable value. Hen
e, for unsigned integer data types of n bits, under�owsare 
lamped to 0, and over�ows to 2n − 1. Saturation arithmeti
 is advanta-geous be
ause it o�ers a simple way to eliminate unneeded negative values andautomati
ally limits results without 
ausing errors, and thus is used in our im-plementation. Finally, let us note that 
ompiler support for SIMD instru
tionsis still somewhat rudimentary, and thus hand 
oding in assembly language usingSIMD instru
tions is often required.4.1 Challenges in Parallelizing the Smith-Waterman AlgorithmParallelizing the dynami
 programming algorithm is done by 
al
ulating mul-tiple rows of the H matrix simultaneously. Figure 2 shows the data depen-den
ies of ea
h 
ell in the H matrix. Value in the (i, j)th 
ell depends on
(i − 1, j − 1)th, (i − 1, j)th and (i, j − 1)th 
ell values. Hen
e, before a 
ell 
anbe 
omputed, 
ells immediately above, to the left and diagonally a
ross mustbe available. This �gure also shows why a systoli
-array would be ideal for thistype of 
al
ulations. The alignment matrix H , 
an be evaluated in parallel rows(
olumns) or anti-diagonals.



Fig. 2. Data dependen
ies in the similarity matrix.4.2 Diagonal Approa
hWhen 
omputation pro
eeds diagonally a
ross the alignment matrix the inter-dependen
ies are automati
ally handled. The main disadvantage is that substi-tution s
ores 
annot be a

essed linearly from memory, but have to be inde-pendently loaded for ea
h diagonal 
ell. Symbols from two sequen
es have tobe read, and a look-up into the substitution table made in order to 
al
ulatethe 
orresponding mat
h or mismat
h s
ore. This pro
edure has to be repeatedfor every element in the diagonal before parallel 
omputation 
an pro
eed. These
ond disadvantage is that the size of the diagonal varies at the beginning andthe end of the matrix sweep. For example, if parallel 
omputation involves four
ells at a time, the �rst three diagonals of the alignment matrix with one, twoand three 
ells respe
tively do not 
ontain enough 
ells to load the 4-way SIMDword. To solve this problem three dummy symbols both at the beginning andthe end of the query sequen
e are added. Furthermore, appropriate entries mustbe added in the similarity table between the dummy symbol and ea
h symbolin the alphabet (the dummy symbol in
luded), with a s
ore of zero, so that theoptimal s
ore remains un
hanged. Computation then pro
eeds along su

essivediagonals through the entire length of the query sequen
e. The next four rowsof the matrix are then 
omputed in the same manner. If the database sequen
elength is not a multiple of the SIMD word length, the sequen
e must be 
on
ate-nated at the end with an appropriate number of dummy symbols. This pro
ess isillustrated in �gure 3 (panel a). SIMD operations 
an be performed with signedor unsigned integers. To avoid redu
ing the maximum representable integer valueall elements in the similarity matrix are biased by a positive value (for
ing themto remain positive). The bias is then subtra
ted without a�e
ting the optimals
ore.



a) b)Fig. 3. Fine-grained parallelization of the Smith-Waterman algorithm using 4-way sub-word pro
essing. a. Diagonal approa
h. b. Horizontal approa
h.In order to obtain optimum performan
e, a number of te
hniques have beenused to speedup the 
ode. (1) To optimize utilization of 
a
he memory arrays
E and H are interleaved as an array of stru
tures. (2) SIMD words in memoryare aligned at appropriate boundaries: 64-bit memory a

ess with MMX regis-ters requires the target address to be aligned at 8 byte boundaries and 128-bitmemory a

ess with XMM registers requires alignment at 16 byte boundaries.(3) to redu
e e�e
ts of memory laten
y memory referen
es for subword a

ess(one addition, one multipli
ation and two memory referen
e instru
tions in theouter loop, along with three memory read instru
tions in the inner loop) 
an beappropriately re-arranged.4.3 Horizontal Approa
hWhen 
omputation pro
eeds horizontally along the rows of the alignment matrixthe interdependen
ies are not resolved. To 
al
ulate the value of the (i, j)th 
ellin the H matrix, the values of the (i, j − 1)th 
ell in the F and H matri
es arerequired and thus parallel 
al
ulation of horizontal 
ells of H is impossible.An interesting empiri
al observation 
on
erning utilization of the Smith-Waterman algorithm for biologi
al sequen
es was made by Phil Green (and im-plemented in the SWAT program, [18℄). In most 
ells of E, F and H matri
es,values are 
lamped to zero (when using saturated arithmeti
) and thus do not
ontribute to H . Spe
i�
ally, the (i, j)th 
ell value in the F matrix will remainzero if the (i, j−1)th 
ell value is already zero, as long as H(i, j−1) ≤ Wi +We.

F (i, j) = max

{

F (i, j − 1) − We

H(i, j − 1) − Wi − We

}If the H value is below this threshold, F will remain zero within that row. Forexample, when using a 4-way SIMD word, the F values 
an be ignored from theiteration if the four H values in its relation are below the threshold Wi + We. Ifone or more of the H values ex
eeds this threshold, the F values must be re
al-
ulated sequentially. This e�e
t depends on the threshold value. If the gap openand gap extend penalties are very small, most H values are above the thresholdand there will be no speedup in the algorithm. On the other hand if the thresholdvalues are too large results will be �in
orre
t� as useful information may be lost.



An advantage of the horizontal method is that substitution s
ores 
an beloaded with a single memory read operation using a query sequen
e pro�le table.The query sequen
e pro�le table 
ontains the substitution s
ores of the querysequen
e pla
ed horizontally a
ross the matrix, versus an imaginary sequen
emade up of all symbols in the alphabet and is 
reated on
e for the query sequen
e.This pro
ess is illustrated in Figure 3 (panel b). Note that most optimizationte
hniques used in the diagonal method are relevant here. The query sequen
epro�le table is 
omputed on
e before the database 
omparison pro
edure andis usually small enough to �t in the �rst level 
a
he of the mi
ropro
essor. The
onditional loop presents a problem be
ause it is 
umbersome to implementusing Intel's media pro
essing ISA. Further, it in
reases the runtime be
ause ofthe possibility of mispredi
tion of the bran
h target address. Thus, the SIMD
onditional loop is unrolled.4.4 Experimental ResultsThe two algorithms were implemented using MMX and SSE2 te
hnology andtested on a Pentium III 500Mhz with 128MB RAM, running Windows 2000,and a Pentium 4, 1.4Ghz with 128MB RAM, running Windows NT. Finally,we have run two series of experiments on the Intel Pentium 4, 2.80GHz with1GB of RAM, running Windows XP. The user interfa
e, �le handling and mem-ory allo
ation 
ode was written in C and 
ompiled using the Visual C/C++6.0 
ompiler. The Smith-Waterman algorithm was written in assembly languageand 
ompiled using the Netwide ASeMbler 0.98.08 (NASM). Timings were mea-sured by reading the mi
ropro
essor timestamp (using the assembly mnemoni
RDTSC) before and after 
ompletion of the target fun
tion and dividing by themi
ropro
essor 
lo
k speed in Hz. For ea
h test, the total program runtime, totalI/O overhead, total time spent in the Smith-Waterman fun
tion, MCUPS, andtheir averages were noted.In the tests, the lo
al alignment s
ore between two DNA sequen
es was 
al-
ulated without re
overing the alignment. The pam47 substitution matrix wasused whi
h assigns a value +5 for a mat
h and -4 for a mismat
h between twonu
leotides. A bias value of +4 was used to eliminate negative elements fromthe substitution matrix. An a�ne fun
tion 0+7k was used for the gap open andgap extension penalties.Tests were performed using query sequen
es ranging in length from 100 to1000 nu
leotides; in steps of 100. We used the annotated Drosophilia genome re-lease 3.0 [17℄, 
ontaining 17,878 sequen
es with a total of 28,249,452 nu
leotides.Plots of sear
h times versus query lengths for di�erent SIMD implementationsare shown in Figure 4. The bulk of the program time (96-97%) is spent in theSmith-Waterman sequen
e 
omparison fun
tion. Only a small per
ent of thetime is spent as overhead for reading the sequen
es from the disk. For a gappenalty of 0+7k, the diagonal method was found to be 1.30 to 1.87 times fasterthan the horizontal method. Using the 128-bit XMM registers on pro
essors withSSE2 te
hnology doubles the size of the SIMD word as 
ompared to the 64-bitMMX registers of the older MMX te
hnology. Theoreti
ally, this should result



in a two fold speed in
rease. Pra
ti
ally, the speedups ranged from 1.17 to 1.40as with an in
rease in the SIMD word length there is a 
orresponding in
reasein 
lo
k 
y
les. Surprisingly, the horizontal approa
h using the byte pre
isionwithin the SSE2 te
hnology was slower than its MMX implementation by 14%.As expe
ted, sear
hes using 8-bit subwords in the SIMD word, as 
omparedto sear
hes using subwords of 16-bits, were found to be faster by a fa
tor of1.31 to 1.79. Most 
omparison s
ores in sequen
e sear
hes are well below themaximum value representable in 8 bits. Any s
ore 
lose to 255 represents aninteresting mat
h whi
h is investigated by other means, irrespe
tive of its a
tuals
ore. Hen
e in most 
ases, byte pre
ision is su�
ient for database sear
hing.Another interesting observation is the s
alability of the SIMD implementa-tion between pro
essors in the same family. The diagonal approa
h using MMXte
hnology results in a performan
e boost of 3.68 and 3.91 for the byte and wordpre
isions respe
tively. The horizontal approa
h a
hieved more modest speedupsof 1.44 and 1.63 for the byte and word pre
isions. Finally, we have found outthat move from the 1.4 GHz Pentium 4 to the 2.8 GHz Pentium 4 resulted in theMCUPS rate (for query length 1000) to jump from 215 to 488 for the diagonalmethod, and from 165 to 373 for the horizontal approa
h. While we do not havea dire
t explanation of the jump that is more than two-fold; let us note that bothma
hines have been running di�erent operating systems and had substantiallydi�erent amounts of available memory. What matters is the fa
t that for thealgorithm in question the 
lo
k-speed of the pro
essor (and thus its raw power)translates dire
tly into performan
e.

Fig. 4. Sear
h times versus query lengths for di�erent implementationsTo 
omplete our investigation, in �gure 5 we depi
t e�e
t of gap penalties onthe horizontal method. Sear
hing the database using a query of length 900 witha gap penalty of 0+7k takes 174 se
onds, while a sear
h with a penalty of 40+2ktakes only 43.9 se
onds (however, with the 
hange in the gap penalty the optimal



Fig. 5. E�e
t of SWAT optimizations
ores are no longer equal). The speed of the horizontal method varies from 142MCUPS with a gap penalty of 0 + 7k, to its saturation point at approximately580 MCUPS with a gap penalty of 40 + 2k. The diagonal method, on the otherhand, does not in
orporate the SWAT optimization and runs at 
onstant speedsfor di�erent gap penalties. Hen
e, database sear
hing with a high gap penaltyfavors the horizontal method over the diagonal method (as long as the �nalresults remain reliable).5 Con
luding remarksThe aim of this work was to propose a �ne grain implementation of the Smith-Waterman algorithm utilizing multimedia extensions on Intel pro
essors. Ourexperiments showed signi�
ant speedups on Pentium workstations. Sin
e thegeneral-purpose mi
ropro
essors are 
onstantly being updated with more ad-van
ed features allowing mi
ro-parallelization of algorithms, it 
an be expe
tedthat features like the newly introdu
ed Simultaneous Multi-threading (hyper-threading) te
hnology will o�er further potential for performan
e in
rease. How-ever, note that this and other similar approa
hes heavily rely on assembly 
oding.As a results 
odes are not portable at all. For instan
e our 
odes run only on32-bit ar
hite
tures and are useless for the modern 64-bit pro
essors.A
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