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Abstract. Whole genome comparison compares (aligns) two genome se-
quences assuming that analogous characteristics may be found. In this
paper, we present an SIMD version of the Smith-Waterman algorithm
utilizing Streaming SIMD Extensions (SSE), running on Intel Pentium
processors. We compare two approaches, one requiring explicit data de-
pendency handling and one built to automatically handle dependencies
and establish their optimal performance conditions.

1 Introduction

Sequence similarity searches are frequently performed in Computational Biol-
ogy. They identify closely related genetic sequences, assuming that high degree
of similarity often implies similar function or structure. To establish similarity
an alignment score is calculated. Exact algorithms to calculate the alignment
score, based on the dynamic programming, are very slow (even on fastest work-
stations). Hence, heuristic alternatives are used; but they may not be able to
detect distantly related sequences. Among exact methods, the Smith-Waterman
algorithm is one of the most popular. However, due to its compute-intensive na-
ture, it is rarely used for large scale database searches. In this paper we describe
an efficient implementation of the Smith-Waterman algorithm that exploits the
fine-grained parallelism. We use Intel’s MMX /SSE2 SIMD extensions to speedup
the algorithm within a single processor.

2 Related work

Parallelization of the Smith-Waterman algorithm proceeds on two fronts: fine-
grained and coarse-grained parallelism. In the fine-grained approach the pairwise



comparison algorithm is parallelized and each processing element performs a part
of matrix calculation to help determine the optimal score. This approach was
widely used on single instruction multiple data parallel computers at the time
when they were very popular. For multiple instruction, multiple data computers,
subsets of the database are independently searched by processing elements.

Five architectures used for sequence comparison were described in Hughey [1]:
(1) special purpose VLSI, (2) reconfigurable hardware, (3) programmable co-
processors, (4) supercomputers and (5) workstations. Special purpose VLSI pro-
vides the best performance but is limited to a single algorithm. The Biological
Information Signal Processing (BISP) system was one of the first systolic ar-
rays used for sequence comparison. Reconfigurable hardware is typically based
on Field Programmable Gate Arrays (FPGAs). They are more versatile than
special purpose VLSI and can be adapted to different algorithms. A number of
FPGA systems, such as DeCypher [3], accelerate Smith-Waterman algorithm,
reporting several orders of magnitude speedup. These systems can easily be
ported to newer generations of FPGAs with only a minimum re-design. Pro-
grammable co-processors strive to balance the flexibility of reconfigurable hard-
ware with the speed and high density of processing elements. Kestrel [19] is a
512 element array of 8-bit PEs that was used for sequence alignment. For high
performance computers let us mention the BLAZE [4], an implementation of
the Smith-Waterman algorithm, written for the SIMD MasPar MP1104 com-
puter with 4096 processors. As far as workstations are concerned, Wozniak [5]
presented an implementation that used the SIMD visual instruction set of Sun
UltraSparc microprocessors to simultaneously calculate four rows of the dynamic
programming matrix. Rognes and Seeberg [6] used the SIMD multimedia exten-
sion instructions on Intel Pentium microprocessors to produce one of the fastest
implementations on workstations. Networks of workstations have also been used
effectively by Strumpen [7], who utilized a heterogeneous environment consisting
of more than 800 workstations, while Martins and colleagues [8] presented an
event-driven multithreaded implementation of the sequence alignment algorithm
on a Beowulf cluster consisting of 128 Pentium Pro microprocessors.

3 The Smith-Waterman algorithm

Initially, Needleman and Wunsch [9] and Sellers [10] introduced the global align-
ment algorithm based on the dynamic programming approach. Smith and Wa-
terman [11] proposed an O(M?2N) algorithm to identify common molecular sub-
sequences, which took into account evolutionary insertions and deletions. Later,
Gotoh [12] modified this algorithm to run at O(M N) by considering affine gap
penalties. These algorithms depended on saving the entire M x N matrix in
order to recover the alignment. The large space requirement problem was solved
by Myers and Miller [13] who presented a quadratic time and linear space algo-
rithm, based on a divide and conquer approach. Finally, Aho, Hirschberg and
Ullman [14] proved that symbol comparing algorithms (to see if they are equal
or not), have to take time proportional to the product of their string lengths.



Let us now describe the Smith-Waterman algorithm (an example of its oper-
ation was depicted in Figure 1). Let us consider two genomic sequences A and B
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Fig. 1. Comparison Matrix: Optimal score: 13, Match: 5, Mismatch: -4, Penalty: 0+ 7k.
Optimal Alignment: ACATA AC-TA

of length M and N respectively, to be compared using a substitution matrix 9,
and utilize the affine gap weight model. The gap penalty is given by: W; + kW,
where W; > 0 and W, > 0. W; is the penalty for initiating the gap and W, is
the penalty for extension of the gap, which varies linearly with the length of the
gap. The substitution matrix 0 lists the probabilities of change from one “struc-
ture” into another in the sequence. There are two families of matrices used in the
algorithm: the Percent Accepted Mutation (PAM) and the Block Substitution
Matrices (BLOSUM). Maximization relation is used in order to calculate the
optimum local alignment score according to the following recurrence relations
(the highest value in the H matrix gives the optimal score):

E(i,j) = H(i,j) = F(i,j) =0, fori=0orj=0
o E(i—1,7) — W,
E(i,j) = maX{H@'El s ]—)Wl —We}

o) = ey 0I5 DT

E(i, j)
F(i,j)
H(i—1,j—1)+d(A;, By)

H(i,j) = max

These recurrences can be understood as follows: the E (F') matrix holds the
score of an alignment that ends with a gap in the sequence A (B). When cal-
culating the E(i, j)th (F(i,j)th) value, both extending an existing gap by one
space, or initiating a new gap is considered. The H (7, j)th cell value holds the



best score of a local alignment that ends at position A;, B;. Hence, alignments
with gaps in either sequence, or the possibility of increasing the alignment with
a matched or mismatched pair are considered. A zero term is added in order
to discard negatively scoring alignments and restart the local alignment. One
of possible many optimal alignments can be retrieved by retracing steps taken
during computation of matrix H, from the optimal score back to the zero term.

To quantify the performance of dynamic programming algorithms, the mea-
sure: millions of dynamic programming cell updates per second (MCUPS) has
been defined. It represents the number of cells in the H matrix computed per
second, and includes all memory operations and corresponding E/F matrix cell
evaluations.

4 SIMD-based approach

Multimedia extensions have been added to the Instruction Set Architectures
(ISAs) of most microprocessors [15]. They exploit low-level parallelism, where
computations are split into subwords, with independent units operating on them
simultaneously (a form of SIMD parallelism). Intel introduced the Pentium MMX
microprocessor [16] in 1997. The MMX (MultiMedia eXtensions) technology
aliased the eight 64-bit MMX registers with the floating point registers of the x87
FPU, allowing up to eight byte operations performed in parallel. SIMD process-
ing was enhanced with the addition of the SSE2 (Streaming SIMD Extensions)
in the Pentium 4 microprocessor. It allows handling sixteen simultaneous byte
operations in 128-bit XMM registers. Note however that because of the smaller
number of available bits, overflows or underflows occur more frequently. They
are handled by two methods: wraparound arithmetic, which truncates the most
significant bit; and saturation arithmetic. In the latter case the result saturates
at an upper or lower bound and the result is limited to the largest/smallest
representable value. Hence, for unsigned integer data types of n bits, underflows
are clamped to 0, and overflows to 2n — 1. Saturation arithmetic is advanta-
geous because it offers a simple way to eliminate unneeded negative values and
automatically limits results without causing errors, and thus is used in our im-
plementation. Finally, let us note that compiler support for SIMD instructions
is still somewhat rudimentary, and thus hand coding in assembly language using
SIMD instructions is often required.

4.1 Challenges in Parallelizing the Smith-Waterman Algorithm

Parallelizing the dynamic programming algorithm is done by calculating mul-
tiple rows of the H matrix simultaneously. Figure 2 shows the data depen-
dencies of each cell in the H matrix. Value in the (i,5)"" cell depends on
(i— 1,5 — 1)t (i — 1,5)"" and (i,j — 1)*" cell values. Hence, before a cell can
be computed, cells immediately above, to the left and diagonally across must
be available. This figure also shows why a systolic-array would be ideal for this
type of calculations. The alignment matrix H, can be evaluated in parallel rows
(columns) or anti-diagonals.
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Fig. 2. Data dependencies in the similarity matrix.

4.2 Diagonal Approach

When computation proceeds diagonally across the alignment matrix the inter-
dependencies are automatically handled. The main disadvantage is that substi-
tution scores cannot be accessed linearly from memory, but have to be inde-
pendently loaded for each diagonal cell. Symbols from two sequences have to
be read, and a look-up into the substitution table made in order to calculate
the corresponding match or mismatch score. This procedure has to be repeated
for every element in the diagonal before parallel computation can proceed. The
second disadvantage is that the size of the diagonal varies at the beginning and
the end of the matrix sweep. For example, if parallel computation involves four
cells at a time, the first three diagonals of the alignment matrix with one, two
and three cells respectively do not contain enough cells to load the 4-way SIMD
word. To solve this problem three dummy symbols both at the beginning and
the end of the query sequence are added. Furthermore, appropriate entries must
be added in the similarity table between the dummy symbol and each symbol
in the alphabet (the dummy symbol included), with a score of zero, so that the
optimal score remains unchanged. Computation then proceeds along successive
diagonals through the entire length of the query sequence. The next four rows
of the matrix are then computed in the same manner. If the database sequence
length is not a multiple of the SIMD word length, the sequence must be concate-
nated at the end with an appropriate number of dummy symbols. This process is
illustrated in figure 3 (panel a). SIMD operations can be performed with signed
or unsigned integers. To avoid reducing the maximum representable integer value
all elements in the similarity matrix are biased by a positive value (forcing them
to remain positive). The bias is then subtracted without affecting the optimal
score.
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Fig. 3. Fine-grained parallelization of the Smith-Waterman algorithm using 4-way sub-
word processing. a. Diagonal approach. b. Horizontal approach.

In order to obtain optimum performance, a number of techniques have been
used to speedup the code. (1) To optimize utilization of cache memory arrays
E and H are interleaved as an array of structures. (2) SIMD words in memory
are aligned at appropriate boundaries: 64-bit memory access with MMX regis-
ters requires the target address to be aligned at 8 byte boundaries and 128-bit
memory access with XMM registers requires alignment at 16 byte boundaries.
(3) to reduce effects of memory latency memory references for subword access
(one addition, one multiplication and two memory reference instructions in the
outer loop, along with three memory read instructions in the inner loop) can be
appropriately re-arranged.

4.3 Horizontal Approach

When computation proceeds horizontally along the rows of the alignment matrix
the interdependencies are not resolved. To calculate the value of the (i, j)!" cell
in the H matrix, the values of the (i, — 1)** cell in the F' and H matrices are
required and thus parallel calculation of horizontal cells of H is impossible.

An interesting empirical observation concerning utilization of the Smith-
Waterman algorithm for biological sequences was made by Phil Green (and im-
plemented in the SWAT program, [18]). In most cells of F, F and H matrices,
values are clamped to zero (when using saturated arithmetic) and thus do not
contribute to H. Specifically, the (4, )" cell value in the F' matrix will remain
zero if the (i, j — 1)*" cell value is already zero, as long as H (7,7 —1) < W; + W,.

F(i,j) = max {H(fngl) i)WiVKGWe}

If the H value is below this threshold, F' will remain zero within that row. For
example, when using a 4-way SIMD word, the F' values can be ignored from the
iteration if the four H values in its relation are below the threshold W; + W,. If
one or more of the H values exceeds this threshold, the F' values must be recal-
culated sequentially. This effect depends on the threshold value. If the gap open
and gap extend penalties are very small, most H values are above the threshold
and there will be no speedup in the algorithm. On the other hand if the threshold
values are too large results will be “incorrect” as useful information may be lost.



An advantage of the horizontal method is that substitution scores can be
loaded with a single memory read operation using a query sequence profile table.
The query sequence profile table contains the substitution scores of the query
sequence placed horizontally across the matrix, versus an imaginary sequence
made up of all symbols in the alphabet and is created once for the query sequence.
This process is illustrated in Figure 3 (panel b). Note that most optimization
techniques used in the diagonal method are relevant here. The query sequence
profile table is computed once before the database comparison procedure and
is usually small enough to fit in the first level cache of the microprocessor. The
conditional loop presents a problem because it is cumbersome to implement
using Intel’s media processing ISA. Further, it increases the runtime because of
the possibility of misprediction of the branch target address. Thus, the SIMD
conditional loop is unrolled.

4.4 Experimental Results

The two algorithms were implemented using MMX and SSE2 technology and
tested on a Pentium IIT 500Mhz with 128MB RAM, running Windows 2000,
and a Pentium 4, 1.4Ghz with 128MB RAM, running Windows NT. Finally,
we have run two series of experiments on the Intel Pentium 4, 2.80GHz with
1GB of RAM, running Windows XP. The user interface, file handling and mem-
ory allocation code was written in C and compiled using the Visual C/C++
6.0 compiler. The Smith-Waterman algorithm was written in assembly language
and compiled using the Netwide ASeMbler 0.98.08 (NASM). Timings were mea-
sured by reading the microprocessor timestamp (using the assembly mnemonic
RDTSC) before and after completion of the target function and dividing by the
microprocessor clock speed in Hz. For each test, the total program runtime, total
I/O overhead, total time spent in the Smith-Waterman function, MCUPS, and
their averages were noted.

In the tests, the local alignment score between two DNA sequences was cal-
culated without recovering the alignment. The pam47 substitution matrix was
used which assigns a value +5 for a match and -4 for a mismatch between two
nucleotides. A bias value of +4 was used to eliminate negative elements from
the substitution matrix. An affine function 0+ 7k was used for the gap open and
gap extension penalties.

Tests were performed using query sequences ranging in length from 100 to
1000 nucleotides; in steps of 100. We used the annotated Drosophilia genome re-
lease 3.0 [17], containing 17,878 sequences with a total of 28,249,452 nucleotides.

Plots of search times versus query lengths for different SIMD implementations
are shown in Figure 4. The bulk of the program time (96-97%) is spent in the
Smith-Waterman sequence comparison function. Only a small percent of the
time is spent as overhead for reading the sequences from the disk. For a gap
penalty of 0+ 7k, the diagonal method was found to be 1.30 to 1.87 times faster
than the horizontal method. Using the 128-bit XMM registers on processors with
SSE2 technology doubles the size of the SIMD word as compared to the 64-bit
MMX registers of the older MMX technology. Theoretically, this should result



in a two fold speed increase. Practically, the speedups ranged from 1.17 to 1.40
as with an increase in the SIMD word length there is a corresponding increase
in clock cycles. Surprisingly, the horizontal approach using the byte precision
within the SSE2 technology was slower than its MMX implementation by 14%.

As expected, searches using 8-bit subwords in the SIMD word, as compared
to searches using subwords of 16-bits, were found to be faster by a factor of
1.31 to 1.79. Most comparison scores in sequence searches are well below the
maximum value representable in 8 bits. Any score close to 255 represents an
interesting match which is investigated by other means, irrespective of its actual
score. Hence in most cases, byte precision is sufficient for database searching.

Another interesting observation is the scalability of the SIMD implementa-
tion between processors in the same family. The diagonal approach using MMX
technology results in a performance boost of 3.68 and 3.91 for the byte and word
precisions respectively. The horizontal approach achieved more modest speedups
of 1.44 and 1.63 for the byte and word precisions. Finally, we have found out
that move from the 1.4 GHz Pentium 4 to the 2.8 GHz Pentium 4 resulted in the
MCUPS rate (for query length 1000) to jump from 215 to 488 for the diagonal
method, and from 165 to 373 for the horizontal approach. While we do not have
a direct explanation of the jump that is more than two-fold; let us note that both
machines have been running different operating systems and had substantially
different amounts of available memory. What matters is the fact that for the
algorithm in question the clock-speed of the processor (and thus its raw power)
translates directly into performance.

Speed of SIMD S-W implementations
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Fig. 4. Search times versus query lengths for different implementations

To complete our investigation, in figure 5 we depict effect of gap penalties on
the horizontal method. Searching the database using a query of length 900 with
a gap penalty of 047k takes 174 seconds, while a search with a penalty of 40+ 2k
takes only 43.9 seconds (however, with the change in the gap penalty the optimal



Effect of gap penalties on the horizontal method
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Fig. 5. Effect of SWAT optimization

scores are no longer equal). The speed of the horizontal method varies from 142
MCUPS with a gap penalty of 0 + 7k, to its saturation point at approximately
580 MCUPS with a gap penalty of 40 4+ 2k. The diagonal method, on the other
hand, does not incorporate the SWAT optimization and runs at constant speeds
for different gap penalties. Hence, database searching with a high gap penalty
favors the horizontal method over the diagonal method (as long as the final
results remain reliable).

5 Concluding remarks

The aim of this work was to propose a fine grain implementation of the Smith-
Waterman algorithm utilizing multimedia extensions on Intel processors. Our
experiments showed significant speedups on Pentium workstations. Since the
general-purpose microprocessors are constantly being updated with more ad-
vanced features allowing micro-parallelization of algorithms, it can be expected
that features like the newly introduced Simultaneous Multi-threading (hyper-
threading) technology will offer further potential for performance increase. How-
ever, note that this and other similar approaches heavily rely on assembly coding.
As a results codes are not portable at all. For instance our codes run only on
32-bit architectures and are useless for the modern 64-bit processors.
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