Porting CFD Codes towards Grids.
A Case Study

Dana Petcu':2, Daniel Vizman® and Marcin Paprzycki*

1 Computer Science Department, Western University,? Institute e-Austria, Timigoara,
3 Physics Department, Western University of Timisoara, Romania
4 Computer Sciecne Institute, SWPS, Warsaw, Poland
petcu@info.uvt.ro, vizman@physics.uvt.ro, marcin.paprzycki@swps.edu.pl

Abstract. In this paper we discuss an application of a modified version
of a graph partitioning-based heuristic load-balancing algorithm known
as the Largest Task First with Minimum Finish Time and Available Com-
munication Costs, which is a part of the EVAH package. The proposed
modification takes into account the dynamic nature and heterogeneity
of grid environments. The new algorithm is applied to facilitate load
balance of a known CFD code used to model crystal growth.

1 Introduction

Computational fluid dynamics codes are computationally demanding, both in
terms of memory usage and also in the total number of arithmetical operations.
Since the most natural methods of improving accuracy of a solution are (1) refin-
ing a mesh or/and (2) shortening the time step, either of these approaches result
in substantial further increase of both computational cost and total memory
usage. Therefore, a tendency can be observed, to use whatever computational
resources are available to the user and, particularly among researchers working
in the CFD area, there exist an almost insatiable demand for more powerful
computers with ever increasing size of available memory. One of possible ways
to satisfy this demand is to divide up the program to run on multiple processors.
In the last twenty years several codes have been introduced to facilitate parallel
computational fluid dynamics.

Parallel CFD codes have been typically developed assuming a homogeneous
set of processors and a fast network. Recent ascent of grid technologies requires
re-evaluation of these assumptions as the very idea of computational grids is
based on combining heterogeneous processors and using substantially slower net-
works connections (typically the Internet or a corporate LAN). This makes the
environment much different than parallel computers or clusters of workstations
connected using a fast switch. Furthermore, the migration process of CFD codes
designed for parallel computing architectures towards grids must take into ac-
count not only the heterogeneity of the new environment but also the dynamic
evolution of the pool of available computational resources. At the same time we
have to acknowledge that to be able to fully rewrite the existing codes is usually
not a viable option (e.g. because of the cost involved in such an endeavor).



In this context let us note that large body of research has been already
devoted to dynamic load balancing in heterogeneous environments, and more
recently in grid environments (e.g. in [2] dynamic load-balancing in a grid envi-
ronment is used for a geophysical application).

Approaches to load-balancing in distributed systems can be classified into
three categories: (1) graph-theoretic, (2) mathematical programming based, and
(3) heuristic. Graph-theoretic algorithms consider graphs representing the inter-
task dependencies and apply graph partitioning methodologies to obtain approx-
imately equal partitions of the graph such that the inter-node communication is
minimized. A CFD simulation using such an approach is described in [5]. The
mathematical programming method, views the load-balancing as an optimization
problem and solves it using techniques originating from that domain. Finally,
heuristic methods provide fast solutions (even though usually sub-optimal ones)
when the time to obtain the exact optimal solution is prohibitive. For example
in [1] a genetic algorithm is used as an iterative heuristic method to obtain near
optimal solutions to a combinatorial optimization problem that is then applied
to job scheduling on a grid.

When approached from a different perspective, we can divide load manage-
ment approaches into (1) system level, and (2) user-level. A system-level cen-
tralized management strategy, which works over all applications uses schedulers
to manage loads in the system. It is typically based on rules associated with job
types or load classes. An example of the the user-level individual management of
loads in a parallel computing environment is the Dynamic Load Balancing (DLB
[8]) tool that lets the system balance loads without going through centralized
load management and, furthermore, provides application level load balancing for
individual parallel jobs. Here, a CFD test case was used as an example. System
load measurement of the DLB is modified using average load history provided
by computing systems rather than by tracking processing of tasks.

The EVAH package [3] was developed to predict the performance scalability
of overset grid applications executing on large numbers of processors. In par-
ticular, it consists of a set of allocation heuristics that consider the constraints
inherent in multi-block CFD problems.

In this paper we analyze and modify a graph partitioning-based heuristic
algorithm available within the EVAH package, the Largest Task First with Min-
imum Finish Time and Available Communication Costs (LTF-MFT_ACC). The
main drawback of this algorithm is that it assumes that grid-available resources
are homogeneous. For instance, to show its efficiency tests performed on an
Origin2000 system and were reported in [3]. We propose a modification of the
LTF_MFT_ACC algorithm that can be applied in the case of a heterogeneous
computing environment (such as a typical grid is supposed to be). Inspired by
the DLB tool, our algorithm takes into account (1) the history of the computa-
tion time on different nodes, (2) the communication requirements, and (3) the
current network speeds. To study the robustness of the proposed improvements,
the modified LTF_MFT_ACC algorithm is used to port an existing CFD code
into a heterogeneous computing environment.



The paper is organized as follows. Section 2 describes the CFD code and
its parallel implementation. Section 3 presents the modified LTF_-MFT_ACC
algorithm. Section 4 discusses the results of our initial test.

2 Crystal growth simulation

Materials processing systems are often characterized by the presence of a num-
ber of distinct materials and phases with significantly different thermo-physical
and transport properties. Understanding of the complex transport phenomena in
these systems is of vital importance for the design and fabrication of various de-
sired products as well as optimization and control of the manufacturing process.
It is well known that numerical simulation prove to be an effective tool for the
understanding of the transport mechanisms. However, in computational prac-
tice, three-dimensional simulations are necessary to yield a reliable description
of the flow behavior. Usual computational methods applied to these problems
include finite difference, finite volume, finite element, and spectral methods.

In particular, let us consider the Czochralski process [11] of bulk crystal
growth that features a rod holding an oriented seed crystal which is lowered
through the top surface of the molten liquid contained in a crucible. With thermal
control to maintain the upper surface of the fluid at the melt temperature, growth
begins on the seed and when the crystal reaches a specified diameter, the rod
is slowly withdraw to continue growth (Figure 1.a). The flow in the melt, from
which the crystal is pulled, is transient and, depending on the size of the crucible,
mostly turbulent.

The silicon melt flow into a rotating crucible is governed by the three-
dimensional partial differential equations describing mass, momentum, and heat
transport. Solution methods that employ finite volume (see e.g [4]) require gen-
eration of the solution grid that conforms to the geometry of the flow region
(a grid of small volume elements for which the average values of flow quantities
are stored). An important issue for the quality of the numerical simulations is
the choice of the (discretizing) grid. Here, both the numerical resolution and
the internal structure of the grid are very important. The second item can be
seen, is the refining of the grid towards the walls of the melt container, which is
necessary to properly resolve the boundary layers of the flow.

As far as the solution was concerned, a matched multiblock method was used
in our simulations (here, the grid lines match each other at the block conjunc-
tion). Here, a multiblock structured grid system [13] uses advanced linear solvers,
for the inner iteration, and a multigrid technique for the outer iterations. Fur-
thermore, the computational domain is divided into blocks consisting of control
volumes (from hundreds to millions; see Figure 1.b).

More specifically, the finite volume code STHAMAS 3D (developed partially
by the second author at the Institute of Materials Science in Erlangen) allows
three-dimensional time-dependent simulations on a block-structured numerical
grid. SIP (Stone’s strongly implicit procedure [12]) is used to solve the system of
linear equation resulting from the discretization of PDEs for three-dimensional



Single Silicon Crystal
Quartz Crucible
Water Cooled Chamber
Heat Shield

Carbon Heater

Graphite Crucible -
(b)

vertieal section Lop section

(d)

Fig. 1. Crystal growth: (a) device; (b) control volumes; (c) blocks of control volumes;
(d) code outputs — isoterms and animation frames

problems (it is applicable to seven-diagonal coefficient matrices that are ob-
tained when central-difference approximation is used to discretize the problem).
SIMPLE algorithm (Semi-Implicit Method for Pressure-Linked Equations, [9]) is
used for the pressure correction and the implicit Euler method is applied for time
integration. The SIP and the SIMPLE were studied and compared (in [6]) with
other solvers and shown to be very robust. A simple example of the graphical
output of the code is presented in Figure 1.d.

Time-dependence and three-dimensionality coupled with extensive parameter
variations require a very large amount of computational resources and result in
very long solution times. The most time-consuming part of the sequential code
STHAMAS 3D is the numerical solution obtained, using the SIP, on different
blocks of CVs. In order to decrease the response time of STHAMAS 38D, a
parallel version was recently developed by the first two authors and compared
with other similar CFD codes (see [10]). It is based on a parallel version of the
SIP solver, where simultaneous computations are performed on different blocks
mapped to different processors (different colors in Figure 1.c). After each inner
iteration, information exchanges are performed at the level of block surfaces
(using the MPT library). Thus far, the new parallel STHAMAS 3D was tested
only utilizing homogeneous computing environments, in particular, a clusters of
workstations and a parallel computer.



For completeness it should be noted that a different parallel version of a
crystal growth simulation has been reported in [7]. It utilizes a parallel version
of the SSOR preconditioner and the BiCGSTAB iterative solver.

3 Load balancing strategy

In the Largest Task First with Minimum Finish Time and Available Communi-
cation Costs (LTF_-MFT_ACC) algorithm from the EVAH package [3] a task is
associated with a block in the CFD grid system. The size of a task is defined as
the computation time for the corresponding block. According the Largest Task
First (LTF) policy, the algorithms first sorts the tasks in a descending order by
their size. Then it systematically allocates tasks to processors respecting the rule
of Minimum Finish Time (LTF_-MFT). The overhead involved in this process,
due to data exchanges between neighboring blocks, is also taken into account.
The LTF_MFT_ACC utilizes approximations of communication costs, which are
estimated on the basis of the inter-block data volume exchange and the inter-
processor communication rate.

In the LTF_-MFT_ACC algorithm described in [3] for the homogeneous case,
the estimated computational time for block 7, t; does not vary with the processor
power. To take into account the variation of the computational power of the
heterogeneous resources, we have modified the LTF_-MFT_ACC (Figure 2) as
follows. When the load balancing procedure is activated before a specific inner
iteration of the simulation, several counters are started and they stop only at
the end of the inner iteration. Those counters are measuring;:

- the computer power, conceptualized as the time of performing a single cycle
involving floating point operations; this information is further used to rank
the resources;

the computation time spent working on each block at an inner iteration; this
information and the relative computer power are used to assume what will
be the time spent working on a given block by other processor(s);

the required volume of data to be exchanged between neighboring blocks (num-
ber of elementary data items);

- samples of communication times between each pair of processors collected for

several volumes data (further time values are estimated by a linear interpo-
lation).

The DLB tool [8] uses as inputs for the load balance strategy also the timing
of computation for parallel blocks and the size of the interface of each block with
its neighbors. Those times are not referring to a specific inner iteration of the
CFD simulation, but to an average load history provided by computing systems
that are part of the grid that is used to solve the problem.

4 Tests

The initial LTF-MFT_-ACC algorithm was applied in [3] to a selected CFD prob-
lem, a Navier-Stokes simulation of vortex dynamics in the complex wake of a



Input:

Current distribution of the N blocks on P processors: p(i) € {1,...,P}, i=1,...,N
Output:

New distribution of the N blocks on P processors: p'(i) € {1,...,P}, i=1,...,N

Preliminaries, using the current distribution:

Record the computation time for each block: T3, ¢ =1,..., N

Record the quantity of data to be send/receive between blocks: Vj i, j,k=1,...,N

Estimate communication time between each pair of processors depending on the
quantity of transmitted data: Send(p, q,dim), Recv(p,q,dim), p,q=1,...,P, p#q

Record the time spent to perform a standard test: ¢, p=1,..., P

Compute the relative speeds of computers: wy, < ¢,/ ming—1,... pcy,, p=1,..., P
Normalize computation time for each block: ¢; < T;/wyy, i =1,..., N
To do:

Sort ¢;,7 = 1, N in descending order
Set costs Cp, =0,p=1,...,P
For each t;,7=1,...,N do
Find the processor ¢ with minimum load: ?q, Cy = min,—1,...p Cp
Associate block i with processor g, p'(i) < ¢
Modify the costs: Cy « Cy + wqt;
For each processor o # g having assigned a task j sending a message to task i,
Co + C, + Send(o,q,V (j,1))
Cq = Cq + Recv(q, 0,V (5, 1))
For each processor o # ¢ having assigned a task j receiving a message from task i,
Co < Co + Recv(o,q,V (i, 7))
Cq + Cq + Send(q,0,V (i, 7))

Fig. 2. Modified LTF_-MFT_ACC algorithm

region around hovering rotors. The overset grid system consisted of 857 blocks
and approximately 69 million grid points. The experiments running on the 512-
processor SGI Origin2000 distributed-shared-memory system showed that the
EVAH algorithm performs better than other heuristic algorithms.

The CFD test case from the [8] used a three-dimensional grid for a heat
transfer problem. The grid consisted of 27-block partitions with 40x40x40 grid
points on each block (1.7 millions of grid points). For a range of relative speeds of
computers from 1+ 1.55 a 21% improvement in the elapsed time was registered.

In our tests we have considered a three-dimensional grid applied to the crystal
growth simulation using STHAMAS 3D with 38-block-partitions with a variable
number of grid points: the largest one had 25x25x40 points, while the smallest
one had 6x25x13 points (total of 0.3 millions of grid points in the simulation).

We considered two computing environments:

- a homogeneous one a Linux cluster of 8 dual PIV Xeon 2GHz Processors with
2Gb RAM and a Myrinet2000 interconnection (http://www.oscer.edu);

- a heterogeneous one — a Linux network of 16 PCs with variable computational
power, from an Intel Celeron running at 0.6GHz, with 128Mb RAM to an



T T T T I I
B g
§ £
:
:
Initial e " Initial d.inrihé? i
hal on
B Balanced by LTF MFT ACC & LTF_MFT_ACC for homogencous case
= Initial: mean time L Modified LTF MFT_ACC for heterogeneous case
(@ (b)

Fig. 3. Load balancing results : (a) in the case of 4 processors of the homogeneous
environment, the LTF_MFT_ACC algorithm reduces the differences between the com-
putation time spent by each processor in the inner iteration; (b) in the case of 2, 4,
8 and 16 processors of the heterogeneous environment, the LTF_MFT_ACC reduces
the time per inner iteration, but a further significant reduction is possible using the
modified LTF_MFT_ACC algorithm

Intel PIV running at 3GHz and with 1Gb RAM; these machines were con-
nected through an Ethernet 10 Mbs interconnection (http://www.risc.uni-
linz.ac.at).

Thus, the interval of the relative speeds of computers used in the second case
reached 1+ 2.9.

Initially blocks of the discretization were distributed uniformly between the
processors (e.g. in the case of two processors, first 19 blocks were send to the
first processor, and the last 19 blocks were send to the second processor).

Due to the different number of grid points in individual blocks, the ini-
tial LTF_MFT_ACC algorithm running in the homogeneous environment rec-
ommended a new distribution of the nodes. Also the modified LTF-MFT_ACC
algorithm made such a recommendation. For example, a reduction of 6% of
the computation time required by an inner iteration was registered by applying
both algorithms (the original one and the modified one) in the case of using 4
processors (Figure 3.a).

In the case of the heterogeneous environment, the LTF_MFT_ACC algorithm
performs better: we observe a reduction ranging from 14% to 20% of the time
spent by the CFD code in the inner iteration. A further reduction of the time
was obtained when applying the modified LTF-MFT_ACC algorithm — varying
from 20% to 31% (Figure 3.b). Comparing the time results with the ones for the
initial distribution, a total reduction time obtained in our experiments varies
from 33% to 45%.



5

Further improvements

The proposed load balancing technique shows to be useful in the considered case,
a version of a CFD code running within heterogeneous or grid environments.
Tests must be further performed to compare several dynamic load balancing
techniques with the proposed one, not only in what concerns the influence of
the computer power variations as in this paper, but also of the network speed
variation. A particular grid testbed running MPICH-G2 applications will be used
in the near future to perform such tests.

References

1.

10.

11.

12.

13.

J. Cao, D. P. Spooner, S. A. Jarvis, S. Saini, and G. R. Nudd, Agent-based grid
load balancing using performance-driven task scheduling. In Procs. of IPDPS03,
IEEE Computer Press (2003).

. R. David, S. Genaud, A. Giersch, B. Schwarz, and E. Violard, Source code trans-

formations strategies to load-balance grid applications. In Procs. GRID 2002, M.
Parashar (ed.), LNCS 2536, Springer (2002), 82-87.

M.J. Djomehri, R. Biswas, N. Lopez-Benitez, Load balancing strate-
gies for multi-block overset grid applications, NAS-03-007, Available at
www.nas.nasa.gov/News/ Techreports/2003/PDF /nas-03-007.pdf.

J.H.Ferziger, M.Peri¢, Computational Methods for Fluid Dynamics, Springer
(1996).

H. Gao, A. Schmidt, A. Gupta, P. Luksch, Load balancing for spatial-grid based
parallel numerical simulations on clusters of SMPs, In Procs. Euro PDP03, IEEE
Computer Press (2003), 75-82.

O. Iliev, M. Scéfer, A numerical study of the efficiency of SIMPLE-type algorithms
in computing incompressible flows on streched grids. In Procs. LSSC99, M. Griebel,
S. Margenov, P. Yalamov (eds.), Notes on Numerical Fluid Mechanics 73, Vieweg
(2000), 207-214

D. Lukanin, V. Kalaev, A. Zhmakin, Parallel simulation of Czochralski crystal
growth. In Procs. PPAM 2003, R. Wyrzykowski et al, LNCS 3019 (2004), 469—
474

R.U. Payli, E. Yilmaz, A. Ecer, H.U. Akay, and S. Chien, DLB A dynamic load
balancing tool for grid computing. In Procs. Parallel CFD04, G. Winter, A. Ecer,
F.N. Satofuka, P. Fox (eds.), Elsevier (2005), 391-399

M. Perié, A finite volume method for the prediction of three-dimensional fluid flow
in complex ducts, Ph.D. Thesis, University of London (1985).

D.Petcu, D.Vizman, J.Friedrich, M.Popescu, Crystal growth simulation on clusters.
In Procs. of HPC2003, 1. Banicescu (ed.), Simulation Councils Inc. San Diego
(2003), 41-46

P.A. Sackinger, R.A. Brown, J.J. Brown, A finite element method for analysis of
fluid flow, heat transfer and free interfaces in Czochralski crystal growth, Inter-
nat.J. Numer. Methods in Fluids 9 (1989), 453-492.

H. L. Stone, Iterative solution of implicit approximations of multidimensional par-
tial differential equations, STAM J. Num. Anal. 5 (1968), 530-558.

D. Sun, A Multiblock and Multigrid Technique for Simulations of Material Pro-
cessing, Ph.D. Thesis, State University of New York (2001).



