
Improving Parallelism in Structural Data Mining

Min Cai1, Istvan Jonyer1, and Marcin Paprzycki2

1 Department of Computer Science, Oklahoma State University, Stillwater,
Oklahoma 74078, U.S.A.

cmin, jonyer@cs.okstate.edu
2 Computer Science Institute, SWPS, 03-815 Warsaw, Poland

marcin.paprzycki@swps.edu.pl

Abstract. Large amount of data collected daily requires efficient algo-
rithms for its processing. The SUBDUE data mining system discovers
substructures in structurally complex data, based on the minimum de-
scription length principle. Its parallel implementation, MPI-SUBDUE,
was created in 2001 to reduce computation time and/or to deal with
larger datasets. In this paper, a new, more efficient implementation of
MPI-SUBDUE is introduced. The experimental results show that, for
the mutagenesis dataset, the new implementation outperforms the orig-
inal one by up to 33% and that the performance gain increases with the
number of processors used.

1 Introduction

Large amounts of data are collected on a daily basis and added to the existing
repositories. The need to extract valuable information from this data challenges
researchers to develop efficient techniques to discover and interpret interesting
patterns in it. In this paper we are interested in discovering concepts in struc-
tural data, for which a number of algorithms have been proposed [1, 6, 8]. One of
them, SUBDUE, discovers substructures on the basis of the minimum description
length principle [8]. Working with graph-based data representation and utilizing
graph-algorithms, when applied to real-world problems, SUBDUE takes a very
long time to execute. In 2001, a parallel version of SUBDUE (MPI-SUBDUE)
was implemented [1, 8]. MPI-SUBDUE partitions the graph representing the
dataset into parts that are analyzed independently first, and then partial re-
sults are communicated so that the globally-best substructure is selected. Par-
allelization was achieved through MPI, while communication between processes
consisted of a sequence of point-to-point messages. However, even a superficial
analysis of MPI-SUBDUE indicated a number of possible inefficiencies, which
not only could have resulted in poor performance, but also constitute a problem
form the point of view of programming simplicity and expressiveness [7].

Since SUBDUE is one of the best existing graph-based data mining tools, we
have decided to develop its more efficient version and in the process to improve
it from the point of view of programming simplicity and expressiveness. To ac-
complish these goals, we have proceeded with the following modifications of the
MPI-SUBDUE:

– the initial graph partitioning was parallelized,
– multiple point-to-point communications (MPI Send and MPI Recv) have

been replaced by an MPI collective communication (MPI Allgatherv),
– parallel summation has been applied to deciding the globally best discoveries.

In reporting our work we proceed as follows. In the next section we present
an overview of the SUBDUE system. Both the original and the NEW-MPI-
SUBDUE are described in Section 3. We follow with the description and analysis
of experimental results of testing both algorithms on three datasets. In Section
5 we summarize our results and outline our future work.

2 SUBDUE

SUBDUE is a data mining system working through substructure discovery aimed
at finding interesting and recurring subgraphs in a labeled graph. This goal is
achieved by applying the minimum description length principle (MDL). SUB-
DUE has been successfully applied to molecular biology, image analysis and
computer-aided design, as well as other domains [8]. During SUBDUE’s exe-
cution two basic steps (1) substructure discovery and (2) replacement are per-
formed. Structural data (input for SUBDUE) is represented as a labeled graph.
Objects in the data correspond to vertices, while relationships between them
correspond to edges. A substructure is a connected subgraph (a subset of ver-
tices and edges from the input graph) and represents a structural property of
the dataset. In the first step SUBDUE discovers the best (according to the MDL
principle) substructure in the complete data-graph. This substructure could be
the final answer, but it is also possible to repeat the process to discover a hi-
erarchy of important structures. To achieve this goal, all instances of the best
substructure at a given level are compressed to a single vertex and SUBDUE
is invoked on the “reduced graph”. Hierarchy of substructures obtained in this
way is then used for various levels of interpretation; depending on goals of data
analysis (see [1, 6, 8] for a complete description of SUBDUE and examples of its
application to real-life problems).

3 Parallel SUBDUE

Data parallel approach and functional (or control) parallelization are the two
main ways of achieving algorithm parallelization. Both approaches can be used
to parallelize SUBDUE. Functional parallel SUBDUE has been introduced in
[1]. In this paper, we focus on the data parallel approach. In parallel SUBDUE,
the input graph is first partitioned into n partitions that are distributed among
n processors. Each processor finds the best substructure in its partition and
communicates it to all other processors. Each processor uses these substructures
to compare them with its own structures, using the MDL principle (structure
that is very good for the data in partition k may be bad in partition l and thus
all “local champions” must be compared vis-á-vis structures in each partition).

Results of local comparison are then combined and exchanged between processors
and as a result, the “globally best” substructure is found. This process can be
repeated to obtain a hierarchical decomposition [1, 6, 8].

Let us note that this approach to algorithm parallelization may come at a
price. Since the original graph is divided into subgraphs it is possible that some
structures that existed in the original dataset will be lost. This happens when the
input is partitioned by removing some edges, thus potentially cutting important
substructures and dividing them between multiple processors. To maximally
offset this problem a high-quality graph partition program (METIS) is used,
which eliminates only a minimal number of edges; thus reducing possibility of
splitting important substructures.

3.1 MPI-SUBDUE

In the original version of MPI-SUBDUE [8], the input graph was partitioned into
n subgraphs using the METIS package [2]. In METIS 4.0, two partitioning pro-
grams pmetis and kmetis can be used to partition a graph. The pmetis is based
on multilevel recursive bisection [5], whereas the kmetis is based on multilevel
k-way partitioning [4]. Both routines produce high quality partitions. However,
as specified in [2], kmetis is expected to be considerably faster than pmetis when
the number of partitions is larger than n = 8.

A series of point-to-point communications (MPI Send and MPI Recv) were
used to exchange information between processors. There is a total of three sit-
uations in MPI-SUBDUE, when inter-processor communication takes place: (1)
when the best local substructures are exchanged, (2) when the results of local
comparisons are propagated, and (3) when the final best substructure is estab-
lished (see above and [8]).

3.2 NEW-MPI-SUBDUE

We made three improvements to the original version of MPI-SUBDUE. First, we
have explored parallelism in the graph partitioning. The input graph is now par-
titioned using the PARMETIS (version 3.1) graph partitioning package [3]. Sec-
ond, instead of using point-to-point communications (MPI Send and MPI Recv
routines), the MPI collective communication (MPI Allgatherv routine) is used.
Obviously, point-to-point communication involves a pair of processors and use
of MPI Send and MPI Recv puts excessive communication demands on the sys-
tem, which deteriorates the program’s performance. Collective communication,
on the other hand, involves every process in a group, and allows all machine
resources to be exploited more efficiently. Furthermore in many cases, vendors
offer machine-tuned, efficient implementations of collective communication [7].
Third, hierarchical (binary-tree based) summation is used in finding globally
best substructures. After being evaluated on all partitions, the “scores” of sub-
structures are propagated up the hierarchy, where at each internal node of the
tree these “scores” are added for substructure reported from two different par-
titions, and their sum is passed further up the hierarchy. The algorithm of the

NEW-MPI-SUBDUE is summarized in Figure 1. Interestingly, as we will see in

NEW-MPI-SUBDUE(Graph)

Global variables: n, j, Value[0…(n-1)], Pos_Instances[0…(n-1)], Neg_Instances[0…(n-1)]

begin

 spawn(P0, P1, P2, P3, …, Pn);

 apply PARMETIS to partition the graph into n partitions;

 for all Pi where 1 ≤ i ≤ n do

 each processor discovers the best substructure in its graph partition;

 each processor broadcasts its best substructure to all other processors;

 each processor evaluates its best substructure and broadcasts the results to all other processors;

 each processor stores the value, number of positive instances, number of negative instances of

 the best substructures in Value[0…(n-1)],Pos_Instances[0…(n-1)],

 and Neg_Instances[0…(n-1)], respectively;

 for j � 0 to log(n) do

 if (i-1) mod 2j = 0 and i-1+2j < n then

 Value[i-1] � Value[i-1] + Value[i-1 + 2j] ;

 Pos_Instances[i-1] � Pos_Instances[i-1] + Pos_Instances[i-1+2j] ;

 Neg_Instances[i-1] � Neg_Instances[i-1] + Neg_Instances[i-1+2j] ;

 each processor broadcasts Value[i-1], Pos_Instances[i-1], Neg_Instances[i-1]

 to all other processors;

 endif

 endfor

 each processor updates the values of its best substructure with its corresponding elements

 in Value[0…(n-1)], Pos_Instances[0…(n-1)], and Neg_Instances[0…(n-1)] and

 sends the updated best substructures to P0;

 endfor

 P0 finds and outputs the global best substructures

end

Fig. 1. The NEW-MPI-SUBDUE algorithm

the next section, set of changes that could be considered relatively insignificant,
resulted in a very significant performance improvement.

4 Experimental Results

Let us now illustrate the performance of the NEW-MPI-SUBDUE in experi-
ments performed on three input graphs that represent mutagenesis data and
are derived from OxUni [9]. These datasets were collected in order to predict

the mutagenicity of aromatic and heteroaromatic nitro compounds. Here, mu-
tagenicity is denoted by positive or negative real numbers. There are four levels
of background knowledge in the database: atoms in the molecules, bonds in the
molecules, and two attributes describing the molecule as a whole and higher level
submolecular structures. The atom and bond structures were obtained from a
standard molecular modeling package called Quanta [9]. In our current exper-
iments, we were concerned only with performance improvements of the NEW-
MPI-SUBDUE, and due to space limitations and since such results are outside
of scope of this paper, we will not report on patterns found in the data.

First, we experimented with two small data graphs: Graph 1 had 2844 ver-
tices and 2883 edges, while Graph 2 had 2896 vertices and 2934 edges. These
two graphs are similar in size to these used in the original report [8] and we have
found that the computer hardware has progressed so fast, that problems that
were computationally challenging in 2000 are now much too small for an interest-
ing comparison. We have therefore moved to the complete mutagenesis dataset
(Graph 3 had 22268 vertices and 22823 edges), where the real performance gain
could be observed.

Our experiments were performed on a cluster composed of 20 compute nodes,
each with two AMD Athlon MP 1800+ (1.6GHz) CPUs. Each compute node has
2 GB of DDR SDRAM, and switching between compute nodes is provided by
a 24-port full-backplane Gigabit Ethernet switch. All nodes run RedHat 9.0
operating system. In our work we used Portland Group C compiler version 5.0-
2 and MPICH. All experiments were performed on an empty or lightly loaded
machine. Results reported here, for all numbers of processors, represent best
times obtained for multiple runs.

Since the available cluster had 40 processors and since we have used a binary
summation algorithm, it was natural to utilize up to 25 = 32 processors. Since the
NEW-MPI-SUBDUE was implemented on the basis of the MPI-SUBDUE, we
used the same master-slave approach and processor P0 coordinated the execution
of the program. Therefore, a total of 33 processors were used in the largest
experiment. To obtain a complete performance picture each input data-graph
was partitioned into 2, . . . , 32 partitions. First, in Tables 1-2 we present the
time of graph partition of the original MPI-SUBDUE (sequential partition) and
the NEW-MPI-SUBDUE (parallel partition). When experimenting the original
MPI-SUBDUE, since there are two programs in the sequential partition, pmetis

and kmetis, and kmetis is considerably faster than pmetis when the number of
partitions is larger than 8 [2], we used kmetis for partitioning the graph into
more than 8 subgraphs and pmetis for partitioning the graph into less than
or equal to 8 subgraphs. In the NEW-MPI-SUBDUE, we used PARMETIS for
graph partitioning.

Two observations can be made. First, as expected, parallel performance of
PARMETIS is not very impressive, as we observe almost no speedup. However,
thanks to its parallelism the partition time remains almost flat, whereas the time
for the sequential partition increases with the number of partitions required.
Therefore, second, when the total execution time of parallel SUBDUE is the

Table 1. Partition time for Graphs 1 and 2

Graph 1 Graph 2

N Execution time Execution time Execution time Execution time
METIS PARMETIS METIS PARMETIS

(seconds) (seconds) (seconds) (seconds)

2 0.145 0.081 0.147 0.082

4 0.164 0.053 0.169 0.073

8 0.164 0.076 0.172 0.071

16 0.182 0.075 0.204 0.070

Table 2. Partition time for Graph 3

N Execution time Execution time
METIS PARMETIS

(seconds) (seconds)

2 1.009 0.700

4 1.268 0.621

8 1.269 0.597

16 1.425 0.599

32 1.626 0.601

shortest (for the largest number of processors), the sequential partition time is
the longest and thus its effect (approached from Amdahl’s Law perspective) is
the most significant. However, third, the overall partition time is very small in
comparison with the total execution time.

In Tables 3-5 we depict performance of the complete execution of the two
versions of parallel SUBDUE obtained for running 1 iterations (finding the best
substructure only). We also present the sizes of the largest and smallest partition
and the actual performance gain.

Table 3. Experimental results for Graph 1 for MPI-SUBDUE & NEW-MPI-SUBDUE

Number of vertices Execution time

N P Minimum Maximum MPI-SUBDUE NEW-MPI-SUBDUE Improvement
(seconds) (seconds)

2 3 1376 1468 28 9 68%

4 5 586 790 6 4 33%

8 9 244 412 2 2 0%

16 17 96 236 1 1 0%

The performance improvement of NEW-MPI-SUBDUE over the original MPI-
SUBDUE is significant. While the performance gains of up to 68% in Graph 1

Table 4. Experimental results for Graph 2 for MPI-SUBDUE & NEW-MPI-SUBDUE

Number of vertices Execution time

N P Minimum Maximum MPI-SUBDUE NEW-MPI-SUBDUE Improvement
(seconds) (seconds)

2 3 1404 1492 21 7 67%

4 5 614 790 6 5 17%

8 9 218 496 2 1 50%

16 17 84 248 1 1 0%

Table 5. Experimental results for Graph 3 for MPI-SUBDUE & NEW-MPI-SUBDUE

Number of vertices Execution time

N P Minimum Maximum MPI-SUBDUE NEW-MPI-SUBDUE Improvement
(seconds) (seconds)

2 3 10914 11354 653 514 21%

4 5 5362 5756 178 132 26%

8 9 2580 2932 58 45 22%

16 17 1218 1560 23 14 39%

32 33 458 870 12 8 33%

and 67% in Graph 2 were obtained, they are not very significant due to the short
total execution time of the code. The realistic picture of performance gains is
illustrated in the case of the large Graph 3. Here the gain ranges between 21%
and 39% and slowly increases with the number of processors used.

The single-processor execution time of SUBDUE applied to Graph 3 is 2149
seconds and this means that a total speedup of approximately 268 is obtained
on 32 processors. This results is easily explained when one considers the fact
that when the data-graph is divided, then each processor operates only on a
subgraph. Since formulas that express complexity of SUBDUE, while known to
be polynomial in terms of the number of vertices and edges, depend also on the
density of the graph, and thus we cannot easily utilize them in the case of our
graph. However, we can see in our final experiment (Graph 3) that increase of
the number of processors by a factor of 2 results in each case in decrease of
time by a factor of 4 and this gives us some indication about the complexity of
the SUBDUE when applied to this particular data-graph. One could therefore
suggest that even when 4 processors are used, graph could be divided into 32
partitions (8 partitions per processor) and in this way the total execution time
reduced. Unfortunately, this approach may be counter-productive as it may lead
to problems described above as by splitting the data-graph into unnecessary
sub-graphs we may be loosing information about important substructures.

It is worth noting that the even though the mutagenesis dataset leads to a
very sparse graph the results of applying PARMETIS are not very good (es-
pecially for large number of processors). Let us consider Graph 3 and n = 32

processors. In this case an optimal partition should be into subgraphs of size 696,
whereas the actual minimum partition size was 458, while the maximum 870.
This immediately points to a serious workload imbalance. If parallel SUBDUE
is to be successful for even larger datasets, balancing sizes of subgraphs needs
to become one of research priorities.

5 Conclusions

In this paper, by exploring data parallelisms and applying MPI collective com-
munication, a NEW-MPI-SUBDUE algorithm was implemented and tested with
three mutagenesis datasets (two small ones and one large). The experimental re-
sults show that the NEW-MPI-SUBDUE algorithm provides performance that
is approximately 20-30% better that the original MPI-SUBDUE.

References

1. Cook, D.J., Holder, L.B., Galal, G., Maglothin, R.: Approaches to Parallel Graph-
Based Knowledge Discovery. Journal of Parallel and Distributed Computing, 61(3)
(2001) 427-446

2. Karypis, G., Kumar, V.: A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices,
Version 4.0. University of Minnesota, Department of Computer Science and Engi-
neering, Army HPC Research Center, Minneapolis, MN (1998)

3. Karypis, G., Schloegel, K., Kumar, V.: Parallel Graph Partitioning and Sparse Ma-
trix Ordering Library, Ver. 3.1. University of Minnesota, Department of Computer
Science and Engineering, Army HPC Research Center, Minneapolis, MN (2003)

4. Karypis, G., Kumar, V.: Multilevel K-way Partitioning Scheme for Irregular Graphs.
Journal of Parallel and Distributed Computing, 48(1) (1998) 96-129

5. Karypis, G., Kumar, V.: A Fast and Highly Quality Multilevel Scheme for Parti-
tioning Irregular Graphs. SIAM Journal on Scientific Computing (1998)

6. Galal, G.M., Cook, D.J., Holder, L.B.: Improving Scalability in a Knowledge Discov-
ery System by Exploiting Parallelism In the Proceedings of the Third International
Conference on Knowledge Discovery and Data Mining (1997) 171-174

7. Gorlatch, S.: Send-Receive Considered Harmful: Myth and Realities of Message
Passing. ACM Transaction on Programming Languages and Systems, Vol. 26, No.
1. (January 2004)

8. http://cygnus.uta.edu/subdue/
9. http://www-ai.ijs.si/∼ilpnet2/apps/pm.html

