
Clustering Multiple and Cooperative Instances

of Computational Intensive Software Tools

Dana Petcu1,2, Marcin Paprzycki3,4, and Maria Ganzha5

1 Computer Science Department, Western University of Timişoara, Romania
2 Institute e-Austria, Timişoara, Romania

3 Computer Science Department, Oklahoma State University, USA
4 SWPS, Warsaw, Poland

5 Computer Science Dep., Gizycko Private Higher Educational Institute, Poland
petcu@info.uvt.ro, marcin@cs.okstate.edu, ganzha@pwsz.net

Abstract. In this note a general approach to designing distributed sys-
tems based on coupling existing software tools is presented and illus-
trated by two examples. Utilization of this approach to the development
of intelligent ODE solver is also described.

1 Introduction

Developing from the scratch parallel systems to solve computationally intensive
problems, while efficient, is in most cases rather difficult. Moreover, in initial
stages of development, only few parallel algorithms within such a system are
usually fully implemented and tested, making the resulting system too limited
for practical uses. An alternative approach is to gradually add parallelism to an
existing system consisting of a large number of fully tested sequential algorithms.
In this case parallelism becomes an added value to an existing environment.
Several software tools, based on different requirements and targeted for different
hardware architectures, have been developed in this way. Such development fol-
lowed the same general path leading from single-processor computers, through
tightly-coupled parallel systems, to loosely-coupled distributed environments.

In this note we consider requirements imposed on system architecture that
allow connecting several instances of a given software tool (possibly combined
with single or multiple instances of other tools) in a cluster environment. Archi-
tecture discussed here is designed so that the system can be easily ported to the
grid or to a web-based environment. The proposed architecture was implemented
to couple instances of software tools from symbolic computing and from expert
systems. The efficiency of implementation on a cluster is also reported.

2 Overview of the Proposed Architecture

Coupling several instances of software is an example of transforming software
components into a conglomerate system. One of possible ways of accomplish-
ing this transformation, is by implementing a wrapper that becomes the desired

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 452–456, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Clustering Multiple and Cooperative Instances 453

interface between components, translates external interactions across native in-
terfaces and deals with global syntax of the system. Automatic wrapper gener-
ators for legacy codes that would be able to wrap the entire code or selected
subroutines / modules, are still not available outside of the academia [8]. Here,
we try to identify the requirements that have to be imposed on such a wrapper
for the particular case of coupling software components within cluster environ-
ments.

We make the following assumptions about the software module that is to
be interfaced with the system. (1) It has a user interactive interface, (2) it can
be installed on several machines of a cluster or is accessible by each cluster
machine via an NFS, (3) it has TCP/IP communication facilities, or its source
code is available in a language having TCP/IP communication library, or it has
I/O facilities, and (4) user knows how to split the problem into subproblems.
Specifically, user wants to use the interface of an existing software module to
launch several copies on nodes of a cluster and, in the next step, to send to
them separate subproblems to be solved. Separately, we assume that cooperation
between instances is possible. Finally, other users of the same cluster may want
to use (within the same scenario) the same software module(s) within their
applications. For example, each node of an 8-processor cluster has a copy of
Maple running and various users may utilize groups of 1 through 8 kernels.

Designing cluster wrappers for software tools satisfying our assumptions can
be done by combining two pieces of software (Figure 1). The first one is a set
of simple commands, functions, procedures or methods, written in a language
of that software tool; designed as user interface for controlling remote instances,
sending and receiving information to and from them (parallel API – PAPI). The
second one is a set of commands, functions, procedures or methods written in a
language of the cluster middleware, catching the user commands and executing
them (communication middleware, CMW). The PAPI is the cluster wrapper

Fig. 1. Wrapping the user code (UPC) to clone it in a cluster environment: two main
components, the PAPI depending on the UPC and the general CMW

component depending on the user provided software (denoted UPC), while the
CMW is more general, it must be useable by several PAPIs. On a particular
node of the cluster where an instance of the software tool is running, the PAPI
set is loaded and any specific call to it leads to communication with the CMW

454 D. Petcu, M. Paprzycki, and M. Ganzha

Table 1. The commands send by a PAPI to its twin CMW

Command meaning

spawn n CMW launches in the cluster environment n copies of the UPC
send d t ”c” CMW forwards to the dth copy of the UPC the text c to be interpreted

by the UPC; the label t is used to match sends with receives;
receive s t CMW and UPC wait until a message from the instance s is received; then

forward it to the UPC which has requested the receive
probe s t CMW tests if a message has arrived from s and responds ’true’ or ’false’
kill s Shutdown the UPC and the CMW from the node hosting the instance of

s
exit All remote UPCs and their twin CMWs are stopped
proc no CMW replace it with a no. representing the no. of current UPC copies
proc id CMW replace it with the identifier of the UPC copy

component activated on the same machine (by the classical TCP/IP or the I/O
operations). A minimal language must be specified for such communication. For
example, a minimal set of such messages can be as presented in Table 1. In
this case, while user loads interactively the PAPI set within its UPC, the UPCs
launched remotely also load the PAPI set, recognize their identifier in the system
and constantly probe requests their twin CMW, i.e. if they do not work they
expect to receive information from the other instances. Let us now illustrate
most important details of implementation of the proposed architecture.

3 Implementation

We introduce two examples: (1) coupling several instances of Maple; (2) coupling
several instances of Jess. Let us note that our main goal is to reduce the solution
time when the two software tools are used to solve complex problems.

Coupling Several Instances of Maple. There exist a large number of efforts
to extend Maple to parallel and distributed environments and a comprehensive
review of the state-of-the-art can be found in [9]. Within last 5 years we have
implemented two variants of cluster (and grid) oriented Maple: PVMaple and
Maple2g.

In PVMaple [4], Maple was wrapped into an external software that manages
execution of tasks. The CMW, a special binary, written in C and using PVM,
is responsible for the message exchanges between Maple processes, coordinates
interaction between Maple kernels via PVM daemons, and schedules tasks among
nodes. The PAPI, a Maple library, consists of a set of parallel programming
commands available within Maple itself and supports connections with the CMW
(Table 2). Communication between Maple and CMW is achieved via text files.

The more recent wrapper – Maple2g [6] - also consists of two parts, the
PAPI, the computer algebra dependent one – m2g, a Maple library of functions
allowing Maple users to interact with the grid or cluster middleware – and the
CMW, the grid-dependent one – MGProxy, a package of Java classes acting as

Clustering Multiple and Cooperative Instances 455

Table 2. PAPI to CMW communication in PVMaple, Maple2g, and Parallel Jess

PAPI pvm lib for PVMaple m2g library for Maple2g ParJess lib

spawn n spawn(IP,proc no) m2g maple(n) (kernels n)
send d t ”c” t:=send(d,c) m2g send(d, t, c) (send d t s)
receive s t receive(t, s) m2g recv(s, t) (recv s t)
probe s t - m2g prob(s, t) (prob n t)
kill s - - (kill s)
exit exit m2g exit() (exit)
proc no tasks m2g size -
proc id TaskId m2g rank ?*p*
- ProcId, MachId, m2g connect(), m2g getservice(c, l) (connection)

setttime(), time(), m2g jobsubmit(t, c), m2g jobstop(t)
version() m2g status(t), m2g MGProxy start(),

m2g results(t), m2g MGProxy end()

an interface between m2g and the grid or cluster environment. MpiJava was
selected as the message-passing interface for the CMW, due to ist compatibility
with the Globus Toolkit. Communication between Maple and the MGProxy is
achieved using socket library available in Maple. The most important features of
Maple2g are summarized in Table 2. Maple2g was tested on a cluster of 9 PCs
connected with a fast Myrinet switch (2Gbs) on which Maple7 was installed. To
indicate an order of the efficiency, for 2 integers of 10 millions multiplied with
Karatsuba algorithm (the implicit procedure in Maple7): 88% for 3 processors,
71% for 9 processors. Subsequent examples in the grid case can be found in [6].
All experiments indicate reasonable scalability of both PVMMaple and Maple2g
(scalability depends primarily on network throughput).

Coupling Several Instances of Jess. Standard benchmarks [2], show that
current rule-based systems, running on modern hardware, may need hours to
reach an answer when the number of rules is of order of thousand. Therefore,
parallel approaches are needed for real applications and first parallel implemen-
tations were already available in early 1990s [1]. There are several approaches to
parallelization [10]: (a) parallel matching leads to a limited speedup caused by
the sequential execution of rules; (b) multiple rule firing approach parallelizes the
match phase and the act phase by firing multiple rules in parallel, but involves
extra cost due to synchronization; (c) special techniques like compatible rules
or analysis of data dependency graphs, can improve efficiency of parallelization;
(d) task-level parallelism, used here, based on the decomposition of the problem
into a hierarchy of tasks is expected to lead to best results.

Jess, a rule-based programming environment written in Java was chosen be-
cause of its active development and support, and because there is no parallel
version of Jess. The proposed architecture, recently reported in [7], also follows
the wrapper-based design presented in Section 2.

The CMW in Parallel Jess consists of two parts: the Connector and the
Messenger. The Connector is written in Java and uses standard ServerSockets

456 D. Petcu, M. Paprzycki, and M. Ganzha

methods of TCP/IP communication. Jess instance acts as a client and contacts
(via socket) its Connector, the server. Each Messenger is associated with one local
Connector and its purpose is (1) to execute commands received by the Connector,
and (2) to communicate with Messengers associated with other instances of Jess.
Messenger is written in Java and JPVM. Set of new commands added to Jess
(the PAPI) is presented in Table 2.

In order to test Parallel Jess efficiency, we applied it to the Miss Manner
problem [2] on the same cluster computer, obtaining an efficiency of 95% for 2
processors, and 45% for 8 processors. Several other examples can be found in [7]
and all of then indicate reasonable efficiency of Parallel Jess.

Future Research Direction. The above described components will be used to
develop a distributed cluster-based intelligent ODE solving environment. Here,
the problem will be described in a user friendly environment of the latest version
of the ODE numerical expert, EpODE [3]. The problem properties (stiffness,
decomposability, etc) will be then analyzed using a Maple kernel residing in
the cluster environment (e.g. eigenvalues of the linear part), or using EpODE
facilities (e.g. Jacobian matrix). Decisions which analysis methods to apply will
be made by a rule-based algorithm rewritten in Parallel Jess. Furthermore, if
the problem is large, a Maple2g multiprocessor approach will be used (see also
[5]).

References

1. Amaral J.N.: A Parallel architecture for serializable production systems, Ph.D.
Thesis, University of Texas, Austin, 1994.

2. OPS5 Benchmark Suite, available at http://www.pst.com/benchcr2.htm, 2003.
3. Petcu D., Dragan M.: Designing an ODE solving environment, LNCSE 10, Procs.

SciTools, eds. H.P. Langtangen et al(2000), 319-338.
4. Petcu D.: PVMaple – A distributed approach to cooperative work of Maple pro-

cesses. LNCS 1908, eds. J.Dongarra et al., (2000), 216–224
5. Petcu D.: Numerical Solution of ODEs with Distributed Maple, LNCS 1988, Procs.

NAA, eds. Lubin Vulkov et al, 666–674, 2001.
6. Petcu D., Dubu D., Paprzycki M.: Extending Maple to the Grid: Design and im-

plementation, in Procs. ISPDC’04, J.Morrison et al. eds., IEEE CS Press, 209-216.
7. Petcu D., Parallel Jess, Proceedings for the ISPDC 2005 Conference, to appear.
8. Solomon A., Struble C.A.: JavaMath – an API for internet accessible mathematical

services, Procs. 5th Asian Symposium on Computer Mathematics, (2001).
9. Schreiner W., Mittermaier C., Bosa K.: Distributed Maple – parallel computer

algebra in networked environments, J. Symb. Comp. 35:3, (2003), 305–347.
10. S. Wu, D. Miranker, J. Browne: Towards semantic-based exploration of parallelism

in production systems, TR-94-23, 1994.

	Introduction
	Overview of the Proposed Architecture
	Implementation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

