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Almost block diagonal (ABD) linear systems arise in a variety of contexts, specifically in numerical methods for
two-point boundary value problems for ordinary differential equations and in related partial differential equation
problems. The stable, efficient sequential solution of ABDs has received much attention over the last fifteen years
and the parallel solution more recently. We survey the fields of application with emphasis on how ABDs and
bordered ABDs (BABDs) arise. We outline most known direct solution techniques, both sequential and parallel,
and discuss the comparative efficiency of the parallel methods. Finally, we examine parallel iterative methods for
solving BABD systems.
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1. Introduction

In 1984, Fourer [72] gave a comprehensive survey of the occurrence of, and solution tech-
niques for, linear systems with staircase coefficient matrices. Here, we specialize to a sub-
class of staircase matrices, almost block diagonal (ABD) matrices. We outline the origin
of ABD matrices in solving ordinary differential equations (ODEs) with separated bound-
ary conditions (BCs) (that is, boundary value ordinary differential equations (BVODEs))
and provide a survey of old and new algorithms for solving ABD linear systems, includ-
ing some for parallel implementation. Also, we discuss bordered ABD (BABD) systems
which arise in solving BVODEs with nonseparated BCs, and describe a variety of solution
techniques.

The most general ABD matrix [32], shown in Figure 1..1, has the following character-
istics: the nonzero elements lie in blocks which may be of different sizes; each diagonal
entry lies in a block; any column of the matrix intersects no more than two blocks (which
are successive), and the overlap between successive blocks (that is, the number of columns
of the matrix common to two successive blocks) need not be constant. In commonly used
methods for solving BVODEs with separated BCs, the most frequently occurring ABD
structure is shown in Figure 1..2, where the blocksW (i), i = 1, 2, . . . , N , are all of equal
size, and the overlap between successive blocks is constant and equal to the sum of the
number of rows inTOP andBOT. Over the last two decades, this special structure has
been exploited in a number of algorithms to minimize fill-in and computational cost with-
out compromising stability. Naive approaches to solving ABD systems involve considering
them as banded or block tridiagonal systems. These approaches are undesirable for several
reasons not the least of which is that they introduce fill-in when the structure is imposed
on the system as well as in the solution procedure, leading to significant ineffiencies.

1 This work was supported in part by National Science Foundation grants CCR-9403461 and DMS-9805827
2 This work was supported in part by NATO grant CRG 920037
3 Current address: Department of Mathematics, University of New Hampshire, Durham, NH 03824
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Figure 1..1. Structure of a general ABD matrix
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Figure 1..2. Special ABD structure arising in BVODE solvers

A BABD matrix differs from the ABD matrix of Figure 1..1 in its last block row (or
column), where at least the first block entry is nonzero; for example, see the matrix in
(2..15) following. In some applications, the whole of the last block row (or column or
both) of the BABD is nonzero; for example, see the matrix in (2..20) following.

In Section 2., we outline how ABD and BABD systems arise when solving BVODEs us-
ing three important basic techniques: finite differences, multiple shooting and orthogonal
spline collocation (OSC). This material is introductory and is included here for complete-
ness. In Section 3., we provide a comprehensive survey of the origin of systems of similar
structure in finite difference and OSC techniques for elliptic boundary value problems and
initial-boundary value problems. Next, in Section 4., we describe efficient sequential di-
rect solution techniques for ABD and BABD systems. Emphasis is placed on algorithms
based on the alternate row and column elimination scheme of Varah [142]. As described in
Subsection 4.1.6. below, these algorithms are employed in modern software packages for
solving differential equations. In Section 5., we outline a variety of direct solution tech-
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niques for parallel implementation. The emphasis is on BABD systems as the techniques
derived are effective for both ABD and BABD systems. Here, we give some theoretical
arithmetic and communication costs, and storage counts for sequential and parallel imple-
mentations. Finally, in Section 6., we describe iterative techniques including comments on
their parallel.

2. BVODEs and ABD Systems

A general first order system of nonlinear BVODEs with separated BCs has the form

y′(x) = f(x,y(x)), x ∈ [a, b], ga(y(a)) = 0, gb(y(b)) = 0, (2..1)

wherey, f ∈ Rn, ga ∈ Rq, gb ∈ Rn−q. Among the most widely used methods for its
numerical solution are finite differences [11,95,104,105], multiple shooting [11,95], and
OSC [9,10,14]. When any of these methods are implemented using a quasilinearization or
Newton method, each iteration of the method requires the solution of an ABD system of
linear algebraic equations. This similarity is not surprising since the three approaches have
a close relationship [103]. In particular, many finite difference schemes can be interpreted
as multiple shooting algorithms where the shooting is over just one mesh subinterval using
an appropriate one step initial value problem (IVP) method. Also, OSC is equivalent to
using a (Gauss) Implicit Runge-Kutta (IRK) one step scheme [143,144] when applied to a
BVODE in the form (2..1) (but not when applied to higher order systems of BVODEs).

Consider the linear BVODE

y′(x) = A(x)y(x) + r(x), x ∈ [a, b], Day(a) = ca, Dby(b) = cb, (2..2)

wherey(x), r(x) ∈ Rn, A(x) ∈ Rn×n, Da ∈ Rq×n, Db ∈ R(n−q)×n, ca ∈ Rq,
cb ∈ R(n−q). In the solution of the nonlinear BVODE (2..1), problem (2..2) arises at each
iteration of a quasilinearization method. We simply replaceA(x) by ∂f(x, ŷ(x))/∂y, the
Jacobian off(x,y(x)), r(x) by ∂f(x, ŷ(x))/∂x, andDa, Db by the Jacobians of the BCs,
∂ga(ŷ(a))/∂y(a), ∂gb(ŷ(b))/∂y(b), respectively. (Here,̂y(x) is the previous iterate for
the solution in the quasilinearization process.)

To describe the basic methods in this and later sections, we choose a mesh

π : a = x0 < x1 < . . . < xN = b, hi = xi − xi−1. (2..3)

2.1. Finite Difference Methods

Finite difference schemes can be illustrated using the one step trapezoidal method,

yi − yi−1 =
hi

2
[f(xi−1,yi−1) + f(xi,yi)], (2..4)

whereyi ≈ y(xi). Applying (2..4) to (2..2) fori = 1, 2, . . . , N, gives



Da

S1 T1

S2 T2

. . .
. . .
SN TN

Db







y0

y1

y2

...
yN−1

yN




=




ca

h1r 1
2

h2r 3
2

...
hNrN− 1

2

cb




, (2..5)
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whereSi, Ti ∈ Rn×n, ri− 1
2
∈ Rn are

Si = −I−hi

2
A(xi−1), Ti = I−hi

2
A(xi), ri− 1

2
=

1
2
[r(xi−1)+r(xi)], i = 1, 2, . . . , N.

In the following, we refer to the system (2..5) as being in standard ABD form.

2.2. Multiple Shooting

In multiple shooting for (2..2), we compute a fundamental solution matrixYi(x) ∈ Rn×n

and a particular solutionpi(x) ∈ Rn on each subinterval[xi−1, xi], i = 1, 2, . . . , N, of
the meshπ:

Y ′
i (x) = A(x)Yi(x), Yi(xi−1) = I, p′i = A(x)pi + r(x), pi(xi−1) = 0. (2..6)

Then the vectorssi ∈ Rn in

y(x) = Yi(x)si + pi(x), x ∈ [xi−1, xi], i = 1, 2, . . . N,

are chosen to preserve continuity of the approximate solution at the mesh points. Thus,

Yi(xi)si + pi(xi) = Yi+1(xi)si+1 + pi+1(xi), i = 1, 2, . . . N − 1.

Because of the initial conditions, it follows that

−Yi(xi)si + si+1 = pi(xi), i = 1, 2, . . . , N − 1.

Combining these equations with the BCs in (2..2) gives



DaY1(x0)
−Y1(x1) I

−Y2(x2) I
.. .

. ..
−YN−1(xN−1) I

DbYN (xN )







s1

s2

s3

...
sN−1

sN




=




ca

p1(x1)
p2(x2)

...
pN−1(xN−1)

cb −DbpN (xN )




(2..7)

which is an ABD system with a special structure that can be exploited.

2.3. Orthogonal Spline Collocation Methods

To simplify the exposition, we present OSC using Lagrangean basis functions for problem
(2..2). Then we give more details in the context of second order scalar linear BVODEs with
separated BCs which leads into the discussion in Section 3..

On each subinterval[xi−1, xi], i = 1, 2, . . . , N, of the meshπ, the aim is to find a
polynomialPi(x) of degree no greater thanr − 1 (r ≥ 2) of the form

Pi(x) =
r−1∑

j=0

yi−1+j/(r−1)

r−1∏

l=0
l 6=j

x− xi−1+l/(r−1)

xi−1+j/(r−1) − xi−1+l/(r−1)
,
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wherexi−1+j/(r−1) = xi−1 + jhi/(r − 1). This polynomial must satisfy

P′i(ξ(i−1)(r−1)+k) = A(ξ(i−1)(r−1)+k)Pi(ξ(i−1)(r−1)+k) + r(ξ(i−1)(r−1)+k),

where ξ(i−1)(r−1)+k = xi−1 + hiσk, k = 1, 2, . . . , r − 1, are the Gauss points on
[xi−1, xi], i = 1, 2, . . . , N, and{σk}r−1

k=1 are the Gauss Legendre nodes on[0, 1] cor-
responding to the zeros of the Legendre polynomial of degreer − 1, and the BCs

DaP1(a) = ca, DbPN (b) = cb.

Thus, there are[(r − 1)N + 1]n linear equations arising from the collocation conditions
and the BCs, and there are(N − 1)n linear equations arising from requiring continuity of
the polynomialsPi(x) at the interior mesh pointsxi, i = 1, 2, . . . , N − 1, of π. Using
“condensation”, we eliminate the unknowns at the non-mesh points. The resulting linear
system has(N + 1)n equations in standard ABD form (2..5).

Next, consider the linear second order scalar BVODE with separated BCs:

Lu ≡ −a(x)u′′ + b(x)u′ + c(x)u = f(x), x ∈ [a, b], (2..8)

αau(a) + βau′(a) = ga, αbu(b) + βbu
′(b) = gb. (2..9)

For the meshπ of (2..3), let

Mr(π) = {v ∈ C1[a, b] : v|[xi−1,xi] ∈ Pr, i = 1, 2, . . . , N},

wherePr denotes the set of all polynomials of degree≤ r. Also, let

M0
r(π) = Mr(π) ∩ {v|v(a) = v(b) = 0}.

Note that

dim(M0
r(π)) ≡ M = N(r − 1), dim(Mr(π)) = M + 2.

In the OSC method for (2..8)-(2..9), the approximate solutionU ∈ Mr(π), r ≥ 3. If
{φj}M+2

j=1 is a basis forMr(π), we may write

U(x) =
M+2∑

j=1

ujφj(x),

and{uj}M+2
j=1 is determined by requiring thatU satisfy (2..8) at{ξj}M

j=1, and the BCs
(2..9):

αaU(a) + βaU ′(a) = ga,

LU(ξj) = f(ξj), j = 1, 2, . . . , M,

αbU(b) + βbU
′b) = gb.

First, consider the special caser = 3, for which the collocation points are

ξ2i−1 =
1
2
(xi−1 + xi)− 1

2
√

3
hi, ξ2i =

1
2
(xi−1 + xi) +

1
2
√

3
hi, i = 1, 2, . . . , N.
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With the usual basis{vj}N
j=0 ∪ {sj}N

j=0 for M3(π) [63], we set

U(x) =
N∑

l=0

{ulvl(x) + u′lsl(x)}.

Since only four basis functions,vi−1, si−1, vi, si, are nonzero on[xi−1, xi], the coeffi-
cient matrix of the collocation equations is ABD of the form (2..5) withDa = [αa βa],
Db = [αb βb], and

Si =
(

Lvi−1(ξ2i−1) Lsi−1(ξ2i−1)
Lvi−1(ξ2i) Lsi−1(ξ2i)

)
, Ti =

(
Lvi(ξ2i−1) Lsi(ξ2i−1)
Lvi(ξ2i) Lsi(ξ2i)

)
, i = 1, 2, . . . , N.

For r > 3, with a standard ordering of theB-spline basis as implemented in the code
colsys[9,10], the coefficient matrix




Da

W11 W12 W13

W21 W22 W23

. . .
WN1 WN2 WN3

Db




(2..10)

is ABD, with Wi1 ∈ R(r−1)×2,Wi2 ∈ R(r−1)×(r−3),Wi3 ∈ R(r−1)×2; see [33].
For monomial basis functions, as incolnew[12,14], the linear system, of orderN(r +

1) + 2, is



Da

V1 W1

−C1 −D1 I
. . .
Vi Wi

−Ci −Di I
. ..
VN WN

−CN −DN I
Db







y0

z0

y1

...
yi−1

zi−1

...
yN−1

zN−1

yN




=




ga

q1

0
...
qi

0
...

qN

0
gb




,

(2..11)
whereVi ∈ R(r−1)×2,Wi ∈ R(r−1)×(r−1), Ci ∈ R2×2, Di ∈ R2×(r−1). Often, such
systems are first condensed by eliminating the internal variableszi. For suitably smallhi,
Wi is nonsingular [14] and we have

zi−1 = W−1
i qi −W−1

i Viyi−1, i = 1, 2, . . . , N,

which, when substituted in

yi = Ciyi−1 + Dizi−1, i = 1, 2, . . . , N,

gives the condensed equations

Γiyi−1 − yi = −DiW
−1
i qi, Γi = Ci −DiW

−1
i Vi, Γi ∈ R2×2, i = 1, 2, . . . , N.

(2..12)
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Thus, (2..11) is reduced to an ABD system of order2(N + 1), cf. (2..7),




Da

−Γ1 I
. . .

. ..
−Γi I

. ..
.. .
−ΓN I

Db







y0

y1

...
yi−1

...
yN−1

yN




=




ga

D1W
−1
1 q1

...
DiW

−1
i qi

...
DNW−1

N qN

gb




. (2..13)

Condensation accounts for a significant proportion of the total execution time incolnew
[75]. Computing eachΓi in (2..13) requires factoringWi and solving two linear systems
(for an mth order problem,m systems), and computingDW−1

i qi requires solving one
linear system. Generating each block system (2..12) is completely independent. So, both
the generation and the solution phases of condensation have a highly parallel structure, as
exploited in the codepcolnew[15,16].

2.4. Special BVODEs

We consider generalizations of (2..1) which, when solved by standard methods, also give
rise to ABD or BABD linear systems.

2.4.1. Nonseparated BCs Here, the BCs in (2..1) are replaced by

g(y(a),y(b)) = 0, g ∈ Rn. (2..14)

For any standard discretization, the BABD system associated with BCs (2..14) has coeffi-
cient matrix 



S1 T1

S2 T2

. ..
.. .
SN TN

Ba Bb




, (2..15)

whereBa, Bb are Jacobians ofg with respect toy(a),y(b), respectively. In the linear case,

Bay(a) + Bby(b) = c, Ba, Bb ∈ Rn×n, c ∈ Rn. (2..16)

This structure and an associated special solution technique were derived for the first high-
quality automatic BVODE solverpasva3, based on finite differences [104,105]; see [150]
for details of vectorization of the linear algebra in this solver. This approach can be ex-
tended straightforwardly to one step IVP schemes such as IRK methods and to special
subclasses of IRK methods such as the mono-implicit Runge-Kutta (MIRK) methods, first
introduced in [40]; see [36,37,41,42,61,62,81,120,121] for more on the use of IRK methods
for BVODEs.

For multiple shooting, for the BCs (2..16), the linear BABD system corresponding to the
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ABD system (2..20) for non-separated BCs is



−Y1(x1) I
−Y2(x2) I

. ..
. . .

−YN−1(xN−1) I
Ba BbYN (xN )







s1

s2

...
sN−1

sN




=




p1(x1)
p2(x2)

...
pN−1(xN−1)

cb −BbpN (xN )




.(2..17)

The BABD system (2..17) is discussed in detail in [11, page 150], where it is shown that,
for N sufficiently large, it is well-conditioned when the underlying BVODE (2..14) is well-
conditioned.

In a closely related case, the BCs are partially separated; that is, they have the form

ga(y(a)) = 0,g(y(a),y(b)) = 0. (2..18)

The associated system has coefficient matrix




Da

S1 T1

S2 T2

. . .
. . .
SN TN

B̃a B̃b




, (2..19)

whereB̃a, B̃b ∈ R(n−q)×n are Jacobians ofg with respect toy(a), y(b), respectively.
Using a technique described in [13], we can convert nonseparated, or partially separated,

BCs into separated form. For example, in the nonseparated case, we addn trivial equations
and associated initial conditions:

z′i = 0, zi(a) = yi(a), i = 1, 2, . . . , n,

giving a system of size2n with separated BCs:

y′ = f(x,y), g(z(b),y(b)) = 0,
z′ = 0, z(a) = y(a).

Then, any standard numerical technique will lead to a system with an ABD coefficient
matrix of type (2..5) but with submatrices of order2n. Partially separated BCs can be
treated similarly.

2.4.2. Multipoint conditions Next, consider linear multipoint conditions

N∑

j=0

Bjy(xj) = c, Bj ∈ Rn×n, c ∈ Rn,

where the pointsxj coincide with mesh points. Normally only a fewBj will be nonzero;
that is, there will be mesh pointsxi which are not multipoints. A first order BVODE system
with these BCs when solved by a standard method gives rise to a BABD system with
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10 P. Amodio et al.

coefficient matrix 


S1 T1

S2 T2

. . .
. . .
SN TN

B0 B1 . . . BN−1 BN




, (2..20)

whereB0, BN and some ofB1, B2, . . . , BN−1 are nonzero. It is possible to convert this
system into several systems of two-point BVODEs with separated BCs, as explained in
[11, page 6].

2.4.3. Parameter Dependent Problems and Integral Constraints Parameters may
appear in the BVODE. Consider the linear (iny) case:

y′ = A(x, λ)y + r(x, λ), Bay(a) + Bby(b) = c(λ), (2..21)

wherey ∈ Rn, λ ∈ Rm, Ba, Bb ∈ R(m+n)×n. We need them + n BCs so that bothy
andλ may be determined. The coefficient matrix is




S1 T1 Z1

S2 T2 Z2

. . .
. ..

...
SN TN ZN

Ba Bb Zc




, (2..22)

whereZc depends onc(λ), andZ1, Z2, . . . , ZN onA(x, λ) andr(x, λ). Instead, we could
deal with this problem by addingλ′ = 0 to yield a standard BVODE inm + n unknowns,
essentially as in Section 2.4.1..

An important extension of the standard BVODE (2..1) involves integral constraints.
Here, we consider the more general case with parameters. Withλ ∈ R fixed and given, the
ODEs, BCs and integral constraints are

y′ = f(x,y, τ , λ), x ∈ [a, b], y, f ∈ Rn, τ ∈ Rnτ ,

g(y(a),y(b), τ , λ) = 0, g ∈ Rng , (2..23)
∫ b

a

w(t,y(t), τ , λ)dt = 0, w ∈ Rnw ,

which we must solve fory, τ . Clearly, we requireng + nw = n + nτ for the problem to
be well-posed.

Important practical applications related to (2..23) occur in bifurcation analysis, for exam-
ple, in computing periodic orbits, Hopf bifurcations and heteroclinic orbits [96,118,119];
see also [18] for an engineering application. As an example, consider computing periodic
orbits. The parameter dependent (autonomous) ODE is

y′ = f(y, λ), y, f ∈ Rn, λ ∈ R, (2..24)

whereλ is given but the solution of (2..24) is of unknown period; a well-known example
of (2..24) is the system of Lorenz equations [118]. The usual first step is to transform the
independent variable to[0, 1] so that the periodX now appears explicitly as an unknown:

y{1} = Xf(y, λ), y, f ∈ Rn, X, λ ∈ R, y(0) = y(1), (2..25)
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Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applications11

where the independent variable is a scaled version of time and{1} denotes differentiation
with respect to the transformed variable. (An alternative formulation which also gives rise
to BABD systems is described in [118].) Suppose we have computed a periodic solution
with a givenλ = λj−1, say(yj−1, Xj−1, λj−1), and we wish to compute another periodic
solution(yj , Xj , λj). Sincey(x) is periodic, so isy(x + δ) for any δ. Thus, we need a
phase condition, for example

∫ 1

0

y(x)T y{1}j−1(x)dx = 0, (2..26)

to specify the solution completely. We also add the pseudo-arclength equation
∫ 1

0

(y(s)−yj−1(s))T ẏj−1(s)ds+(X −Xj−1)Ẋj−1 +(λ−λj−1)λ̇j−1 = ∆s. (2..27)

Here,λ is regarded as unknown and∆s as given, and the dot denotes differentiation with
respect to arclength. Assuming∆s constant, we might use the approximations

Ẋj−1 =
Xj−1 −Xj−2

∆s
, λ̇j−1 =

λj−1 − λj−2

∆s
, ẏj−1 =

yj−1 − yj−2

∆s
. (2..28)

When equations (2..25)-(2..28) are discretized using standard methods, for each Newton
iterate, the linear system has a BABD coefficient matrix,

A =




S1 T1

×× ××
S2 T2

×× ××
. ..

. ..
...

...

SN TN

×× ××
Da Db

×× ××
×× ×× · · · ×× O O
×× ×× · · · ×× × ×




. (2..29)

The last two rows ofA arise from (2..26) and (2..27), and the last two columns correspond
toX andλ. The packageauto[52,53,54] for computing periodic orbits etc., solves a related
problem. Its linear algebra involves coefficient matrices with a structure similar to (2..29).

2.4.4. Parameter Identification As in [29], we define a standard problem. Findy(x) ∈
Rn, λ ∈ Rm: (i) to minimize

∥∥∥∥∥
N∑

i=1

Miy(xi) + Zλ− d

∥∥∥∥∥

2

2

, (2..30)

whereMi, Z, d are given and problem dependent; and (ii) to satisfy the ODE system

y′(x) = A(x)y(x) + C(x)λ + f(x). (2..31)

Essentially, (2..30)-(2..31) comprise an equality constrained linear least squares problem.
Using any standard numerical technique to discretize the ODE (2..31), we obtain a discrete
form

min
y0,y1,...,yN ,λ

∥∥∥∥∥
N∑

i=0

Miyi + Zλ− d

∥∥∥∥∥

2

2

(2..32)
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12 P. Amodio et al.

subject to the constraints

Siyi + Tiyi+1 + Fiλ = fi, Si, Ti ∈ Rn×n, Fi ∈ Rm×n, i = 1, 2, . . . , N. (2..33)

Rather than solve (2..32)-(2..33), Mattheij and S.J. Wright [117] impose extra side con-
straints

Ciyi + Diyi+1 + Eiλ = gi, i = 1, 2, . . . , N. (2..34)

Problem (2..32)-(2..34) gives rise to a linear system with coefficient matrix




S1 T1 F1

S2 T2 F2

. ..
. . .

...
SN TN FN

C1 D1 E1

C2 D2 E2

. ..
. . .

...
CN DN EN




.

To solve this system, a stable compactification scheme [117] which can take account of
rank deficiency may be used. See Section 5.1.3. for a discussion of a cyclic reduction
algorithm which can be modified to solve the system.

Another example where ABDs arise in parameter estimation, this time associated with
differential-algebraic equations, is given in [1].

3. Partial Differential Equations and ABD Systems

OSC methods for partial differential equations (PDEs) are a rich source of ABD systems.
Such systems arise in OSC methods for separable elliptic boundary value problems, and in
the method of lines for various initial-boundary value problems. Also, ABD systems arise
in Keller’s box scheme for parabolic initial-boundary value problems [94].

3.1. OSC for Separable Elliptic Boundary Value Problems

Many fast direct methods exist for solving the linear systems arising in the numerical so-
lution of separable elliptic PDEs posed in the unit square. An important class comprises
matrix decomposition algorithms, which have been formulated for finite difference, finite
element Galerkin, OSC and spectral methods [22]. To describe how ABD systems arise in
OSC algorithms [23], consider the elliptic boundary value problem

(L1+L2)u = f(x1, x2), (x1, x2) ∈ Ω = (a, b)×(a, b); u(x1, x2) = 0, (x1, x2) ∈ ∂Ω,
(3..1)

where

Liu = −ai(xi)
∂2u

∂x2
i

+ bi(xi)
∂u

∂xi
+ ci(xi)u, i = 1, 2, (3..2)

with ai > 0, ci ≥ 0, i = 1, 2, andb1 = 0.
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Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applications13

Using the notation of Section 2.3., the OSC approximationU(x1, x2) ∈ M0
r(π) ⊗

M0
r(π) satisfies

(L1 + L2)U(ξm1 , ξm2) = f(ξm1 , ξm2), m1,m2 = 1, 2, . . . , M, (3..3)

where, as before,M = N(r − 1). Let {φn}M
n=1 be a basis forM0

r(π). If

U(x1, x2) =
M∑

n1=1

M∑
n2=1

un1,n2φn1(x1)φn2(x2),

with coefficientsu = [u1,1, u1,2, . . . , u1,M , . . . , uM,1, uM,2, . . . , uM,M ]T , and withf =
[f1,1, f1,2, . . . , f1,M , . . . , fM,1, fM,2, . . . , fM,M ]T , wherefm1,m2 = f(ξm1 , ξm2), the matrix-
vector form of (3..3) is

(A1 ⊗B2 + B1 ⊗A2)u = f , (3..4)

whereAi = (Liφn(ξm))M
m,n=1, Bi = (φn(ξm))M

m,n=1, and⊗ denotes the tensor (Kro-
necker) product. If the functions{φn}M

n=1 are Hermite type,B-splines, or monomial basis
functions, these matrices are ABD, having the structure (2..5), (2..10) or (2..11), respec-
tively.

Now, let W = diag(h1w1, h1w2, . . . , h1wr−1, . . . , hNw1, hNw2, . . . , hNwr−1) and,
for v defined on[a, b], D(v) = diag(v(ξ1), v(ξ2), . . . , v(ξM )). If

F1 = BT
1 WD(1/a1)B1, G1 = BT

1 WD(1/a1)A1, (3..5)

thenF1 is symmetric and positive definite, andG1 is symmetric [23]. Hence, there exist
realΛ = diag(λj)M

j=1 and a real nonsingularZ such that

ZT G1Z = Λ, ZT F1Z = I. (3..6)

By (3..5),Λ, Z can be computed using the decompositionF1 = LLT , L = BT
1 [WD(1/a1)]1/2,

and solving the symmetric eigenproblem forC = L−1G1L
−T = [WD(1/a1)]1/2A1B

−1
1 [WD(1/a1)]−1/2,

QT CQ = Λ (3..7)

with Q orthogonal. IfZ = B−1
1 [WD(1/a1)]−1/2Q, thenΛ, Z satisfy (3..6). Thus,

[ZT BT
1 WD(1/a1)⊗ I](A1 ⊗B2 + B1 ⊗A2)(Z ⊗ I) = Λ⊗B2 + I ⊗A2,

leading to the matrix decomposition algorithm in Algorithm 3.1 for solving (3..4), where
steps 1, 3, and 4 each involve solvingM independent ABD systems which are all of or-
der M . In Step 1,C can be determined efficiently by solvingBT

1 [WD(1/a1)]1/2C =
AT

1 [WD(1/a1)]1/2. Computing the columns ofC requires solving linear systems with co-
efficient matrix{[WD(1/a1)]1/2B1}T , the transpose of the ABD matrix in Step 4. The
ABD matrix is factored once and the columns ofC determined. This factored form is also
used in Step 4. In Step 3, the ABD matrices have the formA2 + λjB2, j = 1, 2, . . . ,M ;
this step is equivalent to solving a system of BVODEs.

In [24], a matrix decomposition algorithm is formulated for solving the linear systems
arising in OSC with piecewise Hermite bicubic basis functions on a uniform mesh applied
to (3..1)-(3..2) witha1 = 1 andc1 = 0 (a similar method is discussed in [140]). The al-
gorithm comprises steps 2-4 of Algorithm 3.1 withW = h

2 I andD = I and usesexplicit
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14 P. Amodio et al.

Algorithm 3.1
1. DetermineΛ andQ satisfying (3..7)
2. Computeg = (QT [WD(1/a1)]1/2 ⊗ I2)f
3. Solve(Λ⊗B2 + I1 ⊗A2)v = g
4. Computeu = (B−1

1 [W1D1(1/a1)]−1/2Q⊗ I2)v

formulas forΛ andZ for appropriately scaled basis functions. Extensions to Neumann, pe-
riodic and mixed BCs are discussed in [15,28,65,136], and to problems in three dimensions
in [128]. Progress has also been made on extensions to OSC with higher degree piecewise
polynomials, [139].

ABD systems also arise in alternating direction implicit (ADI) methods for the OSC
equations (3..4); see [19,44,45,46,47,60]. For example, consider (3..1) withLi given by
(3..2) andbi = 0, i = 1, 2. The ADI OSC method of [19] is: givenu(0), for k = 0, 1, . . . ,
computeu(k+1) from

[(A1 + γ
(1)
k+1B1)⊗B2]u(k+1/2) = f − [B1 ⊗ (A2 − γ

(1)
k+1B2)]u(k),

(3..8)

[B1 ⊗ (A2 + γ
(2)
k+1B2)]u(k+1) = f − [(A1 − γ

(2)
k+1B1)⊗B2]u(k+1/2),

whereγ
(1)
k+1 andγ

(2)
k+1 are acceleration parameters. Using properties of the tensor product,

it is easy to see that each step requires solving independent sets of ABD systems. For
example,[(A1 + γB1) ⊗ B2]v = g is equivalent to[(A1 + γB1) ⊗ I]w = g, (I ⊗
B2)v = w. ABD systems also occur in certain block iterative methods for solving (3..4),
see [137,138].

ABD systems arise in other methods for elliptic problems. For example, they appear
in Fourier analysis cyclic reduction (FACR) OSC methods for the Dirichlet problem for
Poisson’s equation in the unit square [20], in fast direct OSC methods for biharmonic
problems [21,108,109,135], and in spectral methods for the steady state PDEs of fluid
mechanics [49,86,87,88].

3.2. OSC for Time Dependent Problems

Consider the parabolic initial boundary value problem

∂u

∂t
+ Lu = f(x, t), (x, t) ∈ (a, b)× (0, T ], (3..9)

αau(a, t) + βa
∂u

∂x
(a, t) = ga(t), αbu(b, t) + βb

∂u

∂x
(b, t) = gb(t), t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ (a, b),

where

Lu = −a(x, t)
∂2u

∂x2
+ b(x, t)

∂u

∂x
+ c(x, t)u.

In a method of lines approach, we construct the continuous-time OSC approximation which
is a differentiable mapU : [0, T ] →Mr(π) such that [58]

αaU(a, t) + βa
∂U

∂x
(a, t) = ga(t), t ∈ (0, T ],
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Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applications15

[
∂U

∂t
+ LU

]
(ξi, t) = f(ξi, t), i = 1, 2, . . . , M, t ∈ (0, T ], (3..10)

αbU(b, t) + βb
∂U

∂x
(b, t) = gb(t), t ∈ (0, T ],

U(ξi, 0) = u0(ξi), i = 1, 2, . . . ,M.

With U(x, t) =
M+2∑

j=1

uj(t)φj(x), where{φj}M+2
j=1 is a basis forMr(π), (3..10) is an ODE

initial value system

Bu′(t) + A(t)u(t) = F(t), t ∈ (0, T ], u(0) prescribed, (3..11)

whereB and A(t) are both ABD. An example of a discrete-time OSC method is the
(second order in time) Crank-Nicolson collocation method for (3..10) which determines
{Uk}Q

k=1 ⊂Mr(π) satisfying the BCs such that
[
Uk+1 − Uk

∆t
+ Lk+1/2U

k+1/2

]
(ξj) = f(ξj , tk+1/2), j = 1, 2, . . . ,M, k = 0, 1, . . . , Q−1,

whereUk+1/2 = (Uk+Uk+1)/2, tk+1/2 = (k+1/2)∆t, Lk+1/2 = −a(x, tk+1/2)
∂2

∂x2
+

b(x, tk+1/2)
∂

∂x
+ c(x, tk+1/2), andQ∆t = T . Essentially, this is the trapezoidal method

for (3..11):

[B +
1
2
∆tA(tk+1/2)]uk+1 = [B − 1

2
∆tA(tk+1/2)]uk + ∆tF(tk+1/2). (3..12)

Thus, with a standard basis, an ABD system must be solved at each time step.
When the PDE in (3..9) has time independent coefficients and right hand side, the solu-

tion of (3..11) isu(t) = exp(−tB−1A)[u(0)−A−1F] + A−1F, or, in incremental form,

u((k + 1)∆t) = exp(−∆tB−1A)[u(k∆t)−A−1F] + A−1F. (3..13)

One way to evaluate (3..13) is to use a Padé approximation to the matrix exponential. The
(1,1) Pad́e approximation gives the Crank-Nicolson method in (3..12). A fourth order in
time approximation can be obtained using the (2,2) Padé approximation. At each time step,
this gives a linear system with a coefficient matrix which is quadratic inA and∆tB. On
factoring this quadratic, we obtain a pair of complex ABD systems with complex conjugate
coefficient matricesB +β∆tA andB + β̄∆tA, whereβ = (1+ i

√
3)/4, [64]. However, a

system with just one of these coefficient matrices must be solved, then the fact that equation
(3..13) is real can be exploited to compute directly the (real) solution of the discretized
system. See [77] for more on solving the linear systems arising from using higher order
approximations to the matrix exponential in (3..13).

ABD linear systems similar to those in (3..12) arise in ADI OSC methods for parabolic
and hyperbolic initial-boundary value problems in two space variables (see [25,26,27,70,71]
and references cited in these papers), and in ADI OSC methods for Schrödinger prob-
lems [106] and vibration problems [107] also in two space variables. OSC methods with
monomial basis functions for solving Schrödinger equations [130,131,132,133,134], the
Kuramoto-Sivashinsky equation [116] and the Roseneau equation [115], all in one space
variable, involve linear systems of the form (2..11).
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16 P. Amodio et al.

3.3. Keller’s Box Scheme

Following [94], we setv = ∂u/∂x and reformulate (3..9) as an initial-boundary value
problem for a first order system of PDEs on(a, b)× (0, T ],

∂u

∂x
= v,

a(x, t)
∂v

∂x
=

∂u

∂t
+ b(x, t)v + c(x, t)u− f(x, t), (3..14)

α0u(a, t) + β0v(a, t) = g0(t), α1u(b, t) + β1v(b, t) = g1(t) t ∈ (0, T ],
u(x, 0) = u0(x), x ∈ (a, b).

Using the meshπ, at each time step the box scheme applied to (3..14) gives an ABD system
with coefficient matrix (2..5), whereSi, Ti ∈ R2×2.

Slightly different ABD systems arise in the solution of nonlocal parabolic problems
modeling certain chemical and heat conduction processes [69]. As an example, consider

∂u

∂t
=

∂2u

∂x2
, (x, t) ∈ (a, b)× (0, T ],

∫ η

a

u(s, t)ds = F (t),
∂u

∂x
(a, t) = g0(t), t ∈ (0, T ], (3..15)

u(x, 0) = u0(x), x ∈ (a, b),

whereη ∈ (a, b) is given (cf. Section 2.4.3.). Withw(x, t) =
∫ x

a
u(s, t)ds, (x, t) ∈ (a, η)×

(0, T ], (3..15) is written as a first order system as in (3..14) and the box scheme is applied
to the reformulated problem. At each time step, the ABD coefficient matrix is again of the
form (2..5), but now, ifη is a grid-point,η = xK , say, thenSi ∈ R3×3, i = 1, 2, . . . , K,
andSi ∈ R2×2 otherwise,Ti ∈ R3×3, i = 1, 2, . . . , K−1, TK ∈ R3×2, Ti ∈ R2×2, i =
K + 1, K + 2, . . . , N , andDa = [0 0 1], Db = [0 1].

In [68], a similar nonlocal parabolic problem was solved using OSC, again involving
ABD systems.

4. Direct Sequential Solvers for ABD and BABD Systems

4.1. Solvers for ABD systems

We describe the essential features of the algorithms using a simple example with a coeffi-
cient matrix of the form in Figure 1..2, namely the matrix of Figure 4..1 in which there are
two 4 × 7 blocksW (1),W (2), andTOPandBOTare2 × 3 and1 × 3, respectively. The
overlap between successive blocks is thus3.

4.1.1. Gaussian Elimination with Partial Pivoting The procedure implemented in
solveblok[33,34] uses conventional Gaussian elimination with partial pivoting. Fill-in may
be introduced in the positions indicated∗ in Figure 4..2. The possible fill-in, and conse-
quently the possible additional storage and work, depends on the number of rows,NT , in
the blockTOP. Stability is guaranteed by standard results for banded systems [30].

4.1.2. Alternate Row and Column Elimination This stable elimination procedure,
based on the approach of Varah [142], generates no fill-in for the matrixA of Figure 4..1.
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Figure 4..1. Structure of the example matrix

* * * *
* * * *

* * * *
* * * *

Figure 4..2. Fill-in introduced bySOLVEBLOK

Suppose we choose a pivot from the first row. If we interchange the first column and the col-
umn containing the pivot, there is no fill-in. Moreover, if instead of performing row elim-
ination as in conventional Gaussian elimination, we reduce the(1, 2) and(1, 3) elements
to zero by column elimination, the corresponding multipliers are bounded in magnitude by
unity. We repeat this process in the second step, choosing a pivot from the elements in the
(2, 2) and(2, 3) positions, interchanging columns2 and3 if necessary and eliminating the
(2, 3) element. If this procedure were adopted in the third step, fill-in could be introduced
in the(i, 3) positions,i = 7, 8, 9, 10. To avoid this, we switch to row elimination with par-
tial pivoting to eliminate the(4, 3), (5, 3), (6, 3) elements, which does not introduce fill-in.
We continue using row elimination with partial pivoting until a step is reached when fill-in
could occur, at which point we switch back to the “column pivoting, column elimination”
scheme. This strategy leads to a decomposition

A = PLB̃UQ,
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18 P. Amodio et al.

Figure 4..3. Structure of the reduced matrix

whereP, Q are permutation matrices recording the row and column interchanges, respec-
tively, the unit lower and unit upper triangular matricesL, U contain the multipliers used
in the row and column eliminations, respectively, and the matrixB̃ has the structure shown
in Figure 4..3, where· denotes a zeroed element. Since there is only one row or column
interchange at each step, the pivotal information can be stored in a single vector of the or-
der of the matrix, as in conventional Gaussian elimination. The nonzero elements ofL, U
can be stored in the zeroed positions inA. The pattern of row and column eliminations is
determined byNT and the number of rowsNW in a general blockW (i) (cf. Figure 1..2). In
general, a sequence ofNT column eliminations is alternated with a sequence ofNW −NT

row eliminations (see [50] for details). For a further analysis of this and related approaches,
see [129].

To solveAx = b, we solve

PLz = b, B̃w = z, UQx = w.

The second step requires particular attention. If the components ofw are ordered so that
those associated with the column eliminations precede those associated with the row elimi-
nations, and the equations are ordered accordingly, the system is reducible. In our example,
if we use the ordering

ŵ = [w1, w2, w5, w6, w9, w10, w3, w4, w7, w8, w11]T ,

the coefficient matrix of the reordered equations has the structure in Figure 4..4. Thus, the
componentsw1, w2, w5, w6, w9, w10, are determined by solving a lower triangular system
and the remaining components by solving an upper triangular system.

4.1.3. Modified Alternate Row and Column Elimination The alternate row and col-
umn elimination procedure can be made more efficient by using the fact that, after each se-
quence of row or column eliminations, a reducible matrix results. This leads to a reduction
in the number of arithmetic operations because some operations involving matrix-matrix
multiplications in the decomposition phase can be deferred to the solution phase, where
only matrix-vector multiplications are required. After the first sequence of column elim-
inations, involving a permutation matrixQ1 and multiplier matrixU1, say, the resulting
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Figure 4..4. The coefficient matrix of the reordered system

matrix is

B1 = AQ1U1 =




C1 O
M1

A1

O


 ,

whereC1 ∈ R2×2 is lower triangular,M1 ∈ R4×2 andA1 ∈ R9×9. The equationAx = b
becomes

B1x̂ = b, x̂ = U−1
1 QT

1 x =
(

x̂1

x̂2

)
,

andx̂1 ∈ R2. Settingb =
(

b1

b2

)
, whereb1 ∈ R2, we obtain

C1x̂1 = b1, A1x̂2 = b2 −
(

M1x̂1

0

)
≡ b̂2. (4..1)

The next sequence of eliminations, that is, the first sequence of row eliminations, is applied
only toA1 to produce another reducible matrix

L1P1A1 =
(

R1 N1 O
O A2

)
,

whereR1 ∈ R2×2 is upper triangular,N1 ∈ R2×3 andA2 ∈ R7×7. If

x̂2 =
(

x̃1

x̃2

)
, L1P1b̂2 =

(
b̃1

b̃2

)
,

wherex̃1, b̃1 ∈ R2, system (4..1) becomes

A2x̃2 = b̃2, R1x̃1 = b̃1 − [N1 O] x̃2, (4..2)

and the next sequence of eliminations is applied toA2, which has the structure of the
original matrix with oneW block removed. Since row operations are not performed on
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M1 in the second elimination step, and column operations are not performed onN1 in the
third, etc., there are savings in arithmetic operations [50]. The decomposition phase differs
from that in alternating row and column elimination in that if therth elimination step is
a column (row) elimination, it leaves unaltered the first(r − 1) rows (columns) of the
matrix. The matrix in the modified procedure has the same structure and diagonal blocks
asB̃, and the permutation and multiplier matrices are identical. This procedure is Gaussian
elimination with a special form of partial pivoting [129].

In [50,51], this modified alternate row and column elimination procedure was developed
and implemented in the packagecolrow for systems with matrices of the form in Figure
1..2, and in the packagearcecofor ABD systems in which the blocks are of varying dimen-
sions, and the first and last blocks protrude, as shown in Figure 1..1. The latter package has
been used to solve the systems arising in Keller’s box scheme applied to (3..15), [69].

Numerical experiments [75] demonstrate the effectiveness ofcolrow and arcecoand
their superiority oversolveblokon systems arising from BVODEs. Thearcecopackage was
modified and augmented in [35] to use the level 2BLAS[56], and the codef01lhf included
in the NAG Library. A level 3BLAS[55] version ofarcecowas developed in [76,127], and
a corresponding code [48] carefully avoids the implicit fill-in due to blocking in theBLAS.

Two variants ofcolrow have been produced by Keast [89,90]. Likef01lhf, the first [89]
solves not only an ABD system but also a system whose coefficient matrix is the transpose
of an ABD matrix. These codes may be employed in Steps 1 and 4 of Algorithm 3.1. The
second [90] solves complex ABD systems and may be employed in the Padé methods of
Section 3.4.

4.1.4. Lam’s Method In Lam’s method [102], alternate row and column interchanges
are used to avoid fill-in but only row elimination is performed throughout. This leads to
a PLUQ decomposition in which the elements ofL, the multipliers in the elimination
process, may not be boundeda priori. This technique, which motivated Varah’s algorithm
[142], was rediscovered in an application arising in the analysis of beam structures [17];
its numerical stability is analyzed in [141]. The algorithm is implemented inlampak[91].
It gives essentially the same results ascolrow [50,51] in all numerical experiments known
to its authors.

In [75,82], an early attempt to compare the performance of the various codes on “su-
percomputers” examines the performance of a vectorizedsolveblok, colrow, arcecoand
lampakon a CDC Cyber 205. The vectorized versions ofcolrow, arcecoandlampakper-
form about equally and significantly more efficiently than the redesignedsolveblokon a
wide range of test problems. However, the nature of the memory hierarchy on the CDC
Cyber 205 was very different from that of modern vector machines, so these conclusions
may no longer be valid.

4.1.5. Special ABD Systems When modified alternate row and column elimination is
used to solve ABD systems arising in multiple shooting or the condensed OSC equations
(2..13) for BVODEs with separated BCs, no advantage is taken of the sparsity of the “upper
block diagonal” identity matrices. Hence the procedure introduces fill-in in these blocks as
can be easily seen by considering the structure in Figure 4..5; the pattern of eliminations
is one column elimination followed by two row eliminations. A simple change minimizes
the fill-in and ensures that the reduced matrix has the same structure as would result if
no pivoting at all were performed. Referring to Figure 1..2, the required modification is:
if, at a row elimination step, we must interchange rowsk andl of the current blockW (i)

then, before the row elimination, also interchange columnsk and l of the submatrix of
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1

1

1

1

1

1

Figure 4..5. Matrix arising in multiple shooting

1

1

1

1

Figure 4..6. Structure of the reduced matrix

W (i) originally containing the unit matrix and interchange columnsk and l of the next
block W (i+1). This decomposition yields the reduced (reducible) matrix in Figure 4..6.
A package,abbpack, for solving this type of ABD linear system has been developed by
Majaess et al., [111,112,113,114].

ABD linear systems of the form (2..11) cannot be solved usingcolrowor arceco[50,51]
without fill-in. For such ABD systems,abdpackimplements an alternate row and column
elimination algorithm which, to avoid unnecessary fill-in, exploits the sparsity of the iden-
tity matrix, as described above, when rows of the current blockDi are interchanged in a
row elimination step. Numerical experiments reported in [113,114] demonstrateabdpack’s
superiority over the version ofsolveblokused incolnew [14]. ABD systems where the
blocks overlap in rows were discussed in [67,92] in the context of finite element methods,
and a modified alternate row and column elimination scheme for such systems is imple-
mented inrowcol [66].
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4.1.6. ABD Solvers in Packages The ABD packages described above are employed in
packaged software for solving systems of nonlinear BVODEs and for solving systems of
nonlinear initial-boundary value problems in one space variable using a method of lines
approach with OSC in the spatial variable. The BVODE packagecolsys[9] usessolveblok
[33,34] to solve linear systems of the form (2..10) arising when using OSC at Gauss points
with B-spline bases. The packagescolnew[14] andpcolnew[16] employ modified versions
of solveblok, which implement essentially the same algorithm, to solve the ABD systems
(2..12) resulting from condensation of the larger linear systems arising when using OSC
at Gauss points with monomial spline bases. The NAG Library’s simplified interface ver-
sion ofcolnew, subroutined02tkfdue to Brankin and Gladwell, uses the NAG ABD code
f01lhf [35]. The codecolrow [50,51] is used in the MIRK BVODE codemirkdc[62], and a
modified version ofcolrow is used in the deferred correction codetwpbvp[42]. A modified
version ofcolnew, colmod[38,146], uses a revised mesh selection strategy, automatic con-
tinuation and the modifiedcolrow. The codeacdc[39] uses automatic continuation, OSC
at Lobatto points and the modifiedcolrow for singularly perturbed BVODEs. Software im-
plementing the SLU algorithm [147] for a number of different shared memory computers
was developed by Remington [15] who investigated its use in the development of a parallel
version ofcolnew. This software was also used for the parallel factorization and solution
of ABD systems in an early version ofmirkdc[121].

For PDEs, the codepdecol[110] usessolveblok[33,34] to solve the linear systems of the
form (2..10) arising from using B-spline bases. The codeepdcol[93] is a variant ofpdecol
in which solveblokis replaced bycolrow [50,51]. In the method of lines code based on
OSC with monomial bases described in [122], the linear systems are solved usingabdpack
[114].

4.2. Solvers for BABD Systems

In the context of structure, it is natural to consider Gaussian elimination with row inter-
changes as an appropriate method for BABD systems (5..1). We show why this approach
can be unstable and we suggest some alternative approaches which may be used to exploit
available software for ABD systems for the BABD case.

4.2.1. A Cautionary Example S.J. Wright [148] showed that conventional Gaussian
elimination with row interchanges can be unstable for BABD systems (5..1) arising from
multiple shooting. By extension, the BABD systems arising in finite difference and OSC
discretizations are potentially unstable. Consider the linear ODE as of (2..2) but with non-
separated BCs (2..16) and

A(x) = Ã =
( − 1

6 1
1 − 1

6

)
, c =

(
0
1

)
, Ba = Bb = I, x ∈ [0, 60], (4..3)

which is well-conditioned [11]. Using any standard discretization leads to a linear system
with matrix (5..1). Here,Ti = T , Si = S are constant and the resulting system should also
be well-conditioned. Moving the BCs so that they become the first block equations and
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premultiplying the resulting matrixA byD = diag(I, T−1, T−1, . . . , T−1) gives

DA = Ā =




I I
−B I

−B I
.. .

. ..
−B I




,

whereB = −T−1S. Suppose we are using the trapezoidal method, then, forh sufficiently
small,B = (I − hÃ/2)−1(I + hÃ/2) ≈ ehÃ, and all elements ofB are less than one in
magnitude. Using Gaussian elimination with partial pivoting, no interchanges are required,
and

Ā = LU =




I
−B I

−B I
. . .

. ..

−B L̂







I I
I B

. . .
...

I BN−1

Û




.

The elements in the last column ofU grow exponentially withN . This instability oc-
curs when the BABD matrix̃A has negative diagonal elements but is not restricted to this
case nor to BVODEs with constant coefficient matrices. A similar analysis applies to the
structured LU factorization in [149], denoted LU below; this algorithm is used in the com-
parisons in [99].

4.2.2. Sequential Methods for BABDs To our knowledge, there exists no sequential
algorithm designed specifically for BABD systems; we describe a number of parallel al-
gorithms in the next section. However, it is possible to use software described in [80] for
general bordered systems. This software assumes a matrix of the form

(
A B
C D

)
, (4..4)

with A andD square and of ordersn′ andm′, respectively, wherem′ is “small”. It is
also assumed that software is available which will solve linear systems of both the forms
Ax = b andAT x = b.

For BABD coefficient matrices of the form (2..15), that is with nonseparated BCs, we
haveD = Bb and n′ = Nn and m′ = n. In this case,A is block upper triangular.
(Both B andC have some structure which cannot be directly exploited by the software
described in [80].) In the case of partially separated BCs of the form (2..18) with matrix
structure as in (2..19), the matrixA is ABD unless the separated BCs are lumped with the
nonseparated BCs to give a structure of the form (2..15). In this case, the matrixA is block
upper triangular.

The algorithm implemented in the softwarebemw[80] is an extension of that described
in [79] for m′ = 1. It determines in sequence the solutions of each of a set of linear systems
with ABD coefficient matricesA in (4.3) andAT . (Software is available for solving ABD
linear systems with matricesA andAT , for example,f01lhf [35] and transcolrow[89].
Software for solving block upper triangular systems is easily constructed using the level 3
BLAS[55].) The right hand side of each linear system involves a column in the border of the
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BABD and the solutions of the previously solved systems. In the nonseparated case, there
aren of these columns. In the partially separated case, the number of these columns isn
minus the number of separated boundary conditions. A clever organization of the algorithm
avoids using recursion. Stability is not guaranteed but there is empirical evidence that it is
usually attained.

A related approach is described in [151]. There, block elimination is performed on the
matrix (4..4). Small perturbations are introduced in the factorized matrices to avoid over-
flows, hence leading to inaccuracies in the solution. Then, iterative refinement is used to
improve the solution. An extensive error analysis in [151] is somewhat inconclusive.

Numerical tests of this algorithm and of that discussed in [80] have been carried out on
an SGI 8000, an SGI 10000 and a Cray J-9x; these tests are for the matrixA of dense
and tridiagonal forms but not forA of ABD or block upper triangular form. Generally, for
dense systems, the errors reported favor the new algorithm, whereas there is little difference
between the algorithms for tridiagonal systems. The timings for the new algorithm are
vastly superior but do depend on implementation features associated with using the level 3
BLAS[55]. It is reported that usually only one step of the iterative refinement algorithm is
needed to compute near to exact solutions.

An alternative, guaranteed stable approach is to write the BABD system as an ABD
system of twice the size. This is achieved by introducing dummy variables to “separate”
the boundary conditions (see Section 2.4.1.). Then, use an ABD algorithm is used for the
resulting ABD system which has internal blocks of size2n, ignoring structure internal to
the blocks. The arithmetic cost is about eight times that of the factorization inbemw.

5. Direct Parallel Solvers for BABD and ABD Linear Systems

We consider algorithms for solving BABD and ABD linear systems in a parallel environ-
ment. We restrict attention to the systems arising when solving linear BVODEs where the
ODE is as in (2..2) for both nonseparated and separated BCs. All the algorithms can be
implemented efficiently to exploit medium granularity parallelism (i.e., where the number
of processors,p, does not exceed the number of block rows of the BABD matrix). On each
block row, we apply the same general decomposition. On a distributed memory machine,
this corresponds to partitioning the problem by block rows among the processors.

5.1. Nonseparated BCs - Parallel Algorithms

For the meshπ, the linear BABD system obtained using any of the basic methods to dis-
cretize the linear ODE of (2..2) with BCs (2..16) has the structure:

Ax ≡




S1 T1

S2 T2

.. .
. ..
SN TN

Ba Bb







x0

x1

...
xN−1

xN




=




f1
f2
...

fN
c



≡ b, (5..1)

whereSi, Ti ∈ Rn×n, xi, fi, c ∈ Rn. AssumeN = kp. In all our partitioning algorithms
(except wrap-around partitioning), the block row in (5..1) containing the BCs is temporar-
ily neglected while the remaining block rows are shared among the processors. Theith
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processor,i = 1, 2, . . . , p, stores the rectangular blocks ofA in (5..1) associated with the
unknownsx(i−1)k,x(i−1)k+1, . . . ,xik,




S(i−1)k+1 T(i−1)k+1

S(i−1)k+2 T(i−1)k+2

.. .
. . .
Sik Tik


 . (5..2)

Using different factorizations, each of the algorithms condenses the system to obtain an
equation for the first and last unknowns corresponding to this block:

Vikx(i−1)k + Rikxik = gik. (5..3)

Combining equations (5..3),i = 1, 2, . . . , p, and the BCs, we obtain a reduced system with
structure (5..1) and with unknownsx0,xk, . . . ,xpk. The process may be repeated cycli-
cally (that is, recursively) using the same factorization successively onp/2, p/4, p/8, . . .,
processors, until a suitably small system is obtained. Then one processor is used to com-
pute the direct factorization of the coefficient matrix of this system. An efficient strategy
is to resort to direct factorization when sequential factorization at the current system size
is more efficient than further recursion followed by a sequential factorization of a resulting
smaller matrix, cf. [15,121].

An alternate approach for distributed memory machines always uses allp processors
performing the same operations [3]. All the processors perform each reduction step; that
is, there is redundant computation on otherwise idle processors. Hence, since quantities
which would otherwise need to be communicated to processors are being computed where
they are needed, the number of communications in the linear system solution phase may
be reduced, actually by a half.

5.1.1. Local LU Factorization In the structured LU factorization [149] and in the sta-
ble local factorization (SLF-LU) partitioning algorithm [84],(k− 1) LU factorizations are
performed in each block (5..2) on the2n× n sub-blocks corresponding to

(
T(i−1)k+j

S(i−1)k+j+1

)
.

Consider the first blocki = 1 in (5..2). The factorization of the first sub-block is
(

T1

S2

)
= P1

(
L1

Ŝ2

)
U1,

whereP1 ∈ R2n×2n is a permutation matrix andL1, U1 ∈ Rn×n are lower and upper
triangular blocks, respectively. (The matricesPj here and throughout this section arise
from a partial pivoting strategy.) Thus,

(
S1 T1

S2 T2

)
= P1

(
L1

Ŝ2 I

)(
V̂1 U1 T̂1

V2 R2

)
.

Continuing in this way, thejth LU factorization,j ≥ 2, computes
(

Vj Rj

Sj+1 Tj+1

)
= Pj

(
Lj

Ŝj+1 I

)(
V̂j Uj T̂j

Vj+1 Rj+1

)
,
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for rows j, j + 1. After k − 1 sub-block factorizations, the overall factorization of (5..2)
for i = 1 is

P




L1

Ŝ2 L2

Ŝ3
. ..
. .. Lk−1

Ŝk−1 I







V̂1 U1 T̂1

V̂2 U2 T̂2

...
. . .

.. .

V̂k−1 Uk−1 T̂k−1

Vk Rk




,

whereP ∈ Rkn×kn is a permutation matrix, the product of the2n × 2n permutation
matricesPj , j = k − 1, k − 2, . . . , 1, expanded to sizekn × kn. Note that fill-in may
occur, represented by the matricesŜj , T̂j . For examples of this factorization in software
for solving BVODEs, see [15,121].

In subsequent sections, we concentrate on factoring the first block of (5..2) as the process
demonstrated there is simple to generalize to other blocks.

5.1.2. Local QR Factorization Note that here and in the following subsections we use
the names of the blocks in the factorizations generically; the blocks are not the same as
those with the same names in the local LU factorization. Using the QR factorization, the
jth step is (

Vj Rj

Sj+1 Tj+1

)
= Qj

(
V̂j Uj T̂j

Vj+1 Rj+1

)
,

whereQj ∈ R2n×2n is orthogonal,Uj is upper triangular and the other blocks are full.
The complete factorization may be expressed in the form

Q




V̂1 U1 T̂1

V̂2 U2 T̂2

...
. . .

.. .

V̂k−1 Uk−1 T̂k−1

Vk Rk




,

whereQ ∈ Rkn×kn is orthogonal, the product of expanded (to sizekn × kn) versions of
Qj , j = k − 1, k − 2, . . . , 1.

This algorithm is essentially equivalent to structured QR factorization [147] and SLF-
QR partitioning [84]. It is stable in cases where LU factorization fails but costs twice as
much as LU factorization when LU succeeds.

5.1.3. Local LU-CR Factorization Jackson and Pancer [84] and, independently, K.
Wright [145] proposed combining cyclic reduction with LU factorization. Assumingk is
a power of2, for j = 1, 3, . . . , k − 1, the factorization is

(
Sj Tj

Sj+1 Tj+1

)
= Pj

(
Lj

Ŝj+1 I

) (
Vj Uj T̂j

Vj+1 Rj+1

)
,

where the blocks have the structure and dimension of the corresponding blocks in Section
5.1.1.. In contrast to the earlier approaches, this involvesk/2 simultaneous factorizations
which can be distributed acrossk/2 processors.
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Using odd-even permutation matricesP̄T , P̂, the factorization can be recast as

PP̄TL




U1 V1 T̂1

U3 V3 T̂3

. ..
.. .

. . .

Uk−1 Vk−1 T̂k−1

V2 R2

V4 R4

.. .
. . .
Vk Rk




P̂, (5..4)

where

L =




L1

L3

.. .
Lk−1

Ŝ2 I

Ŝ4 I
.. .

.. .

Ŝk I




is lower triangular andP is the product of thePj , j = 1, 3, . . . , k− 1. The same approach
may be applied to the submatrix




V2 R2

V4 R4

. ..
. ..
Vk Rk


 , (5..5)

which has structure (5..2) and relates only the even unknownsx0,x2, . . . ,xk . (SetSj =
V2j , Tj = R2j , j = 1, 2, . . . , k/2 and use factorization (5..4) withk replaced byk/2.)
From this second step results a structure like (5..5) but of half the size, relating the un-
knownsx0,x4, . . . ,xk. After log2 k steps of this recursion, there results a2 × 2 block
system for the unknownsx0, xk. After solving for these variables the recursion may be
used in reverse to recover the others. As in the earlier algorithms, the recursion may be
terminated before reaching the final2 × 2 block system if it would be more efficient to
solve directly a larger system than to proceed further recursively.

5.1.4. Local CR Factorization In [8], the local CR algorithm is proposed applying
cyclic reduction directly to the block (5..2). In the first reduction step, forj odd,

(
Sj Tj

Sj+1 Tj+1

)
=

(
I

Ŝj+1 I

)(
Sj Tj

Vj+1 Tj+1

)
, (5..6)

whereŜj+1 = Sj+1T
−1
j andVj+1 = −Ŝj+1Sj . The reduced matrix is (5..5) withRj =

Tj , which relates only the even unknowns. In (5..6) it is observed that this algorithm is
unstable for several typical BVODEs becauseTj can be ill-conditioned, hence (5..5) is
potentially ill-conditioned even when (5..2) is well-conditioned.
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In [7], a local centered CR factorization (CCR) is proposed to maintain stability and
reduce computational cost. Consider the partitioning

(
Sj Tj

Sj+1 Tj+1

)
=




Sj,1 Tj,1

Sj,2 Tj,2

Sj+1,1 Tj+1,1

Sj+1,2 Tj+1,2


 , (5..7)

thenVj =
(

Tj,2

Sj+1,1

)
is a nonsingular square block of the size ofSj andTj . Here,Sj,1,

Sj,2, Tj,1, Tj,2, j = 1, 2, . . . , k − 1, are rectangular withn columns and with a number
of rows in the range0 to n. (In [7], attempts are made to choose this number to maintain
stability.) The factorization for (5..7) is

PT
j

(
In

Ŝj+1 In

) 
 Vj

Sj,2

Tj+1,1

Vj+1 Rj+1


Pj , (5..8)

wherePj ∈ R2n×2n is a permutation matrix,

Ŝj+1 =
(

Tj,1

Sj+1,2

)
V −1

j ,
(

Vj+1 Rj+1

)
=

(
Sj,1

Tj+1,2

)
−Ŝj+1

(
Sj,2

Tj+1,1

)
.

Of courseV −1
j is not calculated directly, rather the system is solved forŜj+1. From the

second of these equations, we obtain a block matrix (5..5) to which the procedure is applied
recursively. This factorization is the local CR algorithm ifSj+1,1 is a null block. For the
examples tested in [7], this algorithm is stable in cases where the blocksTj,2 andSj+1,1

are of equal size, for problems with the same number of BCs at each endpoint.

5.1.5. Local Stable CR Factorization Let
(

Tj

Sj+1

)
= Pj

(
Lj

Ŝj+1

)
Uj (5..9)

be the factorization of thejth column of (5..2). Starting fromPj in (5..9), build a permu-
tation matrixP̄j ∈ R2n×2n such that

P̄j

(
Tj

Sj+1

)
=




Tj,1

Tj,2

Sj+1,1

Sj+1,2


 ,

where the rowsTj,2, Sj+1,1 contain the pivot elements ofTj , Sj+1, respectively. Then,
there is a permutation matrix̂Pj ∈ Rn×n such that

Vj ≡
(

Tj,2

Sj+1,1

)
= P̂jLjUj . (5..10)

whereLj , Uj are as in (5..9). By factoring as in (5..10), the algorithm proceeds as before.
This algorithm has the stability properties of Gaussian elimination with partial pivoting
[7].
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5.1.6. RSCALE - a Scaled LU Approach Pancer and Jackson [84] give a set of com-
parisons of parallel algorithms for BABDs closely related to the LU and QR algorithms
described earlier. In particular, they describe a new, rather complicated parallel algorithm,
RSCALE. The main difference to the LU approach is that RSCALE introduces a scaling
which ensures numerical stability for a wider class of BABD systems, for details see [84].
Overall in the tests, RSCALE delivers a similar accuracy to QR. but only involves about
a half of the computational cost with a slightly lower memory requirement. The algorithm
RSCALE has been employed in a new parallel version ofmirkdc[85].

5.1.7. The Wrap-around Partitioning Algorithm Following the work in [59], Heg-
land and Osborne [83] recently described a wrap-around partitioning algorithm for BABD
linear systems. An aim of the algorithm is to compute with long vectors. The algorithm
transforms the BABD matrix by partitioning it into blocks that correspond to variables
which can be eliminated independently of the others. After a local QR factorization (cho-
sen on the grounds of stability) similar to that in the local QR factorization, a reduced
BABD system results. The algorithm proceeds recursively. In [83], it is shown that small
block sizes give best performance but that the optimal size depends on the computing sys-
tem. Implementation and testing on a Fujitsu VPP500 vector computer are discussed. See
[83] for details.

5.1.8. Computational Considerations - Parallel BABD Algorithms For simplicity,
consider system (5..1) withN internal blocks onp processors, whereN = kp, andn is
the size of each internal block (equal to the number of first order ODEs). In the following,
we use the acronyms: LU→ local LU factorization; QR→ local QR factorization; LUCR
→ local LU-CR factorization; CR→ local CR factorization; CCR→ local centered CR
factorization; and SCR→ local stable CR factorization. Table 5..1 gives operation counts
for the factorization of the BABD matrix and solution of the BABD system. We have
assumed a parallel solution using a number of processors decreasing fromp/2 (in the first
step of reduction) to 1 (in the last). Supposing the factorization and system solution are
separate tasks, on a sequential computer(2n2+n)(N +1) elements of memory are needed
for the BABD matrix. Table 5..2 summarizes the memory requirements. We have assumed
n is large enough so that lower order powers inn thanO(n3) may be neglected in the
operation counts. Some of these operation counts are also given in [84,101]. For all of the
parallel algorithms, the number of transmissions is log2p

[
t(2n2) + t(n)

]
, wheret(k) is

the time for one transmission ofk elements. In fact, Table 5..2 underestimates the memory
requirements for a computationally efficient implementation. Keeping rows of successive
blocks stored in consecutive locations in cyclic reduction to avoid communication costs
necessitates using3n2(N/p + log2p) additional memory locations. Similarly, the LU and
CR based algorithms require2n2log2p andn2log2p additional locations, respectively.

Based on flop counts and memory requirements, it is clear that algorithms SCR, CCR,
and CR are to be preferred other considerations being equal. However, CR is often unstable
while SCR is guaranteed stable. Algorithm CCR may be stable but is without guarantees
so should be used with care.

In numerical tests, predictably the CR algorithm has the shortest execution times, but
in most cases the computed solution is incorrect. All other algorithms return approxi-
mately the same relative error. (In the CCR algorithm, one must find an appropriate size for
Sj,2, Tj,2 to avoid instability.) CCR slightly outperforms SCR in efficiency because pivot-
ing is applied to matrices of smaller size. (Numerical examples and comparisons are given
in [5,6].) Because of the high cost of permutations (operations not included in Table 5..1),
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Table 5..1. Operation counts – nonseparated BCs

Factorization Solution
LU 23

3
n3(N/p + log2p) 8n2(N/p + log2p)

QR 46
3

n3(N/p + log2p) 15n2(N/p + log2p)
LUCR 23

3
n3(N/p + log2p) 8n2(N/p + log2p)

CR 14
3

n3(N/p + log2p) 6n2(N/p + log2p)
CCR 14

3
n3(N/p + log2p) 6n2(N/p + log2p)

SCR 14
3

n3(N/p + log2p) 6n2(N/p + log2p)

Table 5..2. Memory requirements – nonseparated BCs

LU 4n2(N/p + log2p) + n(N/p + 1)
QR 4n2(N/p + log2p) + n(N/p + 1)
LUCR 4(n2 + n)(N/p + log2p) + n(N/p + 1)
CR 3n2(N/p + log2p) + n(N/p + 1)
CCR 3n2(N/p + log2p) + n(N/p + 1)
SCR 3n2(N/p + log2p) + n(N/p + 1)

the CR algorithms do not have the predicted computational cost advantage over the LU
based solvers. So, the “best” algorithm cannot clearly be identified simply by considering
flop counts and memory requirements.

5.2. Separated BCs

As in (2..2), the BCs are

Day(a) = ca, Dby(b) = cb, ca ∈ Rq, cb ∈ Rn−q. (5..11)

Using the meshπ and a basic discretization of (2..2), we obtain an ABD linear system, cf.
(2..5):

Ax ≡




Da

S1 T1

S2 T2

.. .
. . .
SN TN

Db







x0

x1

x2

...
xN−1

xN




=




ca

b1

b2

...
bN

cb



≡ f . (5..12)
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For simplicity, assumeN = kp− 2. The system can be divided intop parts, assigning the
subsystem




Da

S1 T1

.. .
. . .

Sk−1 Tk−1







x0

x1

...
xk−1


 =




ca

b1

...
bk−1


 , (5..13)

to the first processor, the subsystem



S(i−1)k T(i−1)k

. . .
. ..

Sik−1 Tik−1







x(i−1)k−1

...
xik−1


 =




b(i−1)k

...
bik−1


 , (5..14)

to theith processor,i = 2, 3, . . . , p− 1, and the subsystem



S(p−1)k T(p−1)k

.. .
. ..
SN TN

Db







x(p−1)k−1

...
xN−1

xN


 =




b(p−1)k

...
bN

cb


 . (5..15)

to thepth processor. For each parallel algorithm, local factorizations of these subsystems
produce a reduced system with structure (5..12). The difference from the nonseparated case
is that the unknownsxk−1,x2k−1, . . . ,x(p−1)k−1, are involved in the reduced system of
size(p− 1)n.

5.2.1. Local CR Factorization on the Normal Equations In [8], the normal equations
ATAy = AT f for (5..12) are formed then cyclic reduction is applied to solve the resulting
block tridiagonal system with coefficient matrix

ATA =




DT
a Da + ST

1 S1 ST
1 T1

TT
1 S1 TT

1 T1 + ST
2 S2 ST

2 T2

. ..
TT

N−1SN−1 TT
m−1TN−1 + ST

MSN ST
NTN

TT
NSN DT

b Db




.

(5..16)
The condition number ofATA is the square of that of the ABD matrixA, which can be a
major drawback for stability.

Though not explicitly stated in [8], ifk is a power of 2, cyclic reduction as in [2,7]
does not require communication until the solution phase for the block tridiagonal reduced
system of size(p − 1)n × (p − 1)n. Thus, the number of communications is reduced to
log2 p (and hence is independent ofk or n).

5.2.2. Local LU Factorization In [4,126], LU factorization is used on each block of
(5..12). Consider the partition

Sj =
(

Sj,1

Sj,2

)
, Tj =

(
Tj,1

Tj,2

)
,
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whereSj,1 andTj,1 haven − q rows (the number of right BCs). On theith processor,
i = 2, 3, . . . , p− 1, form the partition




S(i−1)k,1 T(i−1)k,1

S(i−1)k,2 T(i−1)k,2

S(i−1)k+1 T(i−1)k+1

.. .
Sik−2 Tik−2

Sik−1,1 Tik−1,1

Sik−1,2 Tik−1,2




, (5..17)

and sequentially factorize the internal ABD matrix

Mi =




T(i−1)k,2

S(i−1)k+1 T(i−1)k+1

.. .
Sik−2 Tik−2

Sik−1,1




. (5..18)

On the first processor, substituteDa for T0,2 in M1, and, on thepth processor, substitute
Db for SN−1,1 in Mp, then the decomposition is as in (5..17) without the first row/column
for M1 and the last row/column forMp. Even if (5..17) is nonsingular, a block in (5..18)
may be singular; this problem may be avoided by using row permutations inside the blocks
T(i−1)k andSik−1.

In [126], (5..17) is factored




In−q T(i−1)k,1

Mi

Sik−1,2 Iq







Ŝ(i−1)k,1 T̂(i−1)k,1

V(i−1)k,2 W(i−1)k,2

... I(k−1)n

...
Vik−1,1 Wik−1,1

Ŝik−1,2 T̂ik−1,2




.

(5..19)
In [4], it is observed that the factorization




Ŝ(i−1)k,1 V(i−1)k,1 . . . Vik−1,1 T̂ik−1,1

I(k−1)n

Ŝ(i−1)k,2 W(i−1)k,2 . . . Wik−1,2 T̂ik−1,2







In−q

S(i−1)k,2

Mi

Tik−1,1

Iq




(5..20)
produces fill-in of half the size for the rows containingT(i−1)k,1 andSik−1,2.

5.2.3. Computational Considerations - Parallel ABD Algorithms Tables 5..3 and
5..4 give arithmetic costs and memory requirements, respectively, for the ABD linear sys-
tem arising from a BVODE (2..2). We assume that there areN = kp−2 internal blocks of
sizen × n. We use the acronyms: CR→ local CR factorization on the normal equations;
LUPG → local LU factorization (5..19); and LUAP → local LU factorization (5..20).
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Table 5..3. Operation counts – separated BCs –q left hand BCs

Factorization Solution
CR 37

3
n3(N + 2)/p + 25

3
n3log2p n2(14(N + 2)/p + 10log2p)

LUPG ( 29
3

n3 + 1
2
qn2 − 1

2
q2n)(N + 2)/p + 26

3
n3log2p 8n2((N + 2)/p + log2p)

LUAP ( 17
3

n3 − 2qn2 + q2n)(N + 2)/p + 14
3

n3log2p 6n2((N + 2)/p + log2p)

Table 5..4. Memory requirements – separated BCs

CR n2(5(N + 2)/p + 3log2p) + n(N + 2)/p
LUPG 4n2((N + 2)/p + log2p) + 2n2 + n(N + 2)/p
LUAP 3n2((N + 2)/p + log2p)− n2 + n(N + 2)/p

6. Iterative Methods for BABD Systems

Direct methods are clearly the algorithms of choice for ABD systems, where it is easy
to devise approaches which preserve structure and which are stable. For BABD systems,
the choices are less clear. As shown in Section 4.2.1., Gaussian elimination with row in-
terchanges can be unstable and leads to some fill-in (about 50% of the memory needed
for the BABD). Alternative sequential approaches discussed in Section 4.2.2. build in the
fill-in to achieve stability or proceed by a recursive approach whose stability has not been
fully analyzed. Another alternative is to use one of the algorithms for parallel solution out-
lined in Section 5.. These can be implemented sequentially but all involve fill-in, and some
have inferior stability properties. So, given that there are problems of potential instability
and of fill-in with direct methods for BABD systems, iterative methods such as precondi-
tioned conjugate gradients provide an alternative approach, especially since they provide
an opportunity for parallel computation.

6.1. Preconditioned Conjugate Gradients

For large systems (5..1), we consider conjugate gradients (CG) usingA andAT in matrix-
vector products. For nonsymmetric matrices, we can apply CG (implicitly) toATAx =
AT b orAAT w = b (with x = AT w).

In [98,99], CG is applied (implicitly) to the normal equationsATAx = AT b using
Algorithm 6.1, a modified version of Algorithm 10.3.1 in [78]. In practice, the number
of iterations is roughly proportional to

√
cond(ATA); see [57]. Numerical tests demon-

strate convergence in the predicted maximum ofO(nN) iterations when solving the nor-
mal equations, [99].

To accelerate the convergence of CG, a preconditionerM is needed to gather the eigen-
values ofMATA near unity. The difficulty lies in finding a preconditioner which per-
mits an efficient parallel implementation. Both the computation and the application of the
preconditioner are crucial to the cost of this algorithm and both are generally difficult to
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Algorithm 6.1
PreconditionerM' (ATA)−1, j = 0,y0 = 0, r0 = AT b
while ||rj ||/||AT f || > error tolerance

zj = Mrj ; j = j + 1
if j = 1 thenp1 = z0

elseβj = rT
j−1zj−1/rT

j−2zj−2; pj = zj−1 + βjpj−1

αj = rT
j−1zj−1/(Apj)T (Apj)

xj = xj−1 + αjpj ; rj = rj−1 − αjATApj

endwhile

parallelize at the block submatrix level.
One possibility uses a factorization of each diagonal block ofATA, or AAT , as the

(parallel) preconditioner. This converges inO(nN) iterations, essentially the same as CG,
[97]. Other widely used, general purpose preconditioners are also unsuccessful in improv-
ing convergence.

6.1.1. Approximate Inverse Preconditioner An alternate approach is to investigate
the structure of the (dense) inverse of the matrixA in (5..1). Eachn × n block ofA−1

depends on every block ofA. In A−1, the blocks with largest elements are generally not
within the block structure ofA, [125]. The distribution of large elements depends on the
ODE and the associated BCs, [99]. For the trapezoidal rule, say,A consists of blocks
originating from the discretization of the BVODE. AsN →∞ , hi

2 A(xi−1), hi

2 A(xi) → 0
and we approximateA by

Z =




−I I
−I I

. . .
. ..
−I I

Ba Bb




.

If (Ba + Bb)−1 exists, then

Z−1 = diag((Ba + Bb)−1)




−Bb −Bb · · · −Bb I
Ba −Bb · · · −Bb I
Ba Ba · · · −Bb I

...
...

. . .
...

...
Ba Ba · · · Ba I




.

The approximate inverse preconditioned conjugate gradient algorithm uses the approxi-
mate inverse preconditionerM = Z−1(Z−1)T in Algorithm 6.1. It gives remarkably
rapid convergence for many examples. However, it has two disadvantages:

(i) (Ba + Bb)−1 must exist, which is untrue in many commonly occurring cases;
(ii) no account is taken of the effect of the step sizeshi nor of the behavior ofA(x) with x;

hence this preconditioner can be ineffective for realistic mesh distributions.

Using the constant approximate inverse forces the use of(Ba + Bb)−1.
In [99], approximate inverse PCG is compared with CG and with the structured LU

factorization of [149] on both a Sun 4/490 and a 20 processor Sequent Symmetry (shared
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memory) computer. For the chosen test problems, CG converges as expected. Approximate
inverse PCG converges in a very small number of iterations. It is competitive with struc-
tured LU factorization and can outperform it on large problems when using a large number
of processors. The matrixZ requires only two distinctn × n blocks of storage and appli-
cation ofZTZ is easily parallelized. Parallelizing the underlying matrix-vector multiplies
in PCG gives linear speedup when the matrices are assembled in parallel using the same
block structure [98]. This carries over to approximate inverse PCG, which also achieves
close to linear speedup. In [97], the use of better approximations toSi andRi in Z (and
hence the preconditionerM) is discussed. Though these approximations sometimes lead
to faster convergence, none are uniformly better.

6.1.2. Block Splitting Preconditioner In [43], the condition number of the iteration
matrix is reduced via a splittingATA = BTB + C, whereBTB is symmetric positive
definite andC is symmetric. O’Leary [123] suggested splittingATA by placing the BCs
in C then replacing the right BC with the identity to ensure invertibility, giving the splitting
PCG algorithm. Let

B =




S0 T0

S1 T1

.. .
. ..

SN−1 TN−1

I




. (6..1)

Thus,ATA = BTB + C, with

C =




BT
a Ba O · · · O BT

a Bb

O O · · · O O
...

...
.. .

...
...

O O · · · O O
BT

b Ba O · · · O BT
b Bb − I




, (6..2)

and rank(C) = 2n. The resulting preconditioned system in Algorithm 6.1,BTBz = r, is
solved in two stages,BT w = r, Bz = w, in an obvious block recursive way.

If A = I + U is symmetric positive definite and rank(U) ≤ s, at mostnN − s eigen-
values ofA are unity. Hence(BTB)−1(ATA) has at leastnN − s unit eigenvalues [100].
If M(ATA) hass < n(N + 1) distinct eigenvalues, in exact arithmetic splitting PCG
converges ins iterations [43]. Since(BTB)−1(ATA) has at most2n+1 distinct eigenval-
ues, splitting PCG usingM = (BTB)−1 converges in at most2n + 1 iterations. Neither
ATA norBTB should be formed explicitly; only matrix-vector products withA andAT ,
or B andBT , are needed. For computational results for splitting PCG, see [100]. It works
as predicted on many discretized BVODEs but, for some,M is ill-conditioned and it does
not converge. Exponential growth factors are observed which compare in size and origin
with those obtained in discretizations of example (4..3).

One of us (GLK) has experimented withqmrpack[73,74] to check the results of splitting
PCG. Sinceqmrpackdoes not permit an internal preconditioner,B−1 is computed and
applied externally. There are differences in convergence behavior between splitting PCG
and the three-step look-ahead CG algorithm implemented inqmrpack, particularly:

(i) where splitting PCG converges quickly, so doesqmrpackusing a similar number of
matrix-vector multiplies;
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(ii) where splitting PCG diverges, so doesqmrpack;
(iii) where splitting PCG converges slowly,qmrpackterminates (seemingly successfully)

after a small number of iterations. The “converged” result has a large residual and the
solution is inaccurate, though the scaled residual used internally byqmrpackis small.

7. Conclusions

We have outlined a variety of discretizations of ordinary and partial differential equations
which lead to almost block diagonal and bordered almost block diagonal linear systems,
whose precise form depends on the discretization and the boundary conditions. The so-
lution techniques that we described are designed mainly for the generic problem. Where
a major gain in efficiency is possible, as in a multiple shooting discretization for bound-
ary value ordinary differential equations and in certain partial differential equation appli-
cations, we have discussed how to exploit it. The references include several that describe
software development for almost block diagonal and bordered almost block diagonal linear
systems, and a significant proportion of these have associated publicly available software
for which we have given a source. It seems that sequential algorithms for the generic al-
most block diagonal problem need little further study or software development, but all the
other areas discussed here are still open. As new applications arise, there will be a need to
study the merits of further refinements of the algorithms for these particular cases. Also,
as computers, software components, such as the BLAS, and parallel and object oriented
languages, develop, there will be a need to revisit the analysis and algorithms.
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