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Almost block diagonal (ABD) linear systems arise in a variety of contexts, specifically in numerical methods for
two-point boundary value problems for ordinary differential equations and in related partial differential equation
problems. The stable, efficient sequential solution of ABDs has received much attention over the last fifteen years
and the parallel solution more recently. We survey the fields of application with emphasis on how ABDs and
bordered ABDs (BABDs) arise. We outline most known direct solution techniques, both sequential and parallel,
and discuss the comparative efficiency of the parallel methods. Finally, we examine parallel iterative methods for
solving BABD systems.
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1. Introduction

In 1984, Fourer [72] gave a comprehensive survey of the occurrence of, and solution tech-
niques for, linear systems with staircase coefficient matrices. Here, we specialize to a sub-
class of staircase matrices, almost block diagonal (ABD) matrices. We outline the origin
of ABD matrices in solving ordinary differential equations (ODES) with separated bound-
ary conditions (BCs) (that is, boundary value ordinary differential equations (BVODES))
and provide a survey of old and new algorithms for solving ABD linear systems, includ-
ing some for parallel implementation. Also, we discuss bordered ABD (BABD) systems
which arise in solving BVODEs with nonseparated BCs, and describe a variety of solution
techniques.

The most general ABD matrix [32], shown in Figure 1..1, has the following character-
istics: the nonzero elements lie in blocks which may be of different sizes; each diagonal
entry lies in a block; any column of the matrix intersects no more than two blocks (which
are successive), and the overlap between successive blocks (that is, the number of columns
of the matrix common to two successive blocks) need not be constant. In commonly used
methods for solving BVODEs with separated BCs, the most frequently occurring ABD
structure is shown in Figure 1..2, where the blobK§), i = 1,2,..., N, are all of equal
size, and the overlap between successive blocks is constant and equal to the sum of the
number of rows iINTOP and BOT. Over the last two decades, this special structure has
been exploited in a hnumber of algorithms to minimize fill-in and computational cost with-
out compromising stability. Naive approaches to solving ABD systems involve considering
them as banded or block tridiagonal systems. These approaches are undesirable for several
reasons not the least of which is that they introduce fill-in when the structure is imposed
on the system as well as in the solution procedure, leading to significant ineffiencies.
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Figure 1..1. Structure of a general ABD matrix

Figure 1..2. Special ABD structure arising in BVODE solvers

A BABD matrix differs from the ABD matrix of Figure 1..1 in its last block row (or
column), where at least the first block entry is nonzero; for example, see the matrix in
(2..15) following. In some applications, the whole of the last block row (or column or
both) of the BABD is nonzero; for example, see the matrix in (2..20) following.

In Section 2., we outline how ABD and BABD systems arise when solving BVODESs us-
ing three important basic techniques: finite differences, multiple shooting and orthogonal
spline collocation (OSC). This material is introductory and is included here for complete-
ness. In Section 3., we provide a comprehensive survey of the origin of systems of similar
structure in finite difference and OSC techniques for elliptic boundary value problems and
initial-boundary value problems. Next, in Section 4., we describe efficient sequential di-
rect solution techniques for ABD and BABD systems. Emphasis is placed on algorithms
based on the alternate row and column elimination scheme of Varah [142]. As described in
Subsection 4.1.6. below, these algorithms are employed in modern software packages for
solving differential equations. In Section 5., we outline a variety of direct solution tech-
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4 P. Amodio et al.

niques for parallel implementation. The emphasis is on BABD systems as the techniques
derived are effective for both ABD and BABD systems. Here, we give some theoretical
arithmetic and communication costs, and storage counts for sequential and parallel imple-
mentations. Finally, in Section 6., we describe iterative techniques including comments on
their parallel.

2. BVODEs and ABD Systems

A general first order system of nonlinear BVODESs with separated BCs has the form

y'(x) = f(z,y(2), z € [a,0], ga(y(a)) =0, g(y(b)) =0, (2.1)

wherey.f € R™, g, € R?, g, € R™ 4. Among the most widely used methods for its
numerical solution are finite differences [11,95,104,105], multiple shooting [11,95], and
0OSC [9,10,14]. When any of these methods are implemented using a quasilinearization or
Newton method, each iteration of the method requires the solution of an ABD system of
linear algebraic equations. This similarity is not surprising since the three approaches have
a close relationship [103]. In particular, many finite difference schemes can be interpreted
as multiple shooting algorithms where the shooting is over just one mesh subinterval using
an appropriate one step initial value problem (IVP) method. Also, OSC is equivalent to
using a (Gauss) Implicit Runge-Kutta (IRK) one step scheme [143,144] when applied to a
BVODE in the form (2..1) (but not when applied to higher order systems of BVODES).
Consider the linear BVODE

yl(m) = A($)y($) + I'((I?), T € [Cb,b], DaY<a) = Cq; DbY(b) = Cp, (2..2)

wherey(z),r(z) € R", A(z) € R"*"*, D, € R¥*"™, D, € R"-9D*" ¢, € RY,
¢, € R("=9 In the solution of the nonlinear BVODE (2..1), problem (2..2) arises at each
iteration of a quasilinearization method. We simply replade) by of (x,y(z))/dy, the
Jacobian of (z, y(z)), r(z) by 0f (x, y(x))/0z, andD,,, D, by the Jacobians of the BCs,
0g.(y(a))/0y(a), 0gp(y(b))/0y (D), respectively. (Herey (z) is the previous iterate for
the solution in the quasilinearization process.)

To describe the basic methods in this and later sections, we choose a mesh

Tia=xg<r1<...<xNy=0b hi=x; —x;_1. (23)

2.1. Finite Difference Methods

Finite difference schemes can be illustrated using the one step trapezoidal method,

i
Yi—Yi-1 = E[f(ajiflv}’ifl) +f(zs,y:)], (2.4

wherey; =~ y(z;). Applying (2..4) to (2..2) foi = 1,2,..., N, gives

D, Yo Ca
Sl T1 Y1 hlr%
Sy Ty y2 haor s
. = o ; (2..5)
Sy TIn YN-1 hnry_1
Dy YN cy
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wheresS;, T; € R™"*", r,

(2

-1 € R™ are

h; h; 1 .
Si = —I—?A(Ii_l), Tz = I—EA(.Z}), I‘i_% = 5[1‘(505_1)4—1'(2&,)], 1= 1,2, e ,N.

In the following, we refer to the system (2..5) as being in standard ABD form.

2.2.  Multiple Shooting

In multiple shooting for (2..2), we compute a fundamental solution mafiix) € R™*"
and a particular solutiop;(«) € R™ on each subintervdk; 1, z;], i = 1,2,..., N, of
the meshr:

Vi(z) = A@)Yi(z), Yi(zi-1) =1, p;=A@)p:i+r(z), pi(zi-1)=0. (2.6)
Then the vectors; € R™ in

y(z) =Yi(x)s; + pi(z), =€ [wi—1,7], ¢=1,2,...N,
are chosen to preserve continuity of the approximate solution at the mesh points. Thus,
Yi(xi)s; + pi(z;) = Yiz1(zi)siv1 + Pira(z;), i=1,2,...N—1.
Because of the initial conditions, it follows that
—Yi(z)si + sit1 = pi(x;), i=1,2,...,N—1.

Combining these equations with the BCs in (2..2) gives

D, Y1 (x0) S| Ca
macn I S2 pi(z1)
—Ys(x2) I S3 p2(72)
—Yn_1(zn-1) 1 SN—1 prn—1(TN_1)
DyYn(zn) SN c, — Dypn(zn)

which is an ABD system with a special structure that can be exploited.

2.3. Orthogonal Spline Collocation Methods

To simplify the exposition, we present OSC using Lagrangean basis functions for problem
(2..2). Then we give more details in the context of second order scalar linear BVODES with
separated BCs which leads into the discussion in Section 3..

On each subintervdl; 1, z;], ¢ = 1,2,..., N, of the meshr, the aim is to find a
polynomialP;(z) of degree no greater than— 1 (r > 2) of the form

r—1

r—1
T = Ti—141/(r—1)
Pi(z) =) ¥Yi—1+j/(r—1) )
JZ::O ! E) Ti—14j5/(r=1) — Ti—141/(r—1)

I#j
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6  P.Amodio et al.
wherez; 14 ;/(;—1) = %;—1 + jhi/(r — 1). This polynomial must satisfy

Pi(Ei—1)r—1)+k) = Ali—1) 1)) Pil€—1) r—1)+8) + T(EG—1)(r— 1)1k

where{;_1)r—1)+x = Ti—1 + hijox, K = 1,2,...,r — 1, are the Gauss points on
[2i—1,2:], i = 1,2,...,N, and {0, },_} are the Gauss Legendre nodes|onl] cor-
responding to the zeros of the Legendre polynomial of degred, and the BCs

D,Pi(a) = cqy, DpPn(b) = cp.

Thus, there ar§(r — 1)N + 1]n linear equations arising from the collocation conditions
and the BCs, and there af® — 1)n linear equations arising from requiring continuity of
the polynomialsP;(x) at the interior mesh points;, ¢ = 1,2,..., N — 1, of 7. Using
“condensation”, we eliminate the unknowns at the non-mesh points. The resulting linear
system hasN + 1)n equations in standard ABD form (2..5).

Next, consider the linear second order scalar BVODE with separated BCs:

Lu = —a(x)u” +b(x)u’' + c(x)u = f(x), =z € [a,b], (2..8)

aqgu(a) + Bou/(a) = ga,  apu(b) + Bpu’ (b) = go. (2..9)
For the meshr of (2..3), let

M, () = {v e Ca,b] :v

(i 1] € Pryi=1,2,...,N},
whereP, denotes the set of all polynomials of degree. Also, let
M2(m) = M, () N {o]v(a) = v(b) = O}
Note that
dim(Mo(m)) =M = N(r—1), dimM, (7)) =M +2.

In the OSC method for (2..8)-(2..9), the approximate solufioe M,.(7), r > 3. If
{¢; }jl‘flr2 is a basis forM,. (), we may write

M+2

Ulx)= Y ujoy (@),

=1

and {uj}jl‘f{z is determined by requiring thdf satisfy (2..8) at{¢;}},, and the BCs
(2..9): '

aUla) + B.U'(a) = ga,
LU(&]) = f(€])7 j:1727"'7M7
abU(b) + ﬂbUlb) = Gp.

First, consider the special case= 3, for which the collocation points are

1 1
&oic1 = o (xim1 + ;) —

— h;, i=1,2,...,N.
2 23

1 1
hi, i = = (T i)+ —=
&2 2(33 1—|-9L‘)-|-2\/g
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With the usual basi$v; } . U {s;}1L, for M3 () [63], we set

N
U(z) = {wvi(x) + upsi(x)}.
=0
Since only four basis functions;_1, s;_1, v;, s;, are nonzero ofw;_1, z;], the coeffi-
cient matrix of the collocation equations is ABD of the form (2..5) with = [, Ba],
Dy = [oy, ), and

o Lvi—1(&2i-1) Lsi—1(62i-1) - Lvi(§2i-1) Lsi(&2i-1) .
Si= ( L’Ui—1(§2i) LSz‘—l(&i) ) » Ti= ( L’Uz‘(fzi) LSz‘(fQi) ) y i=12 N

Forr > 3, with a standard ordering of thB-spline basis as implemented in the code
colsys[9,10], the coefficient matrix

D,
Wit Wia Wis

War Waa Was
_ (2..10)

Wn1 Wno Whis
Dy

is ABD, with W;; € RU—D*2 W, € RU—1DX(=3) 17,5 ¢ RIr—1*2: see [33].
For monomial basis functions, asdolnew[12,14], the linear system, of ordé&f(r +
1)+2,is

Da Yo Ga
1% Wy Zg q1
701 7D1 I VAN 0
Vi Wi Yi-1 _ qQi
*Ci *Di I Z;_1 0 ’

Vv Wy YN-1 an
—CN —DN I ZN_1 0
D, YN 9o

(2..11)

whereV; € RU-DUx2 1y, ¢ RU—Dx(r=1) ¢, ¢ R2*2 D, ¢ R2*(—1) Often, such
systems are first condensed by eliminating the internal variablé®or suitably smalh;,
W; is nonsingular [14] and we have

Zi 1= Wflqi — W;lViyi,l, i=1,2,...,N,
which, when substituted in
yi=Ciyyi1+D;z; 1, i=1,2,...,N,
gives the condensed equations
Tiyio1—yi=-DiW, 'qy, Ti=0C;—D;W,'V;, T;eR¥>? i=1,2... N
(2..12)
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Thus, (2..11) is reduced to an ABD system of or@igV + 1), cf. (2..7),

D, Yo da )
- I y1 DWW an
_Fi I Yi—1 = DiWZ-_lqi . (213)
-I'y I YN-1 DyWy'tay
Dy YN 9b

Condensation accounts for a significant proportion of the total execution tima@new

[75]. Computing eaclt’; in (2..13) requires factorin; and solving two linear systems

(for anm!”* order problemym systems), and computin@W[lqi requires solving one

linear system. Generating each block system (2..12) is completely independent. So, both
the generation and the solution phases of condensation have a highly parallel structure, as
exploited in the codpcolnew{15,16].

2.4. Special BVODEs

We consider generalizations of (2..1) which, when solved by standard methods, also give
rise to ABD or BABD linear systems.

2.4.1. Nonseparated BCs Here, the BCs in (2..1) are replaced by

g(y(a),y(0)) =0, geR". (2.14)

For any standard discretization, the BABD system associated with BCs (2..14) has coeffi-
cient matrix
Sy T
Sy Ty
. (2..15)

Sy In
Ba Bb

whereB,, B, are Jacobians ¢f with respect toy(a), y(b), respectively. In the linear case,
B,y(a)+ Byy(b) =c, Bg,B, € R™*", ce R". (2..16)

This structure and an associated special solution technique were derived for the first high-
quality automatic BVODE solvgpasva3 based on finite differences [104,105]; see [150]
for details of vectorization of the linear algebra in this solver. This approach can be ex-
tended straightforwardly to one step IVP schemes such as IRK methods and to special
subclasses of IRK methods such as the mono-implicit Runge-Kutta (MIRK) methods, first
introduced in [40]; see [36,37,41,42,61,62,81,120,121] for more on the use of IRK methods
for BVODEs.

For multiple shooting, for the BCs (2..16), the linear BABD system corresponding to the
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ABD system (2..20) for non-separated BCs is

—Yl(fl'l) 1 51 pl(xl)
—Ya(x2) I S2 p2(72)
: S ; 2.17)
—Yn_i(zn-1) I SN_1 prn-1(zN-1)
B, ByYn(xn) SN ¢, — Bypn(zn)

The BABD system (2..17) is discussed in detail in [11, page 150], where it is shown that,
for N sufficiently large, it is well-conditioned when the underlying BVODE (2..14) is well-
conditioned.

In a closely related case, the BCs are partially separated; that is, they have the form

ga.(y(a)) = 0,g(y(a),y(b)) = 0. (2..18)

The associated system has coefficient matrix

D,
S1 Ty
Sy Ty
, (2..19)
Sy Ty
Ba Bb

whereB,, B, € R("~9*" are Jacobians ¢f with respect toy(a), y(b), respectively.

Using a technique described in [13], we can convert nonseparated, or partially separated,
BCs into separated form. For example, in the nonseparated case, werada equations
and associated initial conditions:

z; =0, zi(a)=yi(a), i=12,...,n,
giving a system of sizén with separated BCs:

y' =f(z,y), g(z(b),y(b)) =0,
7z =0, z(a) = y(a).

Then, any standard numerical technique will lead to a system with an ABD coefficient
matrix of type (2..5) but with submatrices of ordeus. Partially separated BCs can be
treated similarly.

2.4.2. Multipoint conditions Next, consider linear multipoint conditions

N
> Bjy(xz;) =c, B € R”™", ceR",

=0

where the pointg:; coincide with mesh points. Normally only a fef; will be nonzero;
that s, there will be mesh points which are not multipoints. A first order BVODE system
with these BCs when solved by a standard method gives rise to a BABD system with
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coefficient matrix

S
SQ T2
. , (2..20)
Sy TN
By By ... By_1 By
whereBy, By and some of3,, Bs,..., By_1 are nonzero. Itis possible to convert this

system into several systems of two-point BVODEs with separated BCs, as explained in
[11, page 6].

2.4.3. Parameter Dependent Problems and Integral Constraints Parameters may
appear in the BVODE. Consider the linear gihcase:

Y = Alw, Ny +1(2,A),  Bay(a) + Byy(b) = c(A), (2.21)

wherey € R™, A € R™, B,, B, € RU"t")*" \We need then + n BCs so that botly
and\ may be determined. The coefficient matrix is

Sl T] Zl
SQ T2 Z2
N e (2..22)
Sy In Zn
Ba Bb Zc

whereZ, depends or(), andZ,, Zs, ..., Zy on A(z, A) andr(z, A). Instead, we could
deal with this problem by addind’ = 0 to yield a standard BVODE im + n unknowns,
essentially as in Section 2.4.1..

An important extension of the standard BVODE (2..1) involves integral constraints.
Here, we consider the more general case with parameters \WitR fixed and given, the
ODEs, BCs and integral constraints are

y' =f(z,y,7,)\), z€]lab], y,feR", TeR",
g(y(a),y(b),7,A) =0, geR"™, (2..23)

b
/ w(t,y(t), T, \)dt =0, w e R™,

which we must solve foy, 7. Clearly, we requirer, + n,, = n + n, for the problem to
be well-posed.

Important practical applications related to (2..23) occur in bifurcation analysis, for exam-
ple, in computing periodic orbits, Hopf bifurcations and heteroclinic orbits [96,118,119];
see also [18] for an engineering application. As an example, consider computing periodic
orbits. The parameter dependent (autonomous) ODE is

y =£f(y,)), y,feR" \eR, (2..24)

where is given but the solution of (2..24) is of unknown period; a well-known example
of (2..24) is the system of Lorenz equations [118]. The usual first step is to transform the
independent variable {0, 1] so that the perio now appears explicitly as an unknown:

y{l} = Xf(y7 >‘)7 Y»f € Rna X? )‘ € Ra y(O) = y(1)7 (225)
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where the independent variable is a scaled version of timg Ahdenotes differentiation

with respect to the transformed variable. (An alternative formulation which also gives rise
to BABD systems is described in [118].) Suppose we have computed a periodic solution
with a givenA = \;_q, say(y;—1,X;-1, Aj—1), and we wish to compute another periodic
solution (y;, X;, A;). Sincey(z) is periodic, so isy(x + d) for anyé. Thus, we need a
phase condition, for example

/1 y(a:)Tyﬁ}l(x)dm =0, (2..26)
0

to specify the solution completely. We also add the pseudo-arclength equation

| ) =316+ (X = X)X+ A=Ay = s, .27

Here, \ is regarded as unknown adls as given, and the dot denotes differentiation with
respect to arclength. Assumindygs constant, we might use the approximations

B e T VI Bt S £ S £ S Y
J—1 ’ h

J
As ’ As R As
When equations (2..25)-(2..28) are discretized using standard methods, for each Newton
iterate, the linear system has a BABD coefficient matrix,

S 1Ty
Sy Ty

XX XX
XX XX

A= - - (2..29)
Sy Tw

D, Dy

X X X X X X

X X X X X X

X Q XX XX ---
X QO XX XX

The last two rows of4 arise from (2..26) and (2..27), and the last two columns correspond
to X and\. The packagauto[52,53,54] for computing periodic orbits etc., solves a related
problem. Its linear algebra involves coefficient matrices with a structure similar to (2..29).

2.4.4. Parameter Identification Asin[29], we define a standard problem. Fin@:) €
R™ A € R™: (i) to minimize
2

N
> Miy(x:)+ZA-d ||, (2..30)
=1 2
whereM;, Z, d are given and problem dependent; and (ii) to satisfy the ODE system
y'(z) = A(x)y(z) + C(z) X + £(z). (2..31)

Essentially, (2..30)-(2..31) comprise an equality constrained linear least squares problem.
Using any standard numerical technique to discretize the ODE (2..31), we obtain a discrete
form

N
min > My +2Zx-d (2..32)
Y0,¥15--¥YN i=0 9
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12  P.Amodio et al.

subject to the constraints
Siyi + Tyyii + EEX=1, S;,T; ¢ R™", F;, € R™"™, i=1,2,...,N. (2..33)

Rather than solve (2..32)-(2..33), Mattheij and S.J. Wright [117] impose extra side con-
straints
Czy2+DZyZ+1 +E2A:gla 1215275N (234)

Problem (2..32)-(2..34) gives rise to a linear system with coefficient matrix

Sl T1 Fl
Sy T F

Sy Ty Fn

Ol D1 El
02 DQ E2

Cy Dy Eyn

To solve this system, a stable compactification scheme [117] which can take account of
rank deficiency may be used. See Section 5.1.3. for a discussion of a cyclic reduction
algorithm which can be modified to solve the system.

Another example where ABDs arise in parameter estimation, this time associated with
differential-algebraic equations, is given in [1].

3. Partial Differential Equations and ABD Systems

OSC methods for partial differential equations (PDES) are a rich source of ABD systems.
Such systems arise in OSC methods for separable elliptic boundary value problems, and in
the method of lines for various initial-boundary value problems. Also, ABD systems arise
in Keller's box scheme for parabolic initial-boundary value problems [94].

3.1. OSC for Separable Elliptic Boundary Value Problems

Many fast direct methods exist for solving the linear systems arising in the numerical so-
lution of separable elliptic PDEs posed in the unit square. An important class comprises
matrix decomposition algorithms, which have been formulated for finite difference, finite
element Galerkin, OSC and spectral methods [22]. To describe how ABD systems arise in
OSC algorithms [23], consider the elliptic boundary value problem

(L1+Lo)u = f(x1,22), (21,22) € Q= (a,b)X(a,b); u(xi,z2) =0, (x1,22) € OQ,
(3..1)
where o2 5
U U .
Liju = —ai(xi)aTc? + bi(fci)ajci +ei(zi)u, i=1,2, (3.2)

witha; > 0,¢; >0, i = 1,2, andb; = 0.
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Using the notation of Section 2.3., the OSC approximalitfa, z5) € M2(n) ®
M?(r) satisfies

(Ll + LQ)U(§m1,§m2) = f(fml,ﬁmg), my,mg =1,2,..., M, (33)

where, as before}/ = N(r — 1). Let {¢, }}L, be a basis foM? (). If

M M
U(.’Khl'g) = Z Z unl,n2¢n1(x1)¢n2(x2)v

ni=1no=1

with coefficientsu = [uy 1, w12, ..., U1 01y Unr 1, U2, - - > uns )T, @nd withf =
i, frzs s funas oo fas fars o faam] T wherefo oy = f(&my s Ems, ), the matrix-
vector form of (3..3) is

(Al X BQ + Bl X Ag)u = f, (34)

where A; = (Li¢n(&m)) =1, Bi = (¢n(ém))> .1, and® denotes the tensor (Kro-
necker) product. If the functionss,, } A2, are Hermite typeB-splines, or monomial basis
functions, these matrices are ABD, having the structure (2..5), (2..10) or (2..11), respec-
tively.

Now, let W = dithlwl, hiws, ..., hiwy_1,..., hywi, hywo,..., hN’LUrfl) and,
for v defined ona, b], D(v) = diag(v(&1), v(&2), ..., v(&ar)). If

Fy = BIWD(1/a1)B:, Gy =BIWD(1/a1)As, (3..5)

then F is symmetric and positive definite, adgl is symmetric [23]. Hence, there exist
real A = diag()\;)?L, and a real nonsingulaf such that

Z'echz =\, Z'RZ=1. (3..6)

By (3..5),A, Z can be computed using the decomposition= LL”, L = B [WD(1/a,)]"/?,
and solving the symmetric eigenproblem o= L='G,L~" = [WD(1/a;)]"/? A, By [WD(1/a1)]~'/2,

QTCR=A 3..7)
with @ orthogonal. IfZ = By '[WD(1/a;)]~/2Q, thenA, Z satisfy (3..6). Thus,
(ZTBIWD(1/a;) @ I[(A; @ Bo + B1 ® A2)(Z @ 1) = A® By + I ® As,

leading to the matrix decomposition algorithm in Algorithm 3.1 for solving (3..4), where
steps 1, 3, and 4 each involve solving independent ABD systems which are all of or-
der M. In Step 1,C can be determined efficiently by solving! [WD(1/a;)]*/?C =
AT[WD(1/ay)]*/?. Computing the columns @ requires solving linear systems with co-
efficient matrix{[WD(1/a;)]*/?B;}", the transpose of the ABD matrix in Step 4. The
ABD matrix is factored once and the columns@fidetermined. This factored form is also
used in Step 4. In Step 3, the ABD matrices have the fdam- A\;B,, j = 1,2,..., M,

this step is equivalent to solving a system of BVODEs.

In [24], a matrix decomposition algorithm is formulated for solving the linear systems
arising in OSC with piecewise Hermite bicubic basis functions on a uniform mesh applied
to (3..1)-(3..2) witha; = 1 andc¢; = 0 (a similar method is discussed in [140]). The al-
gorithm comprises steps 2-4 of Algorithm 3.1 with = ’g[ andD = I and use®xplicit

9/8/2006 10:50 PAGE PROOFS nla97-39



14  P. Amodio et al.

] Algorithm 3.1 \
Determine\ and( satisfying (3..7)

Computeg = (Q"[WD(1/a1)]'/? @ I»)f
SO'VE(A By +1; ® AQ)V =g

Computeu = (B '[W1D;(1/a1)] 7 /?Q ® IL)v

PONE

formulas forA andZ for appropriately scaled basis functions. Extensions to Neumann, pe-
riodic and mixed BCs are discussed in [15,28,65,136], and to problems in three dimensions
in [128]. Progress has also been made on extensions to OSC with higher degree piecewise
polynomials, [139].

ABD systems also arise in alternating direction implicit (ADI) methods for the OSC
equations (3..4); see [19,44,45,46,47,60]. For example, consider (3..1 .wiglven by
(3..2) andb; = 0,7 = 1,2. The ADI OSC method of [19] is: given®, for k = 0,1, .. .,
computeu*t1) from

(A1 + 7Y, B1) @ BoJu®t/2 = f —[By @ (Ay — 2LV, Bo)Ju®,
(3.8)

[B1 @ (As + 77 Ba) ™) = £ — (4 =7 Br) @ BoJult+1/2),
wherey,ﬁﬂzl andy,(jr)1 are acceleration parameters. Using properties of the tensor product,
it is easy to see that each step requires solving independent sets of ABD systems. For
example,[(A1 + vB1) ® Bo]v = gis equivalent tg(A; + vB1) @ Ilw =g, (I®
Bs)v = w. ABD systems also occur in certain block iterative methods for solving (3..4),
see [137,138].

ABD systems arise in other methods for elliptic problems. For example, they appear
in Fourier analysis cyclic reduction (FACR) OSC methods for the Dirichlet problem for
Poisson’s equation in the unit square [20], in fast direct OSC methods for biharmonic
problems [21,108,109,135], and in spectral methods for the steady state PDEs of fluid
mechanics [49,86,87,88].

3.2. OSC for Time Dependent Problems

Consider the parabolic initial boundary value problem

% +Lu = f(x,t), (x,t) € (a,b) x (0,77, (3..9)
unlast) + G g (@) =ga(®), avulbst) + G5 () = alt), ¢ € (0.7),
u(z,0) = wug(z), z€(a,b),
where ;
Lu = —a(x,t)% + b(m,t)% + c(z, t)u.

In a method of lines approach, we construct the continuous-time OSC approximation which
is a differentiable mapy : [0,7] — M,.(7) such that [58]

Cl(a0) 4 55 (0 8) = gult), te(0.T)
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wwU.0)+ 550 (01) = auft), te(0.7)
U(&,O)ZUO(&), i:1,2,...,M.
M+2

With U (z,t) = Z u;j(t)o;(z), Where~{gz>j}§‘”;{2 is a basis forM,.(7), (3..10) is an ODE
j=1
initial value system
Bu'(t) + A(t)u(t) = F(t), t€(0,T], u(0) prescribed (3..11)

where B and A(t) are both ABD. An example of a discrete-time OSC method is the
(second order in time) Crank-Nicolson collocation method for (3..10) which determines
{UFY9_ c M, (r) satisfying the BCs such that

Ulc+1 _ Ulc oi1/o
—x7 LU =[G teng), T=120 M, k=0,1,...,Q-1,
82
WhereU’““/z = (Uk+Uk+1)/2,tk+1/2 = (k+1/2)At,Lk+1/2 = 7a($,tk+1/2)w+

b(x, tkH/Q)(% + c(x, tit1/2), andQAt = T'. Essentially, this is the trapezoidal method
for (3..11):

1 1
(B + §AtA(tk+1/2)]ukH =[B - §At14(tk+1/2)]uk + AtF(tgy1/2)- (3.12)

Thus, with a standard basis, an ABD system must be solved at each time step.
When the PDE in (3..9) has time independent coefficients and right hand side, the solu-
tion of (3..11) isu(t) = exp(—tB~tA)[u(0) — A~'F] + A~'F, or, in incremental form,

u((k+ 1)At) = exp(~AtB ' A)[u(kAt) — A~'F] + A~'F. (3..13)

One way to evaluate (3..13) is to use a Pagproximation to the matrix exponential. The
(1,2) Pa@ approximation gives the Crank-Nicolson method in (3..12). A fourth order in
time approximation can be obtained using the (2,2)Rgmproximation. At each time step,

this gives a linear system with a coefficient matrix which is quadrati¢ Bnd A¢B. On
factoring this quadratic, we obtain a pair of complex ABD systems with complex conjugate
coefficient matrices3 + 3At A and B + At A, where3 = (1+1+/3) /4, [64]. However, a
system with just one of these coefficient matrices must be solved, then the fact that equation
(3..13) is real can be exploited to compute directly the (real) solution of the discretized
system. See [77] for more on solving the linear systems arising from using higher order
approximations to the matrix exponential in (3..13).

ABD linear systems similar to those in (3..12) arise in ADI OSC methods for parabolic
and hyperbolic initial-boundary value problems in two space variables (see [25,26,27,70,71]
and references cited in these papers), and in ADI OSC methods fobdsaher prob-
lems [106] and vibration problems [107] also in two space variables. OSC methods with
monomial basis functions for solving Sélinger equations [130,131,132,133,134], the
Kuramoto-Sivashinsky equation [116] and the Roseneau equation [115], all in one space
variable, involve linear systems of the form (2..11).
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3.3. Keller's Box Scheme

Following [94], we setv = Ju/0z and reformulate (3..9) as an initial-boundary value
problem for a first order system of PDEs @nb) x (0, 7],

ou
or "
a(x,t)% = % + bz, t)v + c(z, t)u — f(z,t), (3..14)
agu(a,t) + Bov(a,t) = go(t), aru(b, t) + fro(b,t) = gi(t) t € (0,7,
’LL(J,‘70) = u0($)7 T e (aab)'

Using the meskr, at each time step the box scheme applied to (3..14) gives an ABD system
with coefficient matrix (2..5), wher8;, T; € R?*2.

Slightly different ABD systems arise in the solution of nonlocal parabolic problems
modeling certain chemical and heat conduction processes [69]. As an example, consider

% = %7 (z,t) € (a,b) x (0,71,
/nu(s,t)ds — F), %(a,t) — o(t), te(0,T], (3..15)
u(z,0) = wug(z), =z € (a,b),

wheren € (a,b) is given (cf. Section 2.4.3.). Withr(z, ) = [ u(s, t)ds, (z,t) € (a,n)x
(0,T], (3..15) is written as a first order system as in (3..14) and the box scheme is applied
to the reformulated problem. At each time step, the ABD coefficient matrix is again of the
form (2..5), but now, ify is a grid-point;) = zx, say, thenS; € R**3, i =1,2,..., K,
andS; € R?*2 otherwisel; € R3*3, i =1,2,..., K—1,Txg € R3*2, T, € R?*?, § =
K+1,K+2,...,N,andD, =[00 1], D, = [0 1].

In [68], a similar nonlocal parabolic problem was solved using OSC, again involving
ABD systems.

4. Direct Sequential Solvers for ABD and BABD Systems

4.1. Solvers for ABD systems

We describe the essential features of the algorithms using a simple example with a coeffi-
cient matrix of the form in Figure 1..2, namely the matrix of Figure 4..1 in which there are
two 4 x 7 blocksWw ) W) andTOPandBOTare2 x 3 and1 x 3, respectively. The
overlap between successive blocks is tBus

4.1.1. Gaussian Elimination with Partial Pivoting The procedure implemented in
solveblol{33,34] uses conventional Gaussian elimination with partial pivoting. Fill-in may
be introduced in the positions indicatedn Figure 4..2. The possible fill-in, and conse-
guently the possible additional storage and work, depends on the number of\fpyis,

the blockTOP. Stability is guaranteed by standard results for banded systems [30].

4.1.2. Alternate Row and Column Elimination This stable elimination procedure,
based on the approach of Varah [142], generates no fill-in for the matakFigure 4..1.

9/8/2006 10:50 PAGE PROOFS nla97-39



Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applicatiods/

Figure 4..1. Structure of the example matrix

X X Xj}* * % *
X XX * % * %
XXX XX X
XXXX XXX

XOXXXOXOXOX & &k

IX X AKX XXX * & **

X X X X X X X|

XX XK X X X

XX X X X X X

X X XX X XX

X X X

Figure 4..2.  Fill-in introduced bOLVEBLOK

Suppose we choose a pivot from the first row. If we interchange the first column and the col-
umn containing the pivot, there is no fill-in. Moreover, if instead of performing row elim-
ination as in conventional Gaussian elimination, we reducéh®) and(1, 3) elements

to zero by column elimination, the corresponding multipliers are bounded in magnitude by
unity. We repeat this process in the second step, choosing a pivot from the elements in the
(2,2) and(2, 3) positions, interchanging colum2sand3 if necessary and eliminating the
(2,3) element. If this procedure were adopted in the third step, fill-in could be introduced
in the (¢, 3) positions,; = 7,8, 9, 10. To avoid this, we switch to row elimination with par-

tial pivoting to eliminate thé4, 3), (5, 3), (6, 3) elements, which does not introduce fill-in.

We continue using row elimination with partial pivoting until a step is reached when fill-in
could occur, at which point we switch back to the “column pivoting, column elimination”
scheme. This strategy leads to a decomposition

A= PLBUQ,
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-_——————

X
XX
XCXXXX XX
XX e XXX X
XX X |
XX m e XXy
XXX X XXX
XX XX X X
X X X
LX,,X,,,,,‘,X,,&,{
X X X

Figure 4..3.  Structure of the reduced matrix

whereP, () are permutation matrices recording the row and column interchanges, respec-
tively, the unit lower and unit upper triangular matridesU contain the multipliers used
in the row and column eliminations, respectively, and the maitas the structure shown
in Figure 4..3, where denotes a zeroed element. Since there is only one row or column
interchange at each step, the pivotal information can be stored in a single vector of the or-
der of the matrix, as in conventional Gaussian elimination. The nonzero element& of
can be stored in the zeroed positions4nThe pattern of row and column eliminations is
determined byV; and the number of rowdy; in a general blockV () (cf. Figure 1..2). In
general, a sequence &f column eliminations is alternated with a sequenc&’gf — N
row eliminations (see [50] for details). For a further analysis of this and related approaches,
see [129].

To solveAx = b, we solve

PLz=b, Bw=z UQx=w.

The second step requires particular attention. If the componemtsasé ordered so that
those associated with the column eliminations precede those associated with the row elimi-
nations, and the equations are ordered accordingly, the system is reducible. In our example,
if we use the ordering

W= [U}l, W2, Ws, We, Wy, W10, W3, W4, W7, Ws, wll]T

)

the coefficient matrix of the reordered equations has the structure in Figure 4..4. Thus, the
componentsv; , we, ws, Wg, We, W1, are determined by solving a lower triangular system
and the remaining components by solving an upper triangular system.

4.1.3. Modified Alternate Row and Column Elimination The alternate row and col-

umn elimination procedure can be made more efficient by using the fact that, after each se-
guence of row or column eliminations, a reducible matrix results. This leads to a reduction
in the number of arithmetic operations because some operations involving matrix-matrix
multiplications in the decomposition phase can be deferred to the solution phase, where
only matrix-vector multiplications are required. After the first sequence of column elim-
inations, involving a permutation matri; and multiplier matrixU;, say, the resulting
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X |
X X }
X X X }
X X X X }
XX X |
U XXXX
X X X X IX X X
X X X X X X
X X X X| X X X
X X X X| X X
X X| X

Figure 4..4. The coefficient matrix of the reordered system

matrix is
Cy | O
M
By = AQ.U; = ! 4, |
o

whereC; € R?*2is lower triangular); € R**2 andA; € R°*°. The equatiox = b
becomes .
b, x=U;'QTx = ( L )
2

and%; € R?. Settingb = < El >,whereb1 € R?, we obtain
2

Bix

Cix1 =by1, AiXs =bs — < MBXI > = by. 4..2)

The next sequence of eliminations, that is, the first sequence of row eliminations, is applied
only to 4, to produce another reducible matrix

N
L1P1A1=<121 1 e O>7

whereR; € R?*2 is upper triangularN; € R?>3 and. A, € R™*7. If

. % - b,
. LiPby= | =
X2 < %o >7 14102 < b2 )7
wherex;, b; € R2, system (4..1) becomes

Asky =by, Ri%; =b; — [N, O] %y, 4..2)

and the next sequence of eliminations is applieddto which has the structure of the
original matrix with onel¥” block removed. Since row operations are not performed on
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Mj in the second elimination step, and column operations are not perform&d iorthe

third, etc., there are savings in arithmetic operations [50]. The decomposition phase differs
from that in alternating row and column elimination in that if #H& elimination step is

a column (row) elimination, it leaves unaltered the fifst— 1) rows (columns) of the
matrix. The matrix in the modified procedure has the same structure and diagonal blocks
asB, and the permutation and multiplier matrices are identical. This procedure is Gaussian
elimination with a special form of partial pivoting [129].

In [50,51], this modified alternate row and column elimination procedure was developed
and implemented in the packagelrow for systems with matrices of the form in Figure
1..2, and in the packagacecofor ABD systems in which the blocks are of varying dimen-
sions, and the first and last blocks protrude, as shown in Figure 1..1. The latter package has
been used to solve the systems arising in Keller’s box scheme applied to (3..15), [69].

Numerical experiments [75] demonstrate the effectivenessolbw and arcecoand
their superiority ovesolveblokon systems arising from BVODESs. Thececopackage was
modified and augmented in [35] to use the levBLAS[56], and the cod&1Ihf included
in the NAG Library. A level 3BLAS[55] version ofarcecowas developed in [76,127], and
a corresponding code [48] carefully avoids the implicit fill-in due to blocking inBBhAS

Two variants ofcolrow have been produced by Keast [89,90]. Lik&lhf, the first [89]
solves not only an ABD system but also a system whose coefficient matrix is the transpose
of an ABD matrix. These codes may be employed in Steps 1 and 4 of Algorithm 3.1. The
second [90] solves complex ABD systems and may be employed in tferReithods of
Section 3.4.

4.1.4. Lam’'s Method In Lam’s method [102], alternate row and column interchanges
are used to avoid fill-in but only row elimination is performed throughout. This leads to
a PLU(@ decomposition in which the elements bf the multipliers in the elimination
process, may not be boundadgbriori. This technique, which motivated Varah'’s algorithm
[142], was rediscovered in an application arising in the analysis of beam structures [17];
its numerical stability is analyzed in [141]. The algorithm is implementddrimpak[91].

It gives essentially the same resultscasrow [50,51] in all numerical experiments known

to its authors.

In [75,82], an early attempt to compare the performance of the various codes on “su-
percomputers” examines the performance of a vectorsddeblok, colrow, arcecand
lampakon a CDC Cyber 205. The vectorized versiongolrow, arcecoandlampakper-
form about equally and significantly more efficiently than the redesigodceblokon a
wide range of test problems. However, the nature of the memory hierarchy on the CDC
Cyber 205 was very different from that of modern vector machines, so these conclusions
may no longer be valid.

4.1.5. Special ABD Systems When modified alternate row and column elimination is
used to solve ABD systems arising in multiple shooting or the condensed OSC equations
(2..13) for BVODESs with separated BCs, no advantage is taken of the sparsity of the “upper
block diagonal” identity matrices. Hence the procedure introduces fill-in in these blocks as
can be easily seen by considering the structure in Figure 4..5; the pattern of eliminations
is one column elimination followed by two row eliminations. A simple change minimizes
the fill-in and ensures that the reduced matrix has the same structure as would result if
no pivoting at all were performed. Referring to Figure 1..2, the required modification is:
if, at a row elimination step, we must interchange rawand! of the current blockv ()

then, before the row elimination, also interchange coluimm@sd! of the submatrix of
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\>< .
e
XX
RS Y 1
XX X |
X XX |
X - X e
XX X
X - X

Figure 4..6. Structure of the reduced matrix

W originally containing the unit matrix and interchange columinand! of the next
block W(+1 | This decomposition yields the reduced (reducible) matrix in Figure 4..6.
A packageabbpack for solving this type of ABD linear system has been developed by
Majaess et al., [111,112,113,114].

ABD linear systems of the form (2..11) cannot be solved uswigpw or arceco[50,51]
without fill-in. For such ABD systemsbdpackimplements an alternate row and column
elimination algorithm which, to avoid unnecessary fill-in, exploits the sparsity of the iden-
tity matrix, as described above, when rows of the current bloglare interchanged in a
row elimination step. Numerical experiments reported in [113,114] demonatrdfeacks
superiority over the version afolveblokused incolnew[14]. ABD systems where the
blocks overlap in rows were discussed in [67,92] in the context of finite element methods,
and a modified alternate row and column elimination scheme for such systems is imple-
mented inrowcol [66].
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4.1.6. ABD Solvers in Packages The ABD packages described above are employed in
packaged software for solving systems of nonlinear BVODESs and for solving systems of
nonlinear initial-boundary value problems in one space variable using a method of lines
approach with OSC in the spatial variable. The BVODE packadgys[9] usessolveblok
[33,34] to solve linear systems of the form (2..10) arising when using OSC at Gauss points
with B-spline bases. The packagednew[14] andpcolnew[16] employ modified versions
of solveblok which implement essentially the same algorithm, to solve the ABD systems
(2..12) resulting from condensation of the larger linear systems arising when using OSC
at Gauss points with monomial spline bases. The NAG Library’s simplified interface ver-
sion ofcolnew subroutined02tkfdue to Brankin and Gladwell, uses the NAG ABD code
fO1lhf [35]. The codecolrow [50,51] is used in the MIRK BVODE codmirkdc[62], and a
modified version otolrowis used in the deferred correction cddgbvp[42]. A modified
version ofcolnew colmod[38,146], uses a revised mesh selection strategy, automatic con-
tinuation and the modifiedolrow. The codeacdc[39] uses automatic continuation, OSC
at Lobatto points and the modifiedlrow for singularly perturbed BVODESs. Software im-
plementing the SLU algorithm [147] for a number of different shared memory computers
was developed by Remington [15] who investigated its use in the development of a parallel
version ofcolnew This software was also used for the parallel factorization and solution
of ABD systems in an early version afirkdc[121].

For PDEs, the codedecol[110] usessolveblol{33,34] to solve the linear systems of the
form (2..10) arising from using B-spline bases. The cepécol[93] is a variant ofodecol
in which solveblokis replaced bycolrow [50,51]. In the method of lines code based on
OSC with monomial bases described in [122], the linear systems are solvedbsioack
[114].

4.2. Solvers for BABD Systems

In the context of structure, it is natural to consider Gaussian elimination with row inter-
changes as an appropriate method for BABD systems (5..1). We show why this approach
can be unstable and we suggest some alternative approaches which may be used to exploit
available software for ABD systems for the BABD case.

4.2.1. A Cautionary Example S.J. Wright [148] showed that conventional Gaussian
elimination with row interchanges can be unstable for BABD systems (5..1) arising from
multiple shooting. By extension, the BABD systems arising in finite difference and OSC
discretizations are potentially unstable. Consider the linear ODE as of (2..2) but with non-
separated BCs (2..16) and

A(x)=fl=(_1é _1% )cz(?) Bo=By=1,2¢[0,60, (4.3)

which is well-conditioned [11]. Using any standard discretization leads to a linear system
with matrix (5..1). Here7; = T, S; = S are constant and the resulting system should also
be well-conditioned. Moving the BCs so that they become the first block equations and
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premultiplying the resulting matrixl by D = diag(1,7-1,71,...,T~1) gives
1 I

B I
DA=A= B

whereB = —T~1S. Suppose we are using the trapezoidal method, then, sofficiently
small, B = (I —hA/2)~Y(I + hA/2) ~ "4, and all elements oB are less than one in
magnitude. Using Gaussian elimination with partial pivoting, no interchanges are required,
and

I I I

-B I I B
.. I BNfl

-B L U

The elements in the last column &f grow exponentially withV. This instability oc-

curs when the BABD matri¥ has negative diagonal elements but is not restricted to this
case nor to BVODESs with constant coefficient matrices. A similar analysis applies to the
structured LU factorization in [149], denoted LU below; this algorithm is used in the com-
parisons in [99].

4.2.2. Sequential Methods for BABDs To our knowledge, there exists no sequential
algorithm designed specifically for BABD systems; we describe a number of parallel al-
gorithms in the next section. However, it is possible to use software described in [80] for
general bordered systems. This software assumes a matrix of the form

( é s ) (4..4)

with A and D square and of orders’ andm’, respectively, wheren’ is “small”. It is
also assumed that software is available which will solve linear systems of both the forms
Ax =bandA”x = b.

For BABD coefficient matrices of the form (2..15), that is with nonseparated BCs, we
haveD = B, andn’ = Nn andm’ = n. In this case,A is block upper triangular.
(Both B andC' have some structure which cannot be directly exploited by the software
described in [80].) In the case of partially separated BCs of the form (2..18) with matrix
structure as in (2..19), the matrikis ABD unless the separated BCs are lumped with the
nonseparated BCs to give a structure of the form (2..15). In this case, the madrbtock
upper triangular.

The algorithm implemented in the softwasremw{80] is an extension of that described
in [79] for m’ = 1. It determines in sequence the solutions of each of a set of linear systems
with ABD coefficient matricesa in (4.3) andA”'. (Software is available for solving ABD
linear systems with matriced and A”, for example fO1lhf [35] andtranscolrow[89].
Software for solving block upper triangular systems is easily constructed using the level 3
BLAS[55].) The right hand side of each linear system involves a column in the border of the
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BABD and the solutions of the previously solved systems. In the nonseparated case, there
aren of these columns. In the partially separated case, the number of these columns is
minus the number of separated boundary conditions. A clever organization of the algorithm
avoids using recursion. Stability is not guaranteed but there is empirical evidence that it is
usually attained.

A related approach is described in [151]. There, block elimination is performed on the
matrix (4..4). Small perturbations are introduced in the factorized matrices to avoid over-
flows, hence leading to inaccuracies in the solution. Then, iterative refinement is used to
improve the solution. An extensive error analysis in [151] is somewhat inconclusive.

Numerical tests of this algorithm and of that discussed in [80] have been carried out on
an SGI 8000, an SGI 10000 and a Cray J-9x; these tests are for the matfixiense
and tridiagonal forms but not fod of ABD or block upper triangular form. Generally, for
dense systems, the errors reported favor the new algorithm, whereas there is little difference
between the algorithms for tridiagonal systems. The timings for the new algorithm are
vastly superior but do depend on implementation features associated with using the level 3
BLAS[55]. Itis reported that usually only one step of the iterative refinement algorithm is
needed to compute near to exact solutions.

An alternative, guaranteed stable approach is to write the BABD system as an ABD
system of twice the size. This is achieved by introducing dummy variables to “separate”
the boundary conditions (see Section 2.4.1.). Then, use an ABD algorithm is used for the
resulting ABD system which has internal blocks of skzg ignoring structure internal to
the blocks. The arithmetic cost is about eight times that of the factorizatioamw

5. Direct Parallel Solvers for BABD and ABD Linear Systems

We consider algorithms for solving BABD and ABD linear systems in a parallel environ-
ment. We restrict attention to the systems arising when solving linear BVODEs where the
ODE is as in (2..2) for both nonseparated and separated BCs. All the algorithms can be
implemented efficiently to exploit medium granularity parallelism (i.e., where the number
of processorgy, does not exceed the number of block rows of the BABD matrix). On each
block row, we apply the same general decomposition. On a distributed memory machine,
this corresponds to partitioning the problem by block rows among the processors.

5.1. Nonseparated BCs - Parallel Algorithms

For the meshr, the linear BABD system obtained using any of the basic methods to dis-
cretize the linear ODE of (2..2) with BCs (2..16) has the structure:

ST T X0 f
Sy Ty X1 f5
Ax = : = =b, (5..1)
Sy In XN-1 fn
Ba Bb XN C

whereS;, T; € R™*", x;,f;,c € R™. AssumeN = kp. In all our partitioning algorithms
(except wrap-around partitioning), the block row in (5..1) containing the BCs is temporar-
ily neglected while the remaining block rows are shared among the processorg” The
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processor; = 1,2, ..., p, stores the rectangular blocks 4fin (5..1) associated with the
UNKNOWNSX (; 1)k, X(i— 1) k415 - - - » Xiks

Sti—vk+1 Tli—yks1

Si—le Ti—lk’2
G-nprz Ti-nee 5.2)

Si T;
Using different factorizations, each of the algorithms condenses the system to obtain an
equation for the first and last unknowns corresponding to this block:

VieX(i—1)k + RiXix = G- (5..3)

Combining equations (5..3)= 1,2, ..., p, and the BCs, we obtain a reduced system with
structure (5..1) and with unknowns), x, ..., X,;. The process may be repeated cycli-
cally (that is, recursively) using the same factorization successively ®rp/4,p/8, . . .,
processors, until a suitably small system is obtained. Then one processor is used to com-
pute the direct factorization of the coefficient matrix of this system. An efficient strategy

is to resort to direct factorization when sequential factorization at the current system size
is more efficient than further recursion followed by a sequential factorization of a resulting
smaller matrix, cf. [15,121].

An alternate approach for distributed memory machines always usgspadicessors
performing the same operations [3]. All the processors perform each reduction step; that
is, there is redundant computation on otherwise idle processors. Hence, since quantities
which would otherwise need to be communicated to processors are being computed where
they are needed, the number of communications in the linear system solution phase may
be reduced, actually by a half.

5.1.1. Local LU Factorization In the structured LU factorization [149] and in the sta-
ble local factorization (SLF-LU) partitioning algorithm [84F — 1) LU factorizations are
performed in each block (5..2) on the x n sub-blocks corresponding to

( Tli—1)k+j > .
Sli—1)k+j+1
Consider the first block = 1 in (5..2). The factorization of the first sub-block is
T1 _ Ll
(3)-n(%)n
whereP; € R2"*2" js a permutation matrix andl,,U; € R™*™ are lower and upper

triangular blocks, respectively. (The matricEs here and throughout this section arise
from a partial pivoting strategy.) Thus,

S1 Ty _p Lg U Ty
Sy Ty \S, T Vs Ry )’

Continuing in this way, thg*" LU factorization,j > 2, computes

(58 Yen(E (505
Sit1 Tjna T\ Sj I Vit Rj1 )’
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for rowsj, j + 1. After k£ — 1 sub-block factorizations, the overall factorization of (5..2)
fori =1is

Ly i U T

S2 Lo v Us Ty
Li_1 Vi1 U1 T
Sy 1 Vi Ry,

whereP? € RF*kn is a permutation matrix, the product of the x 2n permutation
matricesP;, j = k — 1,k — 2,...,1, expanded to sizén x kn. Note that fill-in may
occur, represented by the matricgs 7. For examples of this factorization in software
for solving BVODEs, see [15,121].

In subsequent sections, we concentrate on factoring the first block of (5..2) as the process
demonstrated there is simple to generalize to other blocks.

5.1.2. Local QR Factorization Note that here and in the following subsections we use
the names of the blocks in the factorizations generically; the blocks are not the same as
those with the same names in the local LU factorization. Using the QR factorization, the

jth step is
( Vi R; ) ey ( Vi U; T )
Sit1 Tin "\ Vin Rji1 )’

where@; € R?"*?" is orthogonall; is upper triangular and the other blocks are full.
The complete factorization may be expressed in the form

Vi U T
Va Uy Ty
Q i . ;
Vk_ 1 Uk— 1 Tk— 1
Vi Ry,

whereQ € RF"*kn js orthogonal, the product of expanded (to sizex kn) versions of
Qj=k—1k—2.. .1

This algorithm is essentially equivalent to structured QR factorization [147] and SLF-
QR partitioning [84]. It is stable in cases where LU factorization fails but costs twice as
much as LU factorization when LU succeeds.

5.1.3. Local LU-CR Factorization Jackson and Pancer [84] and, independently, K.
Wright [145] proposed combining cyclic reduction with LU factorization. Assuniirig
a power of2, for j = 1,3, ...,k — 1, the factorization is

(5.1 T >:P_<ALj )( Vi U T >
Sjt1 Ty T\ S I Vit Rj

where the blocks have the structure and dimension of the corresponding blocks in Section
5.1.1.. In contrast to the earlier approaches, this involy@ssimultaneous factorizations
which can be distributed acro&g2 processors.
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Using odd-even permutation matricBd’, P, the factorization can be recast as

U1 Vl Tl
Us Vs T3
PPTL Ui Vier T | P, (5.4)
Voo Ry
Vi Ry
Vi Ry,
where
Ly
L3
Ly
£=175 T
Sy I
S, I
is lower triangular and is the product of thé”;, j =1,3,...,k — 1. The same approach
may be applied to the submatrix
Vo Ry
Vi Ry
) (5..5)
Vi Ry
which has structure (5..2) and relates only the even unknewns,, . .., x; . (SetS; =

Vo;,T; = Raj,j = 1,2,...,k/2 and use factorization (5..4) with replaced byk/2.)

From this second step results a structure like (5..5) but of half the size, relating the un-
knownsxg, x4, . . ., xi. After log, k steps of this recursion, there result® & 2 block
system for the unknowns, x;. After solving for these variables the recursion may be
used in reverse to recover the others. As in the earlier algorithms, the recursion may be
terminated before reaching the firalk 2 block system if it would be more efficient to
solve directly a larger system than to proceed further recursively.

5.1.4. Local CR Factorization In [8], the local CR algorithm is proposed applying
cyclic reduction directly to the block (5..2). In the first reduction step,fodd,

(7 st ) (s (0L nn ) 60
Siv1 Tjna Sjp1 1 Vi Tjxa )7
whereS; 1 = S, 17" andVjy1 = —8;415;. The reduced matrix is (5..5) witR; =

T;, which relates only the even unknowns. In (5..6) it is observed that this algorithm is
unstable for several typical BVODEs becauSecan be ill-conditioned, hence (5..5) is
potentially ill-conditioned even when (5..2) is well-conditioned.
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In [7], a local centered CR factorization (CCR) is proposed to maintain stability and
reduce computational cost. Consider the partitioning

Sia - T

S; T Sj2 Tjo
= ’ ) 5.7
< Sjt1 Tj+1> Sjt+11 Tjpaa |’ -7)

Sit12 Tj41,2

thenV; = ( STj’2 ) is a nonsingular square block of the sizeSofandT);. Here,S; 1,
JH1L1

Si2, Tj1, T2, = 1,2,...,k — 1, are rectangular with. columns and with a number

of rows in the rang® to n. (In [7], attempts are made to choose this number to maintain

stability.) The factorization for (5..7) is

Sj2

I, Vi 3

Pl < 5 I ) J Tjt1, P;, (5..8)
A " ‘ ‘/j+1 Rj+1

whereP; € R*"*2" s a permutation matrix,

& _ T ~1 _( Sia 4 Sjy2
%41 = ( Sjj—l,Z )V] (Ve By ) = ( ] Tjy1,2 )_Sj+1< j Tjt1a )

Of courseV; ! is not calculated directly, rather the system is solved$pr,;. From the
second of these equations, we obtain a block matrix (5..5) to which the procedure is applied
recursively. This factorization is the local CR algorithmSif, ; ; is a null block. For the
examples tested in [7], this algorithm is stable in cases where the BIgekand.S; 1 ;

are of equal size, for problems with the same number of BCs at each endpoint.

5.1.5. Local Stable CR Factorization Let

T} L;
=P; A U; 5.9
( Sjt+1 ) ! ( Sj+1 ) ’ -9)

be the factorization of thg!" column of (5..2). Starting fron®; in (5..9), build a permu-
tation matrixP; € R*"*2" such that

_ T. T

P J _ Js
/ ( Sit1 ) §j+1,1
41,2

where the rowsl; ,, S;41,1 contain the pivot elements df;, S;,, respectively. Then,
there is a permutation matrik; € R™*" such that

_( Ti2 \_prq
vV, = < 50 ) = P,L,U;. (5..10)

whereL;, U; are as in (5..9). By factoring as in (5..10), the algorithm proceeds as before.
This algorithm has the stability properties of Gaussian elimination with partial pivoting

[71.
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5.1.6. RSCALE - a Scaled LU Approach Pancer and Jackson [84] give a set of com-
parisons of parallel algorithms for BABDs closely related to the LU and QR algorithms
described earlier. In particular, they describe a new, rather complicated parallel algorithm,
RSCALE. The main difference to the LU approach is that RSCALE introduces a scaling
which ensures numerical stability for a wider class of BABD systems, for details see [84].
Overall in the tests, RSCALE delivers a similar accuracy to QR. but only involves about
a half of the computational cost with a slightly lower memory requirement. The algorithm
RSCALE has been employed in a new parallel versiomiokdc [85].

5.1.7. The Wrap-around Partitioning Algorithm  Following the work in [59], Heg-

land and Osborne [83] recently described a wrap-around partitioning algorithm for BABD
linear systems. An aim of the algorithm is to compute with long vectors. The algorithm
transforms the BABD matrix by partitioning it into blocks that correspond to variables
which can be eliminated independently of the others. After a local QR factorization (cho-
sen on the grounds of stability) similar to that in the local QR factorization, a reduced
BABD system results. The algorithm proceeds recursively. In [83], it is shown that small
block sizes give best performance but that the optimal size depends on the computing sys-
tem. Implementation and testing on a Fujitsu VPP500 vector computer are discussed. See
[83] for details.

5.1.8. Computational Considerations - Parallel BABD Algorithms For simplicity,
consider system (5..1) witlV internal blocks orp processors, wher® = kp, andn is

the size of each internal block (equal to the number of first order ODES). In the following,
we use the acronyms: LU> local LU factorization; QR— local QR factorization; LUCR

— local LU-CR factorization; CR— local CR factorization; CCR- local centered CR
factorization; and SCR- local stable CR factorization. Table 5..1 gives operation counts
for the factorization of the BABD matrix and solution of the BABD system. We have
assumed a parallel solution using a number of processors decreasing/zd¢m the first

step of reduction) to 1 (in the last). Supposing the factorization and system solution are
separate tasks, on a sequential comp(@ef +n)(N + 1) elements of memory are needed

for the BABD matrix. Table 5..2 summarizes the memory requirements. We have assumed
n is large enough so that lower order powersnithan O(n?) may be neglected in the
operation counts. Some of these operation counts are also given in [84,101]. For all of the
parallel algorithms, the number of transmissions is,jog(2n?) + ¢(n)], wheret(k) is

the time for one transmission éfelements. In fact, Table 5..2 underestimates the memory
requirements for a computationally efficient implementation. Keeping rows of successive
blocks stored in consecutive locations in cyclic reduction to avoid communication costs
necessitates usirgn?(N/p + log,p) additional memory locations. Similarly, the LU and

CR based algorithms requige?log,p andn?log,p additional locations, respectively.

Based on flop counts and memory requirements, it is clear that algorithms SCR, CCR,
and CR are to be preferred other considerations being equal. However, CR is often unstable
while SCR is guaranteed stable. Algorithm CCR may be stable but is without guarantees
so should be used with care.

In numerical tests, predictably the CR algorithm has the shortest execution times, but
in most cases the computed solution is incorrect. All other algorithms return approxi-
mately the same relative error. (In the CCR algorithm, one must find an appropriate size for
S;.2,T}.2 to avoid instability.) CCR slightly outperforms SCR in efficiency because pivot-
ing is applied to matrices of smaller size. (Numerical examples and comparisons are given
in [5,6].) Because of the high cost of permutations (operations not included in Table 5..1),
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Table 5..1. Operation counts — nonseparated BCs

Factorization Solution
LU ?Tf(]\f/p +1log,p) | 8n*(N/p + log,p)
QR D0’ (N/p+1log,p) | 15n*(N/p + log,p)
LUCR %ns(N/p + log,p) 8n?(N/p + log,p)
CR Bp3(N/p + log,p)

)

)

5.7 6nj (N/p + log,p)
CCR %n' (N/p + log,p 6n°(N/p + log,p)
SCR %Tﬁ(]\f/p + log,p 6n° (N/p + log,p)

Table 5..2. Memory requirements — nonseparated BCs

LU 4n*(N/p +log,p) + n(N/p + 1)
QR 4n?(N/p +log,p) +n(N/p + 1)
LUCR | 4(n”® +n)(N/p + log,p) + n(N/p + 1)
CR 3n%(N/p +log,p) +n(N/p+ 1)
CCR 3n%(N/p + log,p) +n(N/p+ 1)
SCR 3n%(N/p + log,p) +n(N/p+ 1)

the CR algorithms do not have the predicted computational cost advantage over the LU
based solvers. So, the “best” algorithm cannot clearly be identified simply by considering
flop counts and memory requirements.

5.2. Separated BCs
Asin (2..2), the BCs are

D,y(a) =cq, Dpy(b) =cp, cq€RY ¢, € R (5..11)

Using the meshr and a basic discretization of (2..2), we obtain an ABD linear system, cf.
(2..5):

D, X c,
S1 Ty X1 b,
Sy Ty Xo b,
Ax = ) = =f. (5..12)
Sy In XN-1 by
Dy XN Cp
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For simplicity, assumé&v = kp — 2. The system can be divided inpgparts, assigning the
subsystem

D, X0 Ca
S Ty X1 b;
. = , (5..13)
Si—1 Tr—1 Xk—1 b1
to the first processor, the subsystem
Si—vr Tk X(i—1)k—1 b1k
. . : = : , (5..14)
Sik—1 Tig—1 Xik—1 bir_1
to thei*" processor; = 2,3,...,p — 1, and the subsystem
Sew-vk Tp-1k X(p—1)k—1 b1k
' e = 3 . (5.15)
SN TN XN—-1 bN
Dy, XN Cp

to thept" processor. For each parallel algorithm, local factorizations of these subsystems
produce areduced system with structure (5..12). The difference from the nonseparated case
is that the unknowns, 1, Xox 1, ..., X(p—1)k—1, are involved in the reduced system of
size(p — 1)n.

5.2.1. Local CR Factorization on the Normal Equations In [8], the normal equations
AT Ay = ATt for (5..12) are formed then cyclic reduction is applied to solve the resulting
block tridiagonal system with coefficient matrix

DD, + 5T STT,
TS TIT + ST.5, STy
ATA = .
TE Snvo1 TE \Ty-1+SL,Sy SETwn
TL Sy DI'D,
(5..16)
The condition number afi” A is the square of that of the ABD matri%, which can be a
major drawback for stability.

Though not explicitly stated in [8], ik is a power of 2, cyclic reduction as in [2,7]
does not require communication until the solution phase for the block tridiagonal reduced
system of sizédp — 1)n x (p — 1)n. Thus, the number of communications is reduced to
log, p (and hence is independentiobr n).

5.2.2. Local LU Factorization In [4,126], LU factorization is used on each block of
(5..12). Consider the partition

_( Sia _( Tia
SJ(SJyz)’ T]<Tj,2 ’
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whereS;; and T}, haven — g rows (the number of right BCs). On th&" processor,
1=2,3,...,p— 1, form the partition

Si—vra | Ti—vra

Sti—vk2 | Tli-1k2
Sti—vk+1 Tli—yks1
, (5..17)
Sik—2 Tig—2
Sik—11 | Tik—11
Sik—1,2 | Tik—1,2
and sequentially factorize the internal ABD matrix
Ti—1)k,2
Sti—tyk+1 Tlim1)k41
M, = . (5..18)
Sik—2 Tip—2
Sik—1,1

On the first processor, substitut®, for Ty » in M7, and, on thep'" processor, substitute
Dy for Sy—1,1 in M, then the decomposition is as in (5..17) without the first row/column
for M; and the last row/column fakZ,,. Even if (5..17) is nonsingular, a block in (5..18)
may be singular; this problem may be avoided by using row permutations inside the blocks
Ti—1yr andSi; 1.

In [126], (5..17) is factored

In—g | Tty Sti—1)k,1 Ti—1)k1
Vii—1)k,2 Wi 1)k,2
M; . I(k'fl)n .
‘{ik-m Wik—l,l
Sik-12 | g Sik—1,2 Tig—1,2
(5..19)
In [4], it is observed that the factorization
Si—vrka | Ve Vie—11 | Tik—11 In_4
Sti—1)k,2
Itk—1)n M;
Tik—1,1
Sti—1k2 | Wi—1)k,2 Wik—1,2 | Tik—1,2 I,
(5..20)

produces fill-in of half the size for the rows containifig_,; ; andS;; 1 2.

5.2.3. Computational Considerations - Parallel ABD Algorithms Tables 5..3 and

5..4 give arithmetic costs and memory requirements, respectively, for the ABD linear sys-
tem arising from a BVODE (2..2). We assume that thereMare kp — 2 internal blocks of
sizen x n. We use the acronyms: CR local CR factorization on the normal equations;
LU pg — local LU factorization (5..19); and LWp — local LU factorization (5..20).
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Table 5..3. Operation counts — separated BGdeft hand BCs

Factorization Solution

CR In’(N +2)/p+ Zn’log,p nZ(14(N + 2)/p + 10log,p)
LUpq | (Bn®+ 3qn° — 3¢°n)(N +2)/p+ 2n’log,p |  8n*((N +2)/p + log,p)
LUap | (Xn® —2¢n° + ¢’n)(N +2)/p + Ln’log,p 6n*((N +2)/p + log,p)

Table 5..4. Memory requirements — separated BCs

CR nZ(5(N + 2)/p + 3log,p) + n(N +2)/p
LUpc | 4n?((N +2)/p + log,p) + 2n® +n(N +2)/p
LUap | 3n*((N+2)/p+log,p) —n° +n(N+2)/p

6. Iterative Methods for BABD Systems

Direct methods are clearly the algorithms of choice for ABD systems, where it is easy
to devise approaches which preserve structure and which are stable. For BABD systems,
the choices are less clear. As shown in Section 4.2.1., Gaussian elimination with row in-
terchanges can be unstable and leads to some fill-in (about 50% of the memory needed
for the BABD). Alternative sequential approaches discussed in Section 4.2.2. build in the
fill-in to achieve stability or proceed by a recursive approach whose stability has not been
fully analyzed. Another alternative is to use one of the algorithms for parallel solution out-
lined in Section 5.. These can be implemented sequentially but all involve fill-in, and some
have inferior stability properties. So, given that there are problems of potential instability
and of fill-in with direct methods for BABD systems, iterative methods such as precondi-
tioned conjugate gradients provide an alternative approach, especially since they provide
an opportunity for parallel computation.

6.1. Preconditioned Conjugate Gradients

For large systems (5..1), we consider conjugate gradients (CG) 4samgl.A” in matrix-
vector products. For nonsymmetric matrices, we can apply CG (implicitlydfolx =
ATb or AATw = b (with x = ATw).

In [98,99], CG is applied (implicitly) to the normal equatios§” Ax = ATb using
Algorithm 6.1, a modified version of Algorithm 10.3.1 in [78]. In practice, the number
of iterations is roughly proportional tg/cond(.A” A); see [57]. Numerical tests demon-
strate convergence in the predicted maximun®¢f. V) iterations when solving the nor-
mal equations, [99].

To accelerate the convergence of CG, a preconditidgriés needed to gather the eigen-
values of M AT A near unity. The difficulty lies in finding a preconditioner which per-
mits an efficient parallel implementation. Both the computation and the application of the
preconditioner are crucial to the cost of this algorithm and both are generally difficult to
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| Algorithm 6.1 \
PreconditionetM ~ (AT A)~1,j =0,y = 0,rg = ATb
while ||r;||/||ATf|| > error tolerance

Zj:MI'j; J:]+1

if j =1thenp; =z

elsef; = rjr_lzjfl/rf}ﬂjfzi P =2zj-1+ B;pj-1

Q; = rj—lzj—l/(*Apj) (APJ’)

Xj =X 1+ a;p;ir; =11 — ;AT Ap,
endwhile

parallelize at the block submatrix level.

One possibility uses a factorization of each diagonal blockl6t4, or AA”, as the
(parallel) preconditioner. This converges@in N) iterations, essentially the same as CG,
[97]. Other widely used, general purpose preconditioners are also unsuccessful in improv-
ing convergence.

6.1.1. Approximate Inverse Preconditioner An alternate approach is to investigate
the structure of the (dense) inverse of the mattixn (5..1). Eachn x n block of A~}
depends on every block of. In A~!, the blocks with largest elements are generally not
within the block structure of4, [125]. The distribution of large elements depends on the
ODE and the associated BCs, [99]. For the trapezoidal rule, 4aypnsists of blocks
originating from the discretization of the BVODE. A& — oo, 4 A(z;_1), 4 A(x;) — 0

and we approximatgl by

-1 1
-1 I
Z = " i
—I I
B, By
If (B, + Bp)~! exists, then

—B, —By -B, I
B, —By -B, I
Z-' = diag((B, + By) )| Ba  Ba By, I
Bs By -+ B, I

The approximate inverse preconditioned conjugate gradient algorithm uses the approxi-
mate inverse preconditionev! = Z~1(Z~1T in Algorithm 6.1. It gives remarkably
rapid convergence for many examples. However, it has two disadvantages:

(i) (B, + By)~! must exist, which is untrue in many commonly occurring cases;
(i) no account is taken of the effect of the step sizesor of the behavior ofA(z) with «;
hence this preconditioner can be ineffective for realistic mesh distributions.

Using the constant approximate inverse forces the u¢8pf- B;,) 1.
In [99], approximate inverse PCG is compared with CG and with the structured LU
factorization of [149] on both a Sun 4/490 and a 20 processor Sequent Symmetry (shared
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memory) computer. For the chosen test problems, CG converges as expected. Approximate
inverse PCG converges in a very small number of iterations. It is competitive with struc-
tured LU factorization and can outperform it on large problems when using a large number
of processors. The matri¥ requires only two distinck x n blocks of storage and appli-
cation of 27 Z is easily parallelized. Parallelizing the underlying matrix-vector multiplies

in PCG gives linear speedup when the matrices are assembled in parallel using the same
block structure [98]. This carries over to approximate inverse PCG, which also achieves
close to linear speedup. In [97], the use of better approximatioss émd R; in Z (and

hence the preconditione¥1) is discussed. Though these approximations sometimes lead
to faster convergence, none are uniformly better.

6.1.2. Block Splitting Preconditioner In [43], the condition number of the iteration
matrix is reduced via a splittingl” A = BB + C, where BT B is symmetric positive
definite andC is symmetric. O’Leary [123] suggested splittintf A by placing the BCs

in C then replacing the right BC with the identity to ensure invertibility, giving the splitting
PCG algorithm. Let

So Tpy
S1 T
B= . 6..1)
Svo1 ITn-a
I
Thus, AT A = BTB + C, with
BB, O --- O BB,
O o --- 0O O
C = : Lo : , (6..2)
O o --- 0O O
BfB, O .-+ O BIB,—1I

and rankC) = 2n. The resulting preconditioned system in Algorithm &3f,B8z = r, is
solved in two staged3”w = r, Bz = w, in an obvious block recursive way.

If A =7+ U is symmetric positive definite and rafik) < s, at mostnN — s eigen-
values ofA are unity. HencéB7 B) (AT A) has at least N — s unit eigenvalues [100].

If M(ATA) hass < n(N + 1) distinct eigenvalues, in exact arithmetic splitting PCG
converges irx iterations [43]. Sinc¢BT B) ~1 (AT A) has at moskn + 1 distinct eigenval-

ues, splitting PCG usingt = (B7B)~! converges in at mo2n + 1 iterations. Neither
AT A nor BT B should be formed explicitly; only matrix-vector products withand A”,

or B andB7”, are needed. For computational results for splitting PCG, see [100]. It works
as predicted on many discretized BVODESs but, for savieis ill-conditioned and it does

not converge. Exponential growth factors are observed which compare in size and origin
with those obtained in discretizations of example (4..3).

One of us (GLK) has experimented wigimrpack{73,74] to check the results of splitting
PCG. Sincegmrpackdoes not permit an internal preconditiongr;! is computed and
applied externally. There are differences in convergence behavior between splitting PCG
and the three-step look-ahead CG algorithm implementediirpack particularly:

(i) where splitting PCG converges quickly, so dagerpackusing a similar number of
matrix-vector multiplies;
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(i) where splitting PCG diverges, so dagarpack

(iif) where splitting PCG converges slowlynrpackterminates (seemingly successfully)
after a small number of iterations. The “converged” result has a large residual and the
solution is inaccurate, though the scaled residual used internatiyniogackis small.

7. Conclusions

We have outlined a variety of discretizations of ordinary and partial differential equations
which lead to almost block diagonal and bordered almost block diagonal linear systems,
whose precise form depends on the discretization and the boundary conditions. The so-
lution techniques that we described are designed mainly for the generic problem. Where
a major gain in efficiency is possible, as in a multiple shooting discretization for bound-
ary value ordinary differential equations and in certain partial differential equation appli-
cations, we have discussed how to exploit it. The references include several that describe
software development for almost block diagonal and bordered almost block diagonal linear
systems, and a significant proportion of these have associated publicly available software
for which we have given a source. It seems that sequential algorithms for the generic al-
most block diagonal problem need little further study or software development, but all the
other areas discussed here are still open. As new applications arise, there will be a need to
study the merits of further refinements of the algorithms for these particular cases. Also,
as computers, software components, such as the BLAS, and parallel and object oriented
languages, develop, there will be a need to revisit the analysis and algorithms.

Acknowledgements

The authors acknowledge the invaluable assistance of Karin Remington who provided the figures. We also thank
our colleagues Bernard Bialecki, Patrick Keast, Gerald Moore and Paul Muir for their help in providing infor-
mation used in this paper. The comments of an anonymous referee were particularly helpful in a revision of the
paper

REFERENCES

1. J.S. Albuquerque and L.T. Biegler. Decomposition algorithms for on-line estimation with non-
linear DAE models. Report EDRC 06-192-95, Carnegie Mellon University Engineering De-
sign Research Center, 1995.

2. P. Amodio, L. Brugnano and T. Politi. Parallel factorizations for tridiagonal matrigk&sM J.
Numer. Anal.30, 1993, 813-823.

3. P. Amodio and N. Mastronardi. A parallel version of the cyclic reduction algorithm on a hy-
percubeParallel Comput,. 19, 1993, 1273-1281.

4. P. Amodio and M. Paprzycki. Parallel solution of almost block diagonal systems on a hyper-
cube.Lin. Alg. Applic, 241-243 1996, 85-103.

5. P. Amodio and M. Paprzycki. On the parallel solution of almost block diagonal sys@uns.
trol & Cybernetics 25, 1996, 645-656.

6. P. Amodio and M. Paprzycki. Recent advances in the parallel solution to almost block diagonal

9/8/2006 10:50 PAGE PROOFS nla97-39



Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applicatio@s/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

systems. In Vol. 2 Proc. ICIAM '9%\pplied Analysigeds. O. Mahrenholtz and R. Mennicken).
ZAMM, 76, 1996, 1-4.

P. Amodio and M. Paprzycki. A cyclic reduction approach to the numerical solution of bound-
ary value ODE’sSIAM J. Sci. Comput18, 1997, 56-68.

U.M. Ascher and S.Y.P. Chan. On parallel methods for boundary value QTaEsputing 46,

1991, 1-17.

U.M. Ascher, J. Christiansen and R.D. Russell. COLSYS - a collocation code for boundary
value problems. IrCodes for Boundary Value Problems in Ordinary Differential Equatjons
Springer-Verlag Lecture Notes in Computer Scierié& (eds. B. Childs et al.). Springer-
Verlag, New York, 1979, 164-185. Codelsysis available from libraryodeon netlib.

U.M. Ascher, J. Christiansen and R.D. Russell. Collocation software for boundary value
ODE's. ACM Trans. Math. Soff7, 1981, 209-229.

U.M. Ascher, R.M.M. Mattheij and R.D. Russelumerical Solution of Boundary Value Prob-
lems for Ordinary Differential Equation@nd ed.). SIAM, Philadelphia, 1995.

U.M. Ascher, S. Pruess and R.D. Russell. On spline basis selection for solving differential
equationsSIAM J. Numer. Anal20, 1983, 121-142.

U.M. Ascher and R.D. Russell. Reformulation of boundary value problems into ‘standard
form’. SIAM Rev.23, 1981, 238-254.

G. Bader and U. Ascher. A new basis implementation for a mixed order boundary value solver.
SIAM J. Sci. Stat. Comp9, 1987, 483-500. Codeolnewis available from libraryode on

netlib.

K.R. BennettParallel collocation methods for boundary value problefk.D. thesis, Depart-
ment of Mathematics, University of Kentucky, 1991. Cqusbbpacka parallel implementa-

tion of the SLU algorithm of S.J. Wright [147], is available by anonymous ftp from directory
/pub/karin/pabbpack/ at math.nist.gov. (This version was prepared for parallel processors that
are no longer widely available; it uses machine-specific parallel directives.)

K.R. Bennett and G. Fairweather. A parallel boundary value ODE code for shared-memory
machinesint. J. High Speed Comp4, 1992, 71-86. Codpcolnewis available by anonymous

ftp from directory /pub/karin/pcolnew/ at math.nist.gov. (This version was prepared for specific
shared memory parallel computers which are no longer widely available.)

F.W. Beaufait and G.W. Reddien. Midpoint difference method for analyzing beam structures.
Comput. Struct.8, 1978, 745-751.

D. Bhattacharyya, M. Jevtitch, J.T. Schrodt and G. Fairweather. Prediction of membrane sep-
aration characteristics by pore distribution measurements and surface force-pore flow model.
Chem. Eng. Commum2, 1986, 111-128.

B. Bialecki. An alternating direction implicit method for orthogonal spline collocation linear
systemsNumer. Math,.59, 1991, 413-429.

B. Bialecki. Cyclic reduction and FACR methods for piecewise Hermite bicubic orthogonal
spline collocationNumer. Alg, 8, 1994, 167-184.

B. Bialecki. A fast solver for the orthogonal spline collocation solution of the biharmonic
Dirichlet problem on rectangles. Submitted.

B. Bialecki and G. Fairweather. Matrix decomposition algorithms for separable elliptic bound-
ary value problems in two space dimensiahsComp. Appl. Math46, 1993, 369-386.

B. Bialecki and G. Fairweather. Matrix decomposition algorithms for orthogonal spline collo-
cation for separable elliptic boundary value proble8I&\M J. Sci. Comp16, 1995, 330-347.

B. Bialecki, G. Fairweather and K.R. Bennett. Fast direct solvers for piecewise Hermite bicubic
orthogonal spline collocation equatiol®AM J. Numer. Anal29, 1992, 156-173.

B. Bialecki and R.l. Fernandes. Orthogonal spline collocation Laplace-modified and
alternating-direction methods for parabolic problems on rectanilath. Comp. 60, 1993,
545-573.

B. Bialecki and R.I. Fernandes. An orthogonal spline collocation alternating direction implicit
Crank-Nicolson method for linear parabolic problems on rectan@BsM J. Numer. Anal.
36,1999, 1414-1434

B. Bialecki and R.l. Fernandes. An orthogonal spline collocation alternating direction implicit
method for linear second order hyperbolic problems on rectangles. Submitted.

B. Bialecki and K.A. Remington. Fourier matrix decomposition methods for the least squares
solution of singular Neumann and periodic Hermite bicubic collocation probl&md4 J. Sci.

9/8/2006 10:50 PAGE PROOFS nla97-39



38

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

P. Amodio et al.

Comp, 16, 1995, 431-451.

H-G. Bock. Recent advances in parameter identification techniques for O.DNEinfrerical
Treatment of Inverse Problems in Differential EquatioReogress in Scientific Computing

(eds. P. Deuflhard and E. Hairer) Biiser, Boston, 1983, 95-121.

Z. Bohte. Bounds for rounding errors in Gaussian eliminatibhnst. Math. Appl.16, 1975,
790-805.

C. de Boor. A package for calculating with B-splin€&AM J. Numer. Anal14, 1977, 441-

472.

C. de BoorA Practical Guide to Spling$Springer-Verlag, New York, 1978. Software available

as thespline toolboXrom Mathworks.

C. de Boor and R. Weiss. SOLVEBLOK: A package for solving almost block diagonal linear
systemsACM Trans. Math. Softw6, 1980, 80-87.

C. de Boor and R. Weiss. Algorithm 546: SOLVEBLOKCM Trans. Math. Softw6, 1980,
88-91.

R.W. Brankin and I. Gladwell. Codes for almost block diagonal syst&@osiput. Math Ap-

plic., 19, 1990, 1-6. Cod€01lhfis available in theNAG Fortran 77 library.

J.R. Cash. The numerical integration of nonlinear two-point boundary value problems using
iterated deferred corrections; Part 1: a survey and comparison of some one step formulae.
Comput. Math. Applic.12, 1986, 1029-1048.

J.R. Cash. The numerical integration of nonlinear two-point boundary value problems using
iterated deferred corrections; Part 2: the development and analysis of highly stable deferred
correction formulaeSIAM J. Numer. Anal25, 1988, 862-882.

J.R. Cash, G. Moore and R.W. Wright. An automatic continuation strategy for the solution
of singularly perturbed linear boundary value problethsComp. Phys122 1995, 266-279.
Codecolmodavailable from libraryodeon netlib.

J.R. Cash, G. Moore and R.W. Wright. An automatic continuation strategy for the solution of
singularly perturbed nonlinear boundary value problems, submitted. &mitavailable from
library odeon netlib.

J.R. Cash and A. Singhal. High order methods for the numerical solution of two point boundary
value problemsBIT, 22, 1982, 184-199.

J.R. Cash and M.H. Wright. Implementation issues in solving nonlinear equations for two-
point boundary value problem8&omputing45, 1990, 17-37.

J.R. Cash and M.H. Wright. A deferred correction method for nonlinear two-point boundary
value problemsSIAM J. Sci. Stat. Compl2, 1991, 971-989. Codewpbvpavailable from
library odeon netlib.

P. Concus, G.H. Golub, and D.P. O’Leary. A generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations. $parse Matrix Computations
(eds. J.R. Bunch and D.J. Rose). Academic Press, New York, 1976, 309-332.

K.D. Cooper. Domain-imbedding alternating direction method for linear elliptic equations on
irregular regions using collocatioNumer. Meth. Partial Diff. Equ9, 1993, 93-106.

K.D. Cooper, K.M. McArthur and P.M. Prenter. Alternating direction collocation for irregular
regionsNumer. Meth. Partial Diff. EQu12, 1996, 147-159.

K.D. Cooper and P.M. Prenter. A coupled double splitting ADI scheme for the first biharmonic
using collocationNumer. Meth. Partial Diff. Equ6, 1990, 321-333.

K.D. Cooper and P.M. Prenter. Alternating direction collocation for separable elliptic partial
differential equationsSIAM J. Numer. Anal28, 1991, 711-727.

C. Cyphers and M. Paprzycki. A level 3 BLAS based solver for almost block diagonal systems.
SMU Softreport 92-3, Department of Mathematics, Southern Methodist University, 1992.
Codel3abdsolis available from librarjinalg on netlib.

C. Cyphers, M. Paprzycki and A. Karageorghis. High performance solution of partial differ-
ential equations discretized using a Chebyshev spectral collocation méthedmp. Appl.
Math., 69, 1996, 71-80.

J.C. Diaz, G. Fairweather and P. Keast. FORTRAN packages for solving certain almost block
diagonal linear systems by modified alternate row and column eliminaiolM Trans. Math.
Softw, 9, 1983, 358-375.

J.C. Diaz, G. Fairweather and P. Keast, Algorithm 603:. COLROW and ARCECO: FORTRAN
packages for solving certain almost block diagonal linear systems by modified alternate row

9/8/2006 10:50 PAGE PROOFS nla97-39



Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applicatio@9

52.

53.

54.

55.

56.

57.

58.

50.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.
73.

and column eliminationACM Trans. Math. Softw9, 1983, 376-380.

E. Doedel, H.B. Keller and J. Kernevez. Numerical analysis and control in bifurcation prob-
lems, (1) Bifurcations in finite dimensionbat. J. Bif. Chaos1, 1991, 493-520.

E. Doedel, H.B. Keller and J. Kernevez. Numerical analysis and control in bifurcation prob-
lems, (I1) Bifurcations in infinite dimensionit. J. Bif. Chaos2, 1992, 745-772.

E. Doedel, X.J. Wang and T.F. Fairgrieve. AUTO94: software for continuation and bifurcation
problems in ordinary differential equations. Technical Report CRPC-95-1, Center for Research
on Parallel Computing, California Institute of Technology, 1995. Cad®94and a more
recent versiorauto97are available by contacting the authodatdel@cs.concordia.ca

J. Dongarra, J. Du Croz and S. Hammarling. A set of level 3 basic linear algebra subprograms.
Technical Report ANL-MCS-TM57, Argonne National Laboratory, 1988. The levBLAS

are available ometlib, in the NAG libraries, and, in optimized form, from many computer
manufacturers.

J. Dongarra, J. Du Croz, S. Hammarling and R.J. Hanson. An extended set of FORTRAN
basic linear algebra subprogram&M Trans. Math. Softwl4, 1988, 1-17. The level BLAS

are available ometlib, in the NAG libraries, and, in optimized form, from many computer
manufacturers.

J. Dongarra, 1.S. Duff, D.C. Sorensen and H.A. Van der Vdslving Linear Systems on
Vector and Shared Memory Compute®AM, Philadelphia, 1991.

J. Douglas Jr. and T. Dupor@ollocation Methods for Parabolic Equations in a Single Space
Variable Lecture Notes in Mathemati@85. Springer-Verlag, New York, 1974.

C. Dun, M. Hegland and M.R. Osborne. Stable, parallel solution methods for tridiagonal sys-
tems of linear equations. I6omputational Techniques & Applications: CTAC9&ds. R.L.

May and A.K. Easton). World Scientific, Singapore, 1996, 267-274.

W.R. Dyksen. Tensor product generalized ADI methods for separable elliptic protSéfid.

J. Numer. Anal.24, 1987, 59-76.

W.H. Enright and P.H. Muir. Efficient classes of Runge-Kutta methods for two-point boundary
value problemsComputing 37, 1986, 315-344.

W.H. Enright and P.H. Muir. Runge-Kutta software with defect control for boundary value
ODES.SIAM J. Sci. Comp17, 1996, 479-497.

G. FairweatherFinite Element Galerkin Methods for Differential Equatiohgcture in Notes

Pure and Applied Mathemati@. Marcel Dekker, New York, 1978.

G. Fairweather. A note on the efficient implementation of certaineRadthods for linear
parabolic problemsBIT, 18, 1978, 106-109.

G. Fairweather, K.R. Bennett and B. Bialecki. Parallel matrix decomposition algorithms for
separable elliptic boundary value problemsdomputational Techniques and Applications:
CTAC-91 Proc. 1991 International Conference on Computational Techniques and Applica-
tions, Adelaide, South Australia, July 1991, (eds. B.J. Noye et al). Computational Mathematics
Group, Australian Mathematical Society, Adelaide, Australia, 1992, 63-74.

G. Fairweather and P. Keast. ROWCOL - a package for solving almost block diagonal lin-
ear systems arising iff ~!-Galerkin and collocatiord ~!-Galerkin methods. Technical Re-
port 158/82, Department of Computer Science, University of Toronto, 1982. God®|.fis
available by anonymous ftp from directory /keast/atwdivers at ftp.cs.dal.ca.

G. Fairweather, P. Keast and J.C. Diaz. On fie'-Galerkin method for second-order linear
two-point boundary value problemSIAM J. Numer Anal21, 1984, 314-326.

G. Fairweather, J.C. &pez-Marcos and A. Boutayeb. Orthogonal spline collocation for a
quasilinear nonlocal parabolic problem. Preprint, 2000.

G. Fairweather and R.D. Saylor. The reformulation and numerical solution of certain nonclas-
sical initial-boundary value problemSIAM J. Sci. Stat. Coml2, 1991, 127-144.

R.l. Fernandes. Efficient orthogonal spline collocation methods for solving linear second order
hyperbolic problems on rectanglééumer. Math,. 77, 1997, 223-241.

R.l. Fernandes and G. Fairweather. Analysis of alternating direction collocation methods for
parabolic and hyperbolic problems in two space variablesner. Meth. Partial Diff. EQu 9,

1993, 191-211.

R. Fourer. Staircase matrices and syste®h&M Rev.26, 1984, 1-70.

R.W. Freund, G.H. Golub, and N.M. Nachtigal. Iterative solution of linear systé&wcts. Nu-
merica 1, 1991, 57-100.

9/8/2006 10:50 PAGE PROOFS nla97-39



40

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

P. Amodio et al.

R.W. Freund, M. Gutknecht and N.M. Nachtigal. An implementation of the look-ahead Lanc-
zos algorithm for non-Hermitian matrices. Technical Report 91.09, RIACS, NASA Ames Re-
search Center, Moffett Field, 1991. The caglarpackis available in directorgimr in library

linalg of netlib.

I. Gladwell and R.l. Hay. Vector- and parallelization of ODE BVP codearallel Comput,
12,1989, 343-350.

I. Gladwell and M. Paprzycki. Parallel solution of almost block diagonal systems on the CRAY
Y-MP using level 3 BLAS.J. Comp. Appl. Math45, 1993, 181-189.

I. Gladwell and R.M. Thomas. Efficiency of methods for second order probligv#s.J. Nu-

mer. Anal, 10, 1990, 181-207.

G.H. Golub and C.F. Van LoamMatrix Computationg3rd ed). The John Hopkins University
Press, Baltimore, MD, 1996.

W. Govaerts. Stable solvers and block elimination for bordered sys&i#sl J. Matrix Anal.
Applic, 12,1991, 469-483.

W. Govaerts and J.D. Pryce. Mixed block elimination for linear systems with wider borders.
IMA J. Numer. Anal.13, 1993, 161-180. Codeemwis available from libraryinalg on netlib.

S. Gupta. An adaptive boundary value Runge-Kutta solver for first order boundary value prob-
lems.SIAM J. Numer. Anal22, 1985, 114-126.

R.l. Hay and I. Gladwell. Solving almost block diagonal linear equations on the CDC Cyber
205. Numerical Analysis Report 98, Department of Mathematics, University of Manchester,
1987.

M. Hegland and M.R. Osborne. Wrap-around partitioning for block-bidiagonal linear systems.
IMA J. Numer. Anal.18, 1998, 373-384.

K.R. Jackson and R.N. Pancer. The parallel solution of ABD systems arising in humerical
methods for BVPs for ODEs. Technical Report 255/91, Department of Computer Science,
University of Toronto, 1991.

K.R. Jackson, R. Pancer, and P.H. Muir. Runge-Kutta Software for the Parallel Solution of
Boundary Value ODEs. Preprint, 1999.

A. Karageorghis. The numerical solution of laminar flow in a re-entrant tube geometry by a
Chebyshev spectral element collocation metf@omput. Methods Appl. Mech. Engridg,

1992, 339-358.

A. Karageorghis and M. Paprzycki. An efficient direct method for fully conforming spectral
collocation scheme&Numer. Alg, 12, 1996, 309-319.

A. Karageorghis and T.N. Phillips. On efficient direct methods for conforming spectral domain
decomposition technique3. Comp. Appl. Math.33, 1990, 141-155.

P. Keast. Private communication, 1997; codeanscolrow.f is available at
http://www.mscs.dal.ca/"keast/leq/

P. Keast. Private communication, 1997; codeomplexcolrow.f is available at
http://www.mscs.dal.ca/"keast/leq/

P. Keast and G. Fairweather. Private communication, 1997; taahpak.fis available
http://www.mscs.dal.ca/"keast/leq/

P. Keast, G. Fairweather and J.C. Diaz. A computational study of finite element methods for
second order linear two-point boundary value probledeth. Comp,.40, 1983, 499-518.

P. Keast and P.H. Muir. Algorithm 688: EPDCOL: a more efficient PDECOL cA@®/ Trans.
Math. Softw.17, 1991, 153-166.

H.B. Keller. A new difference scheme for parabolic equationdNimerical Solution of Dif-
ferential Equations - I(ed. B. Hubbard). Academic Press, New York, 1971, 327-350.

H.B. Keller. Numerical Methods for Two Point Boundary Value ProbleBesver, New York,
1992.

H.B. Keller and A.D. Jepson. Steady state and periodic solution paths: their bifurcations and
computations. IlNumerical Methods for Bifurcation Problenfeds. T. Kipper et al.))nter-
national Series of Numerical Mathemati@®, Birkhauser, Boston, 1984, 219-246.

G.L. Kraut. Parallel direct and iterative methods for boundary value probleRts.D. thesis,
Department of Mathematics, Southern Methodist University, 1993.

G.L. Kraut and I. Gladwell. Parallel methods for boundary value problem linear algebra. In
Proc. Sixth SIAM Conf. on Parallel Processing for Scientific Compu®tgM, Philadelphia,
1993, 647-651.

9/8/2006 10:50 PAGE PROOFS nla97-39



Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applicatiodkl

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

G.L. Kraut and |. Gladwell. Iterative parallel methods for boundary value problenioa

Fifth IEEE Symp. on Parallel and Distributed Processi8§AM, Philadelphia, 1993, 134-140.
G.L. Kraut and I. Gladwell. Convergence and instability in PCG methods for bordered systems.
Comput. Math. Appli¢.30, 1995, 101-109.

G.L. Kraut and I. Gladwell. Cost of stable algorithms for bordered almost block diagonal
systems. In Vol. 1 Proc. ICIAM'989Numerical Analysis, Scientific Computation and Computer
Sciencdeds. G. Alefeld et al.)ZAMM, 76, 1996, 151-154.

D.C. Lam.Implementation of the box scheme and model analysis of diffusion-convection equa-
tions Ph.D. thesis, University of Waterloo, Waterloo, Canada, 1974.

M. Lentini, M.R. Osborne and R.D. Russell. The close relationships between methods for
solving two-point boundary value problen&AM J. Numer. Anal22, 1985, 280-309.

M. Lentini and V. Pereyra. An adaptive finite-difference solver for non-linear two-point bound-
ary problems with mild boundary layerSIAM J. Numer. Anal14, 1977, 91-111.

M. Lentini and V. Pereyra. PASVA3: An adaptive finite difference FORTRAN program for first
order nonlinear boundary value problemsCades for Boundary Value Problems in Ordinary
Differential EquationsSpringer-Verlag Lecture Notes in Computer Scienééeds. B. Childs

et al). Springer-Verlag, New York, 1979, 67-88. Cqaiesva3s available asl02rafin theNAG
Fortran 77 library.

B. Li, G. Fairweather and B. Bialecki. Discrete-time orthogonal spline collocation schemes for
Schibdinger equations in two space variabl85AM J. Numer. Anal35, 1998, 453-477.

B. Li, G. Fairweather and B. Bialecki. Discrete-time orthogonal spline collocation schemes for
vibration problems. Submitted.

Z. Lou. Orthogonal spline collocation for biharmonic probleni2h.D. thesis, Department of
Mathematics, University of Kentucky, 1996.

Z. Lou, B. Bialecki and G. Fairweather. Orthogonal spline collocation methods for biharmonic
problemsNumer. Math.80, 1998, 267-303.

N.K. Madsen and R.F. Sincovec. Algorithm 540. PDECOL.: general collocation software for
partial differential equation®ACM Trans. Math. Softw5, 1979, 326-351.

F. Majaess and P. Keast. Algorithms for the solution of linear systems arising from monomial
spline basis functions. Dalhousie University, Computer Science Division, Technical Report
1987CS-11, 1987.

F. Majaess, P. Keast and G. Fairweather. Packages for solving almost block diagonal linear
systems arising in spline collocation at Gaussian points with monomial basis functions. In
Scientific Software Systerfsds. J.C. Mason and M.G. Cox). Chapman and Hall, London,
1990, 47-58.

F. Majaess, P. Keast and G. Fairweather. The solution of almost block diagonal linear systems
arising in spline collocation at Gaussian points with monomial basis funct®a@s! Trans.
Math. Softw. 18, 1992, 193-204.

F. Majaess, P. Keast, G. Fairweather and K.R. Bennett. Algorithm 704: ABDPACK and ABB-
PACK, Fortran programs for the solution of almost block diagonal linear systems arising
in spline collocation at Gaussian points with monomial basis functié@M Trans. Math.
Softw, 18, 1992, 205-210. Revised co@dddpack.favailable by anonymous ftp from direc-
tory /keast/abdsolvers at ftp.cs.dal.ca, solves a wider range of problems than the published
ABDPACK.

S. A. V. Manickam, A. K. Pani and S. K. Chung. A second-order splitting combined with
orthogonal cubic spline collocation method for the Rosenau equatiomer. Methods Partial

Diff. Equ, 14, 1998, 695-716.

A. V. Manickam, K. M. Moudgalya and A. K. Pani. Second-order splitting combined with
orthogonal cubic spline collocation method for the Kuramoto-Sivashinsky equé&t@nput.

Math. Appl, 35, 1998, 5-25.

R.M.M. Mattheij and S.J. Wright. Parallel stable compactification for ODE with parameters
and multipoint conditionsAppl. Numer. Math.13, 1993, 305-333.

G. Moore. Computation and parametrization of periodic and connecting dNd#s]. Numer.
Anal.,15, 1995, 245-263.

G. Moore. Geometric methods for computing invariant manifoldspl. Numer. Math.17,

1995, 311-318.

P.H. Muir.Implicit Runge-Kutta methods for two-point boundary value probldéthsD. thesis,

9/8/2006 10:50 PAGE PROOFS nla97-39



42

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

P. Amodio et al.

University of Toronto, Department of Computer Science, Technical Report 175/84, 1984.
P.H. Muir and K. Remington. A parallel implementation of a Runge-Kutta code for systems of
nonlinear boundary value ODESong. Numer.99, 1994, 291-305.

T.B. Nokonechny, P. Keast and P.H. Muir. A method of lines package, based on monomial
spline collocation, for systems of one dimensional parabolic equatiohsirrerical Analysis,

A.R. Mitchell 75th Birthday Volumgds. D.F. Griffiths and G.A. Watson). World Scientific,
Singapore, 1996, 207-223.

D.P. O’Leary. Private communication.

R.N. Pancer and K.R. Jackson. The parallel solution of almost block diagonal systems arising
in numerical methods for BVPs in ODEs. Rroc. 15" IMACS World Cong.\Vol. 2. Berlin,

1997, 57-62.

M. Paprzycki.Parallelization of boundary value problem softwaRh.D. thesis, Department

of Mathematics, Southern Methodist University, 1990.

M. Paprzycki and I. Gladwell. Solving almost block diagonal systems on parallel computers.
Parallel Comput.17, 1991, 133-153.

M. Paprzycki and I. Gladwell, Solving almost block diagonal systems using level 3 BLAS. In
Proc. Fifth SIAM Conf. on Parallel Processing for Scientific ComputBig\M, Philadelphia,
1992, 52-62.

R. Pozo and K. Remington. Fast three-dimensional elliptic solvers on distributed network clus-
ters. InParallel Computing: Trends and Applicatiorfeds. G. Joubert et al.). Elsevier, Ams-
terdam, 1994, 201-208.

J.K. Reid and A. Jennings. On solving almost block diagonal (staircase) linear syAeMs.
Trans. Math. Softw10, 1984, 196-201.

M. P. Robinson. Orthogonal spline collocation solution of nonlinear &tihger equations. In
Mathematics of Computation 1943—-1993: a half-century of computational mathepfatics
Sympos. Appl. Math48, Amer. Math. Soc., Providence RI, 1994, 355-360.

M. P. Robinson. The solution of nonlinear Sétinger equations using orthogonal spline col-
location. Comput. Math. Appl.33, 1997, 39-57. [CorrigendunComput. Math. App).35,

1998, 151].

M.P. Robinson and G. Fairweather. An orthogonal spline collocation method for the numerical
solution of underwater acoustic wave propagation problemSolmputational Acousti¢8/0l.

2, (eds. D. Lee et al.). Elsevier, Amsterdam, 1993, 339-353.

M.P. Robinson and G. Fairweather. Orthogonal cubic spline collocation solution of underwater
acoustic wave propagation problerdsComp. Acoustl, 1993, 355-370.

M.P. Robinson and G. Fairweather. Orthogonal spline collocation methods fopdbuger-

type problems in one space variatiNumer. Math,. 68, 1994, 355-376.

W. Sun. Orthogonal collocation solution of biharmonic equatiémigrn. J. Computer Math.

49, 1993, 221-232.

W. Sun. A high order direct method for solving Poisson’s equation in a Nismer. Math, 70,

1995, 501-506.

W. Sun. lterative algorithms for orthogonal spline collocation linear syst&sM J. Sci.
Comput, 16, 1995, 720-737.

W. Sun. Block iterative algorithms for solving Hermite bicubic collocation equati®sMm J.
Numer. Anal.33, 1996, 589-601.

W. Sun. Fast algorithms for high-order spline collocation systévusner. Math,. 81, 1998,
143-160.

W. Sun and N.G. Zamani. A fast algorithm for solving the tensor product collocation equations.
J. Franklin Institute 326, 1989, 295-307.

M. van Veldhuizen. A note on partial pivoting and Gaussian eliminatdumer. Math, 29,

1977, 1-10.

J.M. Varah. Alternate row and column elimination for solving certain linear syst8hdJ J.
Numer. Anal.13, 1976, 71-75.

R. Weiss. The application of implicit Runge-Kutta and collocation methods to boundary value
problemsMath. Comp,.28, 1974, 449-464.

K. Wright. Some relationships between implicit Runge-Kutta, collocation and Lanoxneth-

ods and their stability propertieBIT, 20, 1970, 217-227.

K. Wright. Parallel treatment of block-bidiagonal matrices in the solution of ordinary differ-

9/8/2006 10:50 PAGE PROOFS nla97-39



Almost Block Diagonal Linear Systems: Sequential and Parallel Solution Techniques, and Applicatiods3

ential boundary value problem&.Comp. Appl. Math45, 1993, 191-200.

146. R.W. Wright, J. Cash and G. Moore. Mesh selection for stiff two-point boundary value prob-
lems.Numer. Alg, 7, 1994, 205-224.

147. S.J. Wright. Stable parallel algorithms for two-pointboundary value probl&i#gv J. Sci.
Stat. Comp.13, 1992, 742-764.

148. S.J. Wright. A collection of problems for which Gaussian elimination with partial pivoting is
unstableSIAM J. Sci. Stat. Compl4, 1993, 231-238.

149. S.J. Wright. Stable parallel elimination for boundary value ODN8mer. Math,. 67, 1994,
521-536.

150. S.J. Wright and V. Pereyra. Adaptation of a two-point boundary value problem solver to a
vector-multiprocessor environme@lAM J. Sci. Stat. Comydl1, 1990, 425-449.

151. P.Y. Yalamov and M. Paprzycki. Stability and performance analysis of a block elimination
solver for bordered linear systendIA J. Numer. Anal.19, 1999, 335-348.

9/8/2006 10:50 PAGE PROOFS nla97-39



