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Solving Structured Matrix Problems
on a Cray Vector-Computer !

M. Paprzycks *, C. Cwﬁem "

Prescnded by Bl Sendov

Block structured inatrices arise from dincrelizations of & number of maihemalical prob-
lems. Since they may need Lo be dealt with inside ench step of an iterative jrocess or by indi-
vidual processors of a parallel computer, it is very important to solve them efficiontly. A level 3
BLAS based library of subroutines performing basic operations {multiplication, [sctorisation
and back substitution) is presented. The efficiency of individual subroutines is examined and
compared to that of the banded solver.
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1. Introduction

Block structured matrices (block bidiagoual, block tridiagonal and al-
most block diagonal) arise from the discretization of a number of mathematical
problems [1, 8, 14, 15, 16, 17]. There exist at least two situations when the
efficiency of operations on such matrices is of oxtreme importance, Firat, in
the case of non-linear problems block structured matrices may be factorized in
each atep of an iterative process. For instance, in the case of 3 Newton-type
iteration the linear system solution is the most costly part of the algorithm, so
any performance gain in this step will substantially reduce the total solution
time [8). Second, a number of tearing-type strategies have heen designed to
solve block structured linear systems on parallel computers [1, 2, 4, 10, 17],
In these methods, each processor solves a smaller problem which has the samne
striucture as the original problem. It is thus extremely important to have an
efficient solver to perform factorizations on individual processors as this is the
only way to achieve overall high efficiency of parallelization.

1A computer time grant from the NPACI in Awstin is kindly u:knuwlédgeﬂ.
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In this paper, we will introduce a level 3 BLAS [5] based library of algo-
rithms designed to perform basic numerical operations on three classes of block
structured matrices: block tridiagonal, block bidiagonal and almost block diag-
onal, The library consists of & matrix-matrix multiplication routine (for normal
and transposed matrices), a Gaussian elimination based decomposer (where spe-
cial care has been taken to avoid fill-in) and a back solver (for the normal and
transposed system). The library has a unified, LAPACK [3} based interface.
Since each of the three matrix structures can be enclosed in a banded structure
we have compared the efficiency of the new methods with the application of
this technique. The performance characteristics have been studied on a Cray
J-216 supercomputer. It is a small air-cooled version of the Cray Y-MP archi-
tecture. Lach processor is a vector-processor capalle of dolivering 200 MFlops
of theoretical peak performance. It was found that Tor mateix multiplication,
when the level 3 BLAS routine SGEM M is used, a practical peak performance
of 195 MFlops can be reached (see also [12]}). In our experimoents optimized
BLAS andfor LAPACK kernels provided hy the SGI Cray Computer were
used. Timings were obtained using the per ftrace utility. All resuits presented
are averages of multiple runs.

2. Matrix multiplication

Ior all three structured matrices matrix muliiplication is performed as a
series of calls to the level 3 BLAS matrix multiplication routine SGEM M 3,
5). For the transposed matrix the transpose option of the SGEM M is used.
Due to the special floating point arithmetics aipported by the Cray computers
(single precision results in 14 digits of accuracy and is hardware supported;
double precision is software emulated) single processor BLAS ketnels have been
uscd. However, the library contains both single and double precision routines.

The firat series of experiments was performed for the matrix-vector mul-
tiplication. We have observed the effects of increasing the block size n on the
performance, The results for m = 400 row blocks and 1 = 2,3,...,30 are sum-
marized in Figure 1. It should be noted that almost hlock diagonal talrices arise
most often when boundary value ordinary differential equations (VP ODE's)
are discretized [14, 15]. It was thus assumed that finite differences liave been
applied to a BVP ODE leading to a system wliere cacl block is of the same size
2xcept the first and last blocks which represent boundary conditions. We ex-
perimented with two extreme cases: when boundary conditions are cqually split
hetween left and right (denoted as "1n/2”) and when all boundary conditions
dut one are on the right (denoted as "1").
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Figure 1, Matrix-vector multiplication; block tridiagonal matrices {B3'1'1)),
block bidiagonal matrices (BBD) and almost block diagonal matrices {ABD);
transposed multiplication denoted by ('T'); lixed m; resulis in M PFlops

‘I'he results presented above, as well as i additional experiments, indicate
that matrix-vector multiplication reaches approximately 120 M Flops (see also
[13]). This is about 62% of the Cray’s practical peak performance ol 195 MFlops
[12]. This should be expected, as matrix-vector multiplication is a level 2 BLAS
operation and thus less cfficient than level 3 BLAS operations [7, [, 12]. The
transposed multiplication is slightly less eflicient becaunse of the dala access
patterns. [inally, for all three block structures, the performance is independent
of the number of row blocks {m).

The situation changes when the Cray-optimized level 2 LAYS banded
matrix-vector multiplier (routine SGBAMV} is nsed. Before we proceed further
it should be pointed out, that the LAPACK Dbanded routines uze a dilferent
data storage scheme than the one proposed in the library, The library routines
follow the block-orientation of the underlying matrices wlhile the banded routines
are vector-orienteg, storing the main diagonal and each sub- and super-diagonal
of the handed matrix as a vector of length equal o the gize of the matrix, "I'his
difference effects the performance of the matrix operations. The performance of
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the matrix-vector multiplication, for the matrix of handwidth ¢ = -, increases
from 40 MI'lops for the matrix of order 100 Lo about 120 M Ilops for the masrix
of order 800, The performance reaches 170 M Ilaps for mairices ol order 2800
and bandwidith ¢ = 18, This makes the handed approach significantly more
eflicient (for small blocksizes) than the block-oriented approaches even though
the banded madtiplier performs a larger number of arithmetical operations. The
limes of the banded and block-oriented approaches hecone comparable only
for the largest blocksizes reported above (#» = 30). The block-oriented ap-
proaches become more efficient due to the increase of the perlormance related
to the increase of the size of the individual blocks. In addition, the performance
(compared to the banded approach) improves as no arithmetical operalions are

perlormed outside of the hlock structure.
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Figure 2. Block tridiagonal matrix-inatr s Wiliplication: fixed # and ™;
ncreasing k; results in MVlops

Lhe second series of experiments investipated the changes in Lhe perfor-
mance claracteristics of the multipliers when the matrix-vector mult; plication
becomes matrix-matrix multiplication {we multiplicd matrices M x H, where M
is block (ridiagonal of size mn x mn wlhile B is donse of size mn x A}, Lb should
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be pointed out here that in the LAPACK library there is no level 3 BLAS
banded matrix multiplication routine so no appropriate comparison could have
been made, Figure 2 illustrates the effect of increasing & from 1 to 30. The
results (in MFlops) arc presented for n = 2, 14,26 and m = 400. Results for the
block bidiagonal and almost block diagonal matrices were quite stmilar and are
therefore amitted.

For all three block structures the efficiency of matrix-matevix multiplica-
tion increases rapidly even for small values of k. For small o, multiplication
reaches about 80% of its peak performance for b < 25, As » increases the value
of k needed to reach the 80% of the peak performance decreases and becomes
as small ag 10 for n = 26. We have also observed that as the number ol colnmns
of B increases, the dillerence between the performance of normal and trans-
poscd multiplication disappears. We have experimented with inalrix-matrix
multiplication, where B is a full matrix and increased the block size n. The
performance steadily increased from about 18 MI'laps for u = 2, 1o |87 MIFlops
for approximately n = 40 where it stabilized {veaching O6% of Lhe practicat peak
performance). Finally, as was the case for matrix-vector multiplication, that the
number of blocks (m) has almost no effect on the perlonnance.

3. Matrix factorization

We consider the solution of a linear system Mz = b, where the matrix
M is block structured. The matrix M is [actorized using a hocked version
Gaussian elimination which has been modified to match the particutar block
structure to avoid generating fill-in, The algorithms consist ol a sevies of calls
to the LAPACIK routine SGET RI (performing LU decompaosition), and level 3
BLAS routines ST RSM (performing back substitution for multipte right hand
sides) and SGEMM (performing matrix-matrix mulliplication). 'I'he details of
such block decompositions can be found in [1, 6, 13, 14, 15, 16]. The stability
analysis of these algorithms was developed by Varah {15, 16]. ln general, his
results indicate that in the case of almost block diagonal systems the block
algorithm is as stable as Gaussian elimination with partial pivoting. lor the
block bidiagonal and block tridiagonal matrices the decomposition is stable if
the mairices are block diagonally dominant,

Figure 3 presents the performance of the factorization routines for all
three matrix structures. In the case of block bidiagonal and block iridiagonal
maltrices the performance ol decomposers with row and colann pivoling is pre-
sented (indicating the column-pivoting version with "(¢)”}. As above, for the
almost block diagonal systems two cases corresponding to two cxtreme distri-
butions of boundary conditions are presented. The results for e = 100 block
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rows and for the blocksize # increasing from 2 o 30 are reported in M Flops.
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Figure 3. Malrix factorization; fixed we; increasing 23 results in M 1Plops.

I'he factorization routines are mach less eflicient than matrix multipli-
cation. As the block size increases the efficiency of factorization imiproves from
0.8 MFiops for » = 2 to about 30 MFlops for almost bloek diagonal matrices
and to approximately 70 MFlops for block tridiagonal matrices for » = 30, This
can he explained by the fact that the almost block diagonal decomposer is effec-
Lively operating on blocks half the gize of the blocks in the remaining algarithms
(see [6, 13, 14] for more details). Both the row- and column-oriented versions
behave similarly while the effect of unbalanced boundary conditions are clearly
vigible Tor the almost block diagonal matrices. Qur experiments indicate that,
as before, the number of block rows m has almosi no offect on performance,

Due to the objectivity considerations the comparison with Lhe banded
approach is slightly more difficult. The LAPACK library contains the routine
SG TR which computes an LU factorization of 2 banded matrix. T'lis routine
uses pivoting and row interchanges to assure stability, This means that fill-
in {of the size of the upper bandwidth) is gencrated and additional arithmetic
operations are performed. Since pivoting is performed also by 1lie block-oriented
algorithms it seems to be fair to make a straightforward comparison with the
block orientied algorithms. It is assumed that the additienal operations is the
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price that one has to pay for using the library "black-hox™ software. In Table |
we compare the time it takes for the block tridiagonal and bauded approaches
lo factorize a matrix of size mn where m = 400 and » = 2,6, 10,141, 18. The
results Tor the remaining two block strnctures are similar and are thus omiited.

14 I8

0.0168 |  0.071
BTD U-OSZIJr 0096 0.156] 0.226] 0316

Ratio 0.3225| 0.738| 1.006 1.212 1.392

Table 1. Matrix factorization; comparing block tridiagonal and banded
approaches; m = 400; time in seconds.

It can be observed that lor narrow matrices the banded approach eutper-
forms the block oriented algorithm but as the bandwidth increases the situation
reverses. Ilor the largest blocksize reported here {n = 30) tle block oriented
approach becomes twice faster than the banded routine,

4. Back substitution

The back substitution consists of a numbor of calls to the level 3 BLAS
rotttine SRS M. lor the block tridiagonal and block bidiagonal matrices there
are [our versions of back solvers corresponding to standard aud Lransposcd so-
lution for the row and column pivoting strategies. Since no perlortance dif-
ference was observed between the row aund column oriented versions unly the
row oriented results will be reported. The first serics of experiments studied the
performance of back solvers for m = 400, one right hand side, and jnereasing
block size n = 2,3,...,30. The results (in MTFlops) are presented in Mignre 4.

As the block size increases the performance of the back solvers improves
from 1.2 MFlops for n = 2 to between 8 and 1.l MIFlops for » = 30. The per-
formance is relatively low for two reasons. 1Mirst, tle sizes of individual blocks
are relatively small. Second, for one right hand side the performance the level 3
BLAS routines is effectively reduced to that of loevel 2 BLAS kernels. All back
solvers behave similarly independent of their particular block structure. The
comparison with the banded approach (LAPAC K routine SGBT'RSY) is, for the
reasons staled above, relatively complicated. Tt has been observed that wlile the
straightforward backsubstitution is substantially faster than its blocked coun-
terpart, the transposed backsubstitution runs at about the same speed as (he
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block-oriented routines, This situation changes when multiple right hand sides
are considered, Here, even though the banded solver SGBTRS allows for the
solution for the multiple right hand sides, no performance gain from moving
from level 2 to level 3 BLAS has been observod. This is not the case for the
block-oriented algorithins. Figure 5 summarizes the performance vesults for the
back solvers {for the block bidiagonal matrices (similar behavior lias heen ob-
served for the remaining block structures) for » = 2,14,26, m = 100 and an
increasing nuinber of right hand sides RH S = 1,2,...,30.
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Figure 4. Back substitution; one right land side; fixed m: increasing n;
results in MFlaps.
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Figure 5. Back substitution; fixed m; tnereasing the number of right hand
sides RHY; results in MIlops.

The results are somewhat similar to these presented on Figure 2: lowever,
the performance gain from moving from level 2 to level 3 BLAS is loss immediate
for small values of RITS. Surprisingly, the transposed version of (e solver
s more efficient. This can be attribuied to the imbalance in the structure
of the block hidiagonal matrix. For the block tridingonal and alnost hlock
diagonal (for the balanced boundary conditions) solvers the performance in cases
of standard and transposed backsubstitution was almost ideatical. Since the
banded solver has not provided any performance gains lor mdtiple right lrand
sides, it has been outperformed by the block-oriented solvers,

8. Conclusion

A library of subprograms for performing operations on hlock stractured
matrices has been presented and its perlormance compared to the usage of
black-box BLAS/LAPACK based routines. The results of comparisons are
mixed. For very narrow block structures the application of highly optimized
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vector-oriented banded routines seems to be the best solution. As the hlocksizes
increase the block oriented algorithms outperforin the banded approach. This is
especially important when, for instance, the spectral methods are applied to the
solution of partial differential equations on rectangular domains [8, 9]. Here the
linear systems consist of a moderate number of large blocks and the information
about the matrix structure has to be utilized to achieve an efficient solution to
the problem.

In the next step we plan to experiment with the RISC-hasced supercom-
puters and see how much of the performance characteristics is related to the
specific optimizations provided in Cray’s scientific computing lbrary.
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