
Cluster Computing Facilities in a

Service-Oriented Architecture

Dana Petcu1,2, Marcin Paprzycki3,5, and Maria Ganzha4,5

1 Computer Science Department, Western University of Timi³oara,
2 Institute e-Austria Timi³oara, Romania

petcu@info.uvt.ro
3 Institute of Computer Science, SWPS

4 Elbl¡g University of Humanity and Economics
5 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland

{maria.ganzha, marcin.paprzycki}@ibspan.waw.pl

Abstract. When considering the development of the grid as the uni-
versal computing infrastructure, one of the important issues that has to
be faced is �porting� legacy codes to the grid. In this paper an approach
to wrapping cluster codes as grid services using the latest generation
of grid middleware is analyzed. This approach was derived from several
experiments of wrapping legacy codes. The application-depend parts of
the wrapper are discussed and communication templates are presented.

1 Introduction

Grid computing is sometimes confused with cluster computing. The key dif-
ference is that a cluster is a single set of computer nodes, residing in a single
location, while the grid is composed of a variety of resources that can be (and
most often are) geographically distributed. Among these resources there could
be single-processor computers, data repositories and cluster computers. While
there are di�erences between grids and clusters, it is already clear that there
always going to be a signi�cant relationship between them: within grids there
always will be a place for computer clusters. There are at least two reasons for
this. First, certain classes of problems will always require a relatively tight cou-
pling of processors. Second, cluster computing is one of the most price-e�cient
ways of building powerful computers with large amounts of available memory
(computational power and the total amount of available memory are the two
main reasons for parallel computing; see for instance [12]). However, it can be
already observed that as capabilities and in particular bandwidth of existing
computer networks advance, problems that were previously the exclusive do-
main of cluster computing become solvable also utilizing grid computing. At the
same time, advances in grid computing will result in constant increase in the
total number of problems that utilize cluster nodes made available as services
within grids.

In this context we would like to specify that an application is grid-enabled
when it can run in a grid. According to [3] there are six path/strategies for grid

application enablement (and, in particular, for grid-enabling cluster comput-
ing codes): (1) batch anywhere; (2) independent concurrent batch; (3) parallel
batch; (4) service; (5) parallel services; (6) tightly coupled parallel programs.
Those strategies start with the simplest case of running a given code somewhere
within a grid, and end with the most complicated option of fully exploiting the
grid as a computational infrastructure treated as a parallel computer. Approach-
ing it from a slightly di�erent angle, the �rst two strategies focus on the ability
of an application to run within a grid, the next three signi�cantly adapt the
function and value of the application by enabling it to use a grid without re-
quiring signi�cant changes that are speci�c to the grid middleware, while the
latest one explicitly exploits advanced features of the grid infrastructure for its
operation.

In this paper we are interested in the fourth and �fth strategies allowing
the transition of cluster computing codes from a batch to a service-oriented
architecture. In the fourth path, the client uses the grid middleware to invoke the
service that further calls the service that is structured to be callable (typically as
a class). In this case the client and the server are loosely coupled. Furthermore,
the same service can be shared among multiple independent clients and can
maintain its state between calls. However, it is the �fth strategy that provides
multiple service instances and permits these instances to be callable in parallel
on client's behalf. It is this path that is of particular interest of ours as it is the
way in which most successful (from the point of view of resulting computational
e�ciency) transition of legacy cluster codes into the grid can be expected.

Let us now focus our attention on service oriented computing. The OASIS
organization [11] de�nes the service oriented architecture (SOA) as follows: a
paradigm for organizing and utilizing distributed capabilities that may be under
control of di�erent ownership domains; SOA provides uniform means to o�er,
discover, interact with and use capabilities to produce desired e�ects consistent
with measurable preconditions and expectations.

The attraction of the SOA is that it builds on concepts of reusable soft-
ware components, while emphasizing the service abstraction. This means that
ideally, SOA services are interoperable, reusable, independent, stateless and au-
tonomous. Furthermore, to enable interoperability, services should be compos-
able, loosely coupled, and standards compliant. In the SOA environment, re-
sources available across a network are made available as independent services
that can be accessed without knowledge of their underlying platform imple-
mentation. The primary focus of the SOA latest developments is on dynamic
recon�guration of services, and on developing business services based on Web
services and, more recently, on grid services. It is the latter point that is of our
interest in this paper. Let us therefore brie�y underline some of the bene�ts of
using grid services (rather than Web services):

� grid services are statefull�output may depend on the history of its calls (this
fact can be exploited as it is demonstrated in the third example presented
in the next section);

� service is named by a service handle that does not provide information like
the location, implementation, or status of the service;

� dynamic discovery and monitoring of the services can be achieved;
� grid services are instantiated by factories that can implement a load balanc-
ing strategy;

� grid services provide a natural solution to the problem of resource recla-
mation (associated with services in the event of failures or lack of interest
by any relevant clients); speci�cally, time can be set when a speci�c service
will self-destruct unless kept alive by subsequent increases in its termination
time; the service instance does not need to be explicitly destroyed, since it
will be terminated automatically.

In this context, our aim is to introduce our approach to wrapping cluster
codes as grid services using the latest generation of grid middleware. In the next
section we present an overview of our proposal. We follow with an analysis of
parts of the wrapper that are application-dependent and illustrate them using
three di�erent grid-implemented examples. Finally the standardization of the
client code is taken under consideration. Here, we introduce the recently pro-
posed ACliGs toolbox and illustrate its usage when wrapping [17], a software
toolbox for the numerical solution of partial PDEs.

2 Wrapping a cluster-based code as grid service

To be able to expose legacy (cluster) codes as grid services they have to be ap-
propriately wrapped up. Recently, some tools have been developed to automate
the deployment of legacy codes into the grid (e.g. GEMLCA [2]). Unfortunately
few of these tools support the last generation of grid middleware.

Using the latest version of Globus Toolkit the task of wrapping (parallel)
legacy codes is simpli�ed. Performing such a wrapping task for several codes, a
template for time-steps and communication can be gradually revealed. In what
follows we present such a template. Figure 1 describes a simple approach. The
parallel legacy codes are represented in this �gure by the service components.

Let us now describe the process depicted in Figure 1. The client knows the
address of a register of services and queries it about a speci�c (cluster) service.
The service register sends back the address of the service factory that matches
the query. The client contacts the service factory and requests a service instance.
The service factory creates an instance of a service interface. Then the client
sends to the interface starting parameters (e.g. names of input �les) needed by
the remote code�in our case a cluster code. The service interface will launch
the code of interest, and:

� if the code will run on the server, then the code will be launched by a thread
of the service interface;

� if a cluster scheduler is installed on the server in conjunction with the grid
middleware, then the code will be launched on the cluster by the scheduler
that is called by a thread of the service interface;

Fig. 1. Time steps and communications necessary in order to perform cluster opera-
tions

� if no scheduler is installed and the server is not part of the cluster, but lies
in the same security domain as the cluster, the remote code can be invoked
through classical rsh/ssh commands by a thread of the service interface.

At this stage the service interface will establish the necessary communication
channels with the (cluster) code.

There are two types of possible interactions with the remote code:

non-interactive mode: the code receives the inputs sent by the service inter-
face, executes, sends back results, and stops (top part of Figure 1);

interactive mode: the code is activated by the service interface and waits the
inputs on the communication channels from the service interface; it stops
only when the input coming from the service interface requests it (bottom
part of Figure 1).

Note that the service interface and the client should include facilities for
secure �le transfers (e.g. input �les for simulation codes).

When using the latest version of the Globus Toolkit, the client, the factory
service, and the service interface are almost generic for all of the above described
cases. Therefore, we concentrate our attention and in the next sections discuss
those parts that are application-dependent.

3 Examples of service interface description

As mentioned above, the service interface consists of two parts. One is appli-
cation-independent while the other important part is application-dependent. We
will illustrate di�erences between these two parts in three case studies where:

1. the service interface is playing the role of the work distributor, and the
service components are codes that are running independently of each other
(embarrassing parallelism);

2. the service interface activates the (parallel) code in a non-interactive mode;
3. the service interface activates the (parallel) code in an interactive mode.

In these three examples di�erent styles of communication between the service
interface and the service components (application-dependent) were tested: com-
munication through exchange of �les, through a noti�cation service, and through
sockets.

3.1 Parallel image processing

Let us consider the case of applying a decision tree-based classi�cation algorithm
to a large image �le. If the test image is a (high resolution) satellite image, the
classi�cation algorithm running on a typical current desktop computer will take
several minutes to complete. The same computation can be done much faster on
a cluster computer. Furthermore, an almost ideal speedup can be attained since
the image can be cut into smaller pieces, and then the algorithm can be applied
to each image fragment independently in parallel. Output of each part is a new
sub-image, and the �nal classi�cation image is obtained by merging these small
output images.

The service interface in this case will play the role of (a) splitting the image to
be processed into smaller sub-images, (b) launching several service components
(on separate cluster nodes) that are applying the classi�cation algorithm, and
(c) merging the processed image-pieces into the �nal result.

We have tested the architectural approach using GIMP [6] as the service
component. GNU Image Manipulation Program, shortly GIMP, is a freely dis-
tributed software designed for image processing tasks, like image composition.
GIMP can be run in a non-interactive mode (using appropriate scripts), which
is useful when remote processing is needed.

Factory and interface services and the client were constructed as generic as
possible. In this way also other image processing algorithms can be applied in the
proposed solution (the GIMP library can be simply replaced by another image
processing library). Client inputs (to be send to the service interface) consist of
the following:

1. an image reference;
2. number of image parts;
3. a GIMP script-�le to be applied on each image part.

In our work, we have considered the simplest case when the cluster has NFS
directories and the image to be processed is located somewhere within those
directories. Therefore the image reference is pointing to the speci�c �le location.
The script-�le is located on the user side and it is transferred into the cluster
using the gridftp component of the Globus Toolkit (as parts of the client and
service interface codes). Optionally, if necessary, the initial image and the �nal
image can be transferred to and from the cluster's NFS directories (to the client
desktop or to any remote machine). The only di�erence will be the total pro-
cessing time as an extra staging and post-processing data transfer times will be
required.

After the script is received from the client, the service interface (running
on a web server) splits the speci�ed image into a prede�ned number of parts,
launches the requested number of GIMP servers in the non-interactive mode�
each on a single remote node of a local cluster (using ssh), specifying the name
of the (small) image �le and also the script �le to be applied to it. Note that here
we assume that each node of the cluster is a single-processor node. In the case
when cluster nodes were multi-processor and/or multi-core then an appropriately
larger number of GIMP services per node would be started. The service interface
starts the composition of the output image as soon as processed sub-image parts
are available (here, communication is achieved through �le transfer).

Services used in this application, the web-based client, and the test results
were described in more details in [15]. Here we will only mention that an e�ciency
of 62% on 9 processors was achieved.

3.2 Parallel simulation

Let us now consider the second example, where a computational �uid dynamics
(CFD) simulation code is wrapped as a grid service. CFD problems require a lot
of computing time and a huge memory to execute; typically they generate a very
large amount of resulting data; however, the most important limiting factor is
the computing power. CFD is a �greedy� consumer of computing resources, re-
quiring special parallel computing algorithms. Since solution of large-scale CFD
problems on parallel computers have been studied for a long time now, a large
number of well-developed CFD codes and libraries are currently available (see
for example an overview of these codes in [9]). Numerical simulations performed
by these codes are applied to many industrial and scienti�c problems. In this
context, the main challenge is to �nd comfortable ways to re-use these codes
in the grid. Note also that very often CFD codes rely on a number of external
tools (converters, mesh generators, visualization tools, and so on). The installa-
tion procedure and the management of a large number of necessary utilities and
their versions is a time-consuming task and should be delegated. In this con-
text one of the problems is to �nd comfortable ways to access remotely installed
codes. Industry requirements are strict in what concerns intellectual property of
all research results. Therefore, when talking about reusing codes and remote ac-
cess, the security of the environment is essential. One current practical solution

for the three above described requirements (re-use, remote access and security) is
to wrap legacy codes as grid services and to deploy them in a grid environment.

Usually a CFD code takes as inputs several �les describing, in a speci�c lan-
guage, the problem to be solved. Typically, its output �les are large and contain
simulation results that are then interpreted / rendered by image processing /
visualization tools.

For our tests we have selected Gerris [5], an open source software library
for the solution of the partial di�erential equations describing �uid �ow, al-
lowing spatial discretization with automatic and dynamic local re�nement, and
utilizing a multigrid Poisson solver. Gerris uses an MPI library for parallel com-
putations and the GTS [8] library (a GNU Triangulated Surface Library, also an
open source software library that provides a set of functions to deal with three-
dimensional surfaces meshed with interconnected triangles). In the application,
additional external tools are used for visualization of results and for format con-
versions.

Factory and interface services and the client were, again, constructed as
generic as possible. Therefore, in the resulting application, the Gerris library
can be easily replaced with a di�erent CFD code. The client inputs (to be sent
to the service interface) consist of:

1. a simulation �le;

2. number of processes used by Gerris;

3. the name(s) of the resulting �le(s) to be transferred to the client side.

The service interface is much simpler than in the previous example. After it
receives the above mentioned parameters from the client and after the simulation
�le, located on the client side, is transferred at the site where the Gerris is
available (staging process), the service interface launches a thread that activates
the Gerris code. Since the Gerris is a parallel code itself, there is no need to
initialize its instances on each cluster node separately (this is done by the Gerris
itself). The communication between the service interface and the components is
done by a noti�cation component that is informing the service interface when the
simulation is completed. At this moment, the resulting �le(s) is(are) transferred
back to the client side using gridftp facilities.

More details about the grid-enabled Gerris service can be found in [16].

3.3 Parallel interactive computations

Let us now consider the third example, where a software tool working usually
in an interactive mode is wrapped into a grid service. In this case the client will
be required to �constantly� send new inputs to the remotely activated code.

To facilitate this scenario the service interface has to launch at least two
threads: one that starts the remote software component and one that allows
constant communication with it. The means of communication will depend on
facilities provided by the remote software.

As an example of such a scenario we discuss Maple2g, a recently proposed
grid-enabler for the Maple computer algebra system. Maple2g has a speci�c com-
ponent that allows the start of several Maple processes on a cluster in a master-
worker style. These processes are able to cooperate by exchanging messages to
solve a complex problem if the user gradually provides the master process with a
correct description of the work and communication to be completed. A detailed
description of the component under discussion was provided in [13].

Factory and interface services as well as the client were, again, constructed
as generic as possible. Therefore, Maple can be easily replaced with another
computer algebra system (e.g. Mathematica or Mathcad). The client inputs (to
be sent to the service interface) consist of:

1. initially, the request for launching the remote Maple master process;
2. gradually, command lines to be interpreted by the Maple master process.

The service interface for the Maple2g-cluster component launches the Maple
master process that reads two special �les: one with the Maple2g de�nitions
and another that tells Maple to open a socket connection (as a server) with the
service interface and wait for commands. Then the service interface establishes
the connection (as client) with the master process�as soon as a new command
has arrived from the client. Such commands can include the directive to launch
other Maple processes (done in Maple2g using MPICH or MPICH-G2). Details
about the service interface as well as some usage examples can be found in [14].

4 Towards automated generation of the client code

The concept of a single specialized client for each remote grid service is unfortu-
nately not scalable. Every time a service is created, corresponding clients must
be written. But in a grid environment, the user should be able to discover these
services and dynamically interact with the service interface, without having to
install a new client. Several recent tools are available to encapsulate and execute
complex applications as Grid services.

1. The ASSIST [1] provides the application developer with a proxy library
whose entries are stub methods for the remote Web Service. However, user
intervention is required to generate the �nal code.

2. A .NET tool, Webservice Studio, can be used to invoke Web service methods
interactively. This tool is meant for Web service implementers to test their
services without having to write the client code or to access other Web ser-
vices. Unfortunately Webservice Studio does not work well with complicated
methods.

3. A complex service called Xydra-OntoBrew [4] o�ers an automatic solution to
client creation problem for simple services and portlet clients. Unfortunately,
Xydra is a rather complex response to the client code creation problem,
while quite often simpler solution could be used; especially when a work�ow
execution of combined services is desired.

Table 1. The methods of the ACliGs class

Method Aim

getListServ(url) Get the contact list of the registered Grid
services.

queryList(url,name) Get the contact list of service's names that
are (partially) matching the given name.

getWSDL(servContact) Get the (full) WSDL of the speci�ed Grid
service and write it as a local �le labeled
with the service name obtained from the
(short) WSDL �le provided by directly
questioning the service.

getServName(servContact) Get the service name by inspecting the
(short) WSDL �le.

getListOp(servName) Get the list of the exposed operations of
the service

getTypeOpIn (servName, opName) Get the types of the input arguments of
the speci�ed operation.

getTypeOpOut (servName, opName) Get the type of the output of the speci�ed
operation.

buildStubs(servName) Build the stubs classes needed to access the
service.

buildClient (servName, opName) Build a client to invoke the speci�ed oper-
ation of the named service.

transfer(direction, list_of_�leNames) Transfer the named �les from the client to
the server side (direction=0) or from client
to the server (direction=1)

buildNotifClient (servName) Build a simple noti�cation consumer

In this context, package for Automatic-creation of Clients for Grid Services,
shortly ACliGs was proposed in [16]. ACliGs was written in Java, for client-
server interaction within grids based on the Globus Toolkit 4 [7] (GT4), de
facto standard of the current Grid middleware. While the complete description
of ACliGs can be found in [16], let us present here, in Table 1, methods of the
ACliGs class.

Interestingly, this relatively small number of methods allows us to support
all functions necessary to build grid service clients (for a complete discussion,
including details of wrapping of the Gerris package as a grid service�described
brie�y in Section 3.2, see [16]). Let us now illustrate how the ACliGs can be used
to build grid service clients. For this purpose we will utilize the UG [17] software
toolbox for the numerical solution of partial di�erential equations on unstruc-
tured meshes. UG's main features are robust multigrid solvers for unstructured,
locally re�ned meshes, which enables it to be applied to diverse application �elds
like Navier-Stokes equations, elasto-plasticity, density driven �ow and multiphase
�ow in porous media. UG contains a large library of parallel solution methods
for linear, nonlinear and time dependent problems and a parallel grid manager
that is capable of local re�nement and coarsening of unstructured meshes in two

Table 2. Operations exposed by the grid service wrapping UG' codes

Operation Aim

setModule(String module) Select the module to be used: di�2da, fe2d, fe3d, or ns2d,
ns3d, sc2d; by default fe2d

setNoProcs(int number) Indicate the number of processors participating in the sim-
ulation; by default 1

exec(String script) Launch the simulation described in the script �le

getExample() Get an example of a script �le for the active module

getHelp() Get a user manual for script language

getStatus() Get the status (Active, Done or Error) of the simulation;
by default the status is Done

and three space dimensions. Speci�cally, UG uses domain decomposition with
message passing paradigm and takes the adaptive dynamic load balancing into
account. UG was recently used to solve equations on two-dimensional unstruc-
tured grids with a fully implicit �nite volume discretization scheme and parallel
adaptive multigrid [10] and with good results on a parallel computer with thirty
processors and running MPI. We have tested the UG wrapper by running its
example scripts in a smaller cluster environment using PVM.

A simulation in UG is started by a command line that speci�es: (a) the exe-
cutable name, (b) ugrun, (c) a module name, e.g. ns for incompressible Navier-
Stokes equations, (d) number of processors to be used in the simulation, and
(e) name of the script �le with simulation description written in a speci�c lan-
guage (UG commands that are interpreted by the UG shell). While modules
describe problem classes and solving procedures, the script speci�es parameters
that de�ne a member of the problem class as well as the combination of solving
procedures. We have wrapped UG' codes as a grid service and speci�c service op-
erations are described in Table 2. The status of the simulation and the execution
type are stored as resource properties.

Finally, a simple example of using UG' scripts in the case of the UG service
is given in Figure 2. In this case some �le transfers take place: an example of a
script �le for simulation and the results of the simulation (images).

5 Concluding remarks

In this paper we have focused our attention in porting legacy cluster-computing
codes to the grid. We have discussed three practical examples that illustrate
di�erent scenarios involved in gridifying cluster-based codes. Observations made
in these three examples were used as a backdrop for introducing the ACliGs

toolbox for building grid service clients. Usage of ACliGs was illustrated in the
case of the UG package for solution of PDE's on unstructured meshes. The
ACliGs package is currently being further tested as in the near future it will be
used to build a grid environment and a portal for the NanoSim project aimed

> queryList http://194.102.62.15:8080/ UG
http://194.102.62.15:8888/wsrf/services/cfd/UGService
1 entries
> getWSDL http://194.102.62.15:8888/wsrf/services/cfd/UGService
UG.wsdl available in the local directory
> buildStubs UG
Building stubs... Successful
Log file: UG.log
> buildClient UG setModule; buildClient UG exec; buildClient UG getExample;
Building client... Successful
Log file: ClientUG_setModule.log
[... omitted here]

> ClientUG_setModule diff2da; ClientUG_getExample
Transfer Example.scr ... successful
> vim Example.scr
[... omitted here]
solver: multigrid; smoother: Gauss-Seidel
solver = "mgc"
[...]
smoother = "gs"
[...]
problem
new square $b model problem $f full scalar $h 4000000;
[...]
output
openwindow 10 100 320 320 $n Grid-sq;
[...]

> #modify the output into a PostScript file
[...]
openwindow 10 100 320 320 $d ps $n Grid-sq.ps;

> transfer 0 Example.scr
Transferring files ... Successful
> ClientUG_exec Example.scr
> transfer 1 Grid-sq.ps Er.ps
Transferring files ... Successful
> gimp Grid-sq.ps Er.ps

Fig. 2. An example of using the ACliGs' scripts to build and launch clients of UG grid service

at deployment and interconnection of multiple CFD codes. It will be also used
to deploy symbolic solvers as Grid services.

Acknowledgement

Research of Dana Petcu was partially supported by the projects NanoSim CEEX-
I-PC-D03-PT04-439 and MedioGrid 19CEEX-I03/2005 funded by the Romanian
Ministry of Research.

References

1. Aldinucci, M., Danelutto, M., Paternesi, A., Ravazzolo R., and Van-
neschi, M.: Building Interoperable Grid-aware ASSIST Applications via
Web-Services, Proc. of Intl. PARCO 2005: Parallel Computing, 2005, and
http://compass2.di.unipi.it/TR/Files/TR-05-24.pdf.gz.

2. Delaitre, T., Kiss, T., Goyeneche, A., Terstyanszky, G., Winter S., and Kacsuk, P.:
GEMLCA: Running Legacy Code Applications as Grid Services. Journal of Grid
Computing 3, no. 1-2, June 2005, pp. 75�90.

3. Kra, D.: Six Stategries for Grid Application Enablement, Part 1: Overview. On-line
at http://www.ibm.com/developerworks/grid/library/gr-enable/.

4. Gannon, D., Alameda, J., Chipara, O., Christie, M., Dukle, V., Fang, L., Far-
rellee, M., Kandaswamy, G., Kodeboyina, D., Krishnan, S., Moad, C., Pierce, M.,
Plale, B., Rossi, A., Simmhan, Y., Sarangi, A., Slominski, A., Shirasuna, S., and
Thomas, T.: Building Grid Portal Applications from a Web Service Component
Architecture, Procs. of the IEEE Publication 93, Issue 3, 2005, pp. 551� 563.

5. Gerris, http://gfs.sourceforge.net/.
6. GNU Image Manipulation Program, http:// www.gimp.org/
7. Globus Toolkit, http://www.globus.org/toolkit/.
8. GNU Triangulated Surface Library, http://gts.sourceforge.net/.
9. Magnus, A., Tveito, B.A. (eds.): Numerical Solution of Partial Di�erential Equa-

tions on Parallel Computers, Springer, 2005.
10. Mo, Z.: Parallel adaptive solution for two dimensional 3-T energy equation on UG,

Journal Computing and Visualization in Science 9 (3), 2006, pp. 165�174
11. Organization for the Advancement of Structured Information Standards,

http://www.oasis-open.org/
12. Paprzycki, M., Stpiczynski, P.: A Brief Introduction to Parallel Computing. In: E.

J. Kontoghiorghes (ed.), Handbook of Parallel Computing and Statistics, Taylor
and Francis, Boca Raton, FL, 2006, pp. 3-41

13. Petcu, D., Dubu, D., Paprzycki, M.: Grid-based Parallel Maple. Procs. PVMMPI
2004, Budapest, Hungary, September 19-22, 2004, eds. D. Kranzmüller, P. Kacsuk,
J. Dongarra, LNCS 3241, 2004, pp. 215-223.

14. Petcu, D.: Improving Computer Algebra Systems by Using Grid Services, Procs. 1st
Austrian Grid Symposium, J. Volkert, T. Fahringer, D. Kranzlmüller, W. Schreiner
(eds.), Austrian Computer Society, Band 210, ISBN 3-85403-210-2, 2006, 102-110

15. Petcu D.: Grid Services for Satellite Image Processing. WSEAS Transactions on
Computers, Issue 2, Vol. 6, ISSN 1109-2750, 347-354, 2007.

16. Petcu, D.: Automatic Generated Clients of Grid Services for Computational Fluid
Dynamics. Procs. MATH'06, 10th Internat. Conference on Applied Mathematics,
Dallas, Texas, USA, November 1-3, 2006, ISBN 960-8457-55-6, pp. 96-101

17. UG, http://sit.iwr.uni-heidelberg.de/� ug/.

