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Abstract 

Numerical solution of 3D linear elasticity equations is 
considered. Problem is described by a coupled system of 
second order elliptic partial differential equations. This 
system is discretized by trilinear parallelepipedal finite 
elements. Preconditioned Conjugate Gradient iterative 
method is used for solving large–scale linear algebraic 
systems arising after the Finite Element Method (FEM) 
discretization of the problem. The displacement 
decomposition technique is applied at the first step to 
construct a preconditioner using the decoupled block–
diagonal part of the original matrix. Then circulant block–
factorization is used to precondition thus obtained block–
diagonal matrix. Since both preconditioning techniques, 
displacement decomposition and circulant block–
factorization, are highly parallelizable, a portable parallel 
FEM code based on MPI is developed. Results of 
numerical tests performed on a number of modern parallel 
computers using real–life engineering problems from the 
geomechanics in geosciences are reported and discussed. 
 
 
1. Introduction 
 

Our work concerns development and implementation of 
efficient parallel algorithms for solving elasticity problems 
arising from geomechanics in geosciences. In this area, 
typical application problems include, among others, a 
variety of simulations of foundations of engineering 
constructions, which transfer and distribute the total 
loading into the bed of soil (e.g. piles supporting bridges 
or central columns carrying construction of a tall building) 
and multi–layer media with strongly varying material 
characteristics. Here, the spatial framework of the 

construction produces a composed stressed–strained state 
in active interaction zones. A modern design of a cost– 
efficient construction with a sufficient guaranteed 
reliability requires determining parameters of this 
stressed–strained state. 

Application problems, of the type that attempt at coming 
close to modeling actual real-life situations, are three-
dimensional nonlinear elasticity problems, which are 
described mathematically by a system of partial 
differential equations. When applied, a finite element (or 
finite difference) discretization reduces problem described 
by partial differential equations to a system of 
linear/nonlinear equations. To make a reliable prediction 
of the construction safety, which is sensitive to soil 
deformations, a very accurate model and thus a large 
system of sparse linear equations is required. Specifically, 
in real–life applications, such linear systems can be 
extremely large – containing up to several millions of 
unknowns. Hence, these problems have to be solved by 
robust and efficient parallel iterative methods on powerful 
multiprocessor computers. 

Note that numerical solution of linear systems is a 
fundamental operation in solving elasticity problems. In 
fact, nonlinear equations generated from the discretization 
of the nonlinear elasticity problem have to be solved by an 
iterative procedure, in which a system involving millions 
of linear equations has to be solved in every iteration. 
Solving these linear systems is usually very time–
consuming (consuming up to 90% of the total solution 
time). Hence, development of fast algorithms for solving 
systems of linear equations is essential. Furthermore, 
observe that solution of real-life problems under 
consideration occur usually in the context of engineering 
simulations. In this case multiple instances of the problem 
(for varying design parameters) have to be solved. 



Therefore efficient solution algorithms can significantly 
speed up simulations. In this context note also that, due to 
the size of the system, an efficient iterative solver should 
not only have a fast convergence rate but also high parallel 
efficiency. Moreover, the resulting program should be 
efficiently implementable on a variety of modern parallel 
computer architectures, e.g. shared–memory, distributed 
memory, and mixed shared–distributed memory. 

 
2. Elasticity problems 
 

For simplicity, in this note we focus our attention on 3D 
linear elasticity problems that are guided by two basic 
assumptions: (1) displacements are small, and (2) material 
properties are isotropic. 

Precise mathematical formulation of the considered 
problem can be found in [1]. Here let us only remind, that 
the 3D elasticity problem in the stressed–strained state can 
be described by a coupled system of three differential 
equations. After applying standard linearization, nonlinear 
equations can be simplified to a system of three linear 
differential equations, which is often referred to as Lamé 
equations. 

Let us restrict our considerations to the case where the 
computational domain Ω has the form of a cube 
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, and where boundary 
conditions on each side of Ω are of a fixed type. 

In the numerical tests reported here we utilize 
benchmark problems put forward in [2]. These 
benchmarks model (1) a situation where a single pile is 
placed in a homogeneous sandy clay soil (reported as 
Benchmark 1) and (2) where two piles are placed in an 
inhomogeneous sandy clay soil (reported as Benchmark 
2); see [1, 2, 3] for more details. In the solution process, 
uniform grid is used with n1, n2 and n3 grid points along 
the coordinate directions. 
 
3. Displacement decomposition circulant 

block factorization preconditioner 
 
There exists a large body of research dealing with 

preconditioning of iterative solution methods for the 
elasticity systems discretized using Finite Element 
Method. In [4] Axelsson and Gustafson construct their 
preconditioners based on the point–ILU (Incomplete LU) 
factorization of the displacement decoupled block–
diagonal part of the original matrix. This approach is 
known as a displacement decomposition (DD, for more 
details see, e.g., [5]). In [6] circulant block–factorization is 
used for preconditioning of the obtained block–diagonal 
matrix and a displacement decomposition circulant block 
factorisation preconditioner is constructed. The estimate of 
the condition number of the proposed preconditioner 

shows that DD CBF solver is asymptotically as fast as 
preconditioners based on the point–ILU factorization. 
Moreover the DD CBF solver has a very good parallel 
efficiency.  

 
4. Computer Systems 

 
The proposed approach has been tested on two cluster 

computers, located in the Oklahoma Supercomputing 
Center for Education and Research (OSCER) in Norman, 
Oklahoma, and two parallel machines located in the High 
Performance Computing Center of the University of 
Stuttgart, Stuttgart, Germany. 

Boomer is a Pentium 4 Xeon Linux Cluster 
manufactured by Aspen Systems [9]. It has a total of 135 
compute nodes. Each compute node consists of two Intel 
P4 Xeon processors running at 2.0 GHz and each having 
512 KB of cache memory. Each computational node has 2 
GB of memory. All nodes are connected by a Myrinet 
2000 interconnect. We have been using Intel C compiler 
version 8.0 and compiled our code using the following 
options: -fast, -ptt7, -xW. MPI is supported by the MPICH 
software.  

Shooner is an Itanium2 Linux Cluster also manufactured 
by Aspen Systems [10]. It has 33 compute nodes, each 
consisting of 2 Itanium Deerfield processors (64-bit 
architecture) running at 1.0 GHz; each with 1.5 MB of 
cache memory. Each compute node has 4 GB of memory. 
Nodes are connected through a SilverStorm 3000 
interconnect (formerly known as InfiniCon Systems). We 
have used Intel C compiler version 8 and compiled the 
code with the following options: -O, -tpp2, -ftz. In both 
cases the compiler options have been suggested to us (by 
H. Neeman; director of OSCER) as one of the best 
standard optimizing configurations. 

Azusa is a NEC server – Azusa Express5800/1160Xa 
computer [11]. It has 16 Intel Itanium processors running 
at 800 Mhz, with 4 MB of cache memory and 32 GB main 
memory. We have used a NEC C Compiler with -O3 
option. 

Strider is a Cray Strider Opteron Cluster [12]. It has 125 
compute nodes with two AMD Opteron processors each; 
running at 2.0 GHz and having 516 GB of memory. Nodes 
are connected through a Myrinet 2000 interconnect. We 
have used a PGI C Compiler with -O3 option. 
 
5. Benchmarking performance 
 

Let us recall that the parallel code has been 
implemented in C and the parallelization has been 
facilitated using the MPI library [8]. Times have been 
collected using the MPI provided timer. In all cases we 
report the best results from multiple runs. Specifically, we 
report the elapsed time Tp on p processors (in seconds), 
the speed-up defined in a standard way Sp=T1/Tp, and the 



parallel efficiency Ep=Sp/p. In our experiments we used 
discretizations with n1=n2=n3=n where n=32, 48, 64, and 
96. Obviously, sizes of discrete problems are n3.  

 
 Benchmark 1 Benchmark 2 

p Time Sp Ep Time Sp Ep 

n=32 

1 26.78  105.75   

2 16.52 1.62 0.81 64.85 1.63 0.82 

4 8.919 3.00 0.75 35.19 3.01 0.75 

8 4.43 6.05 0.76 17.55 6.06 0.75 

16 2.63 10.18 0.64 10.19 10.38 0.65 

32 1.97 13.59 0.42 7.81 13.54 0.42 

n=48 

1 603.15  1106.71   

2 354.07 1.70 0.85 648.96 1.71 0.85 

3 208.62 2.89 0.96 354.41 3.12 1.04 

4 189.02 3.19 0.80 346.15 3.20 0.80 

6 132.24 4.56 0.76 223.55 4.95 0.83 

8 99.02 6.09 0.76 181.35 6.10 0.76 

12 63.99 9.43 0.79 116.33 9.51 0.79 

16 48.48 12.44 0.78 82.74 13.38 0.84 

24 34.97 17.25 0.72 64.97 17.03 0.71 

48 24.15 24.98 0.52 41.12 26.91 0.56 

n=64 

1 1499.02  2461.25   

2 975.12 1.54 0.77 1602.1 1.54 0.77 

4 492.41 3.04 0.76 815.43 3.02 0.75 

8 262.913 5.70 0.71 432.61 5.69 0.71 

16 145.37 10.31 0.64 240.26 10.24 0.64 

32 72.45 20.69 0.65 115.87 21.24 0.66 

64 48.24 31.07 0.49 78.81 31.23 0.49 

n=96 

1 9916.38  17011   

2 6428.79 1.54 0.77 10783.6 1.58 0.79 

3 3359.32 2.95 0.98 5551.98 3.06 1.02 

4 3188.2 3.11 0.78 5120.63 3.32 0.83 

6 2084.96 4.76 0.79 3428.16 4.96 0.83 

8 1535.64 6.46 0.81 2550.48 6.67 0.83 

12 1050.39 9.44 0.79 1744 9.75 0.81 

16 795.42 12.47 0.78 1332.45 12.77 0.80 

24 561.88 17.65 0.74 940.77 18.08 0.75 

32 435.61 22.76 0.71 720.302 23.62 0.74 

48 292.2 33.94 0.71 484.13 35.14 0.73 

96 230.17 43.08 0.45 386 44.07 0.46 

Table 1. Results obtained on Boomer. 

In Table 1 we present results of experiments executed 
on Boomer. The parallel efficiency on up to 48 processors 
is above 50%, which confirms our general expectations 

that the proposed approach parallelizes very well. As 
expected, as the size of the problem increases, parallel 
efficiency increases as well (for n=96, efficiency of 73% 
has been observed on 48 processors, and even on 96 
processors efficiency of almost 50% was recorded).  

 
 Benchmark 1 Benchmark 2 

p Time Sp Ep Time Sp Ep 

n=32 

1 45.96  185.71   

2 24.1 1.91 0.95 96.88 1.63 0.96 

4 12.35 3.72 0.93 49.19 3.01 0.94 

8 6.28 7.32 0.91 25.18 6.06 0.92 

16 3.48 13.21 0.83 13.84 10.38 0.84 

32 1.7 27.04 0.84 11.2 13.54 0.52 

n=48 

1 952.94  1744.28   

2 485.61 1.96 0.98 889.92 1.96 0.98 

3 320.64 2.97 0.99 586.61 2.97 0.99 

4 247.78 3.85 0.96 422.03 4.13 1.03 

6 167.8 5.68 0.95 285.02 6.12 1.02 

8 125.58 7.59 0.95 229.44 7.60 0.95 

12 83.97 11.35 0.95 154.17 11.31 0.94 

16 64.66 14.74 0.92 110.64 15.77 0.99 

24 44.33 21.50 0.90 80.8 21.59 0.90 

n=64 

1 2566.04  4247.67   

2 1336.46 1.92 0.96 2212.14 1.92 0.96 

4 663.91 3.87 0.97 1099.84 3.86 0.97 

8 339.25 7.56 0.95 559.704 7.59 0.95 

16 175.32 14.64 0.91 289.24 14.69 0.92 

32 95.57 26.85 0.84 158.3 26.83 0.84 

n=96 

1 15257.2  25000   

2 7826.49 1.95 0.97 12976.8 1.93 0.96 

3 5036.91 3.03 1.01 8384.87 2.98 0.99 

4 3879.16 3.93 0.98 6450.12 3.88 0.97 

6 2610.47 5.84 0.97 4336.2 5.77 0.96 

8 1970.25 6.46 0.97 3279.75 7.62 0.95 

12 1321.53 9.44 0.96 2198.85 11.37 0.95 

16 1004.52 12.47 0.95 1671.92 14.95 0.93 

24 681.54 17.65 0.93 1130.18 22.12 0.92 

32 516.2 22.76 0.92 867.62 28.81 0.90 

Table 2. Results obtained on Shooner. 

The super-linear speed-up was been observed in some of 
the runs (for 3 or 4 processors). There are two reasons for 
this fact: (1) splitting the entire problem into subproblems 
of what could be considered an “optimal” size for the 
computer architecture in question and (2) following from 



it better usage of cache memories of individual parallel 
processors. 

Table 2 shows results obtained on Shooner. These 
results are quite interesting. Here we can “compare” 
execution time on (and thus performance of) a 2.0 GHz P4 
processor (32-bit architecture) with that of the 1.0 GHz 
Itanium processor (64-bit architecture). The execution 
time on Schooner is substantially longer than on Boomer. 
This indicates that the very fact that Itanium processors 
are a 64-bit architecture and, overall, were introduced with 
promise of higher performance does not compensate for a 
50% drop in clock speed. This also seems to indicate that 
while tools like compilers have been around long enough 
to optimize performance of 32-bit processors (in the case 
of a realistic application, rather than a synthetic 
benchmark), their 64-bit counterparts still have long way 
to go to reach the same level of code optimization.  

 
 Benchmark 1 Benchmark 2 

p Time Sp Ep Time Sp Ep 

n=32 

1 117.37  480.55   

2 60.26 1.95 0.97 246.89 1.95 0.97 

4 30.34 3.87 0.97 123.32 3.90 0.97 

8 15.38 7.63 0.95 62.63 7.67 0.96 

16 8.42 13.94 0.87 44.18 10.88 0.68 

n=48 

1 2520.68  4315.42   

2 1273.73 1.98 0.99 2321.31 1.86 0.93 

3 835.88 3.02 1.01 1444.70 2.99 1.00 

4 638.68 3.95 0.99 1170.25 3.69 0.92 

6 445.49 5.66 0.94 813.99 5.30 0.88 

8 318.97 7.90 0.99 584.28 7.39 0.92 

12 215.70 11.69 0.97 368.12 11.72 0.98 

n=64 

1 6885.60  11216.40   

2 3345.32 2.06 1.03 5648.49 1.99 0.99 

4 1689.63 4.08 1.02 2706.94 4.14 1.04 

8 867.27 7.94 0.99 1437.97 7.80 0.98 

16 664.12 10.37 0.65 1081.92 10.37 0.65 

n=96 

1 42632.1  68353.40   

2 20613.8 2.07 1.03 34507.20 1.98 0.99 

3 14140.6 3.01 1.01 22984.70 2.97 0.99 

4 10342.3 4.12 1.03 17066.10 4.01 1.00 

6 7140.59 5.97 1.00 11652.60 5.87 0.98 

8 5354.38 7.96 1.00 8793.15 7.77 0.97 

12 3570.23 11.94 1.00 5935.70 11.52 0.96 

Table 3. Results obtained on Azusa. 

 

Furthermore, when comparing the results obtained on 
Boomer and Shooner one can see that, in general, parallel 
efficiency is substantially higher on Shooner. In this 
context let us note that, overall, it is easier to obtain high 
level of efficiency on a machine with relatively slower 
processors. However, efficiency on Shooner is extremely 
good – note that in the case of n=96 it stays above 90% for 
all numbers of processors used. This can be further 
explained by the fact that the network parameters start-up 
time and time for transferring of single word are smaller 
on the second cluster. Again one can see that the speed-up 
and efficiency increase with the increase in the size of the 
discrete problem. 

Two cases of super-linear speed-up (for n=48 and 3 and 
4 processors) can be explained by the problem size 
division hitting a sweet-spot of memory usage per 
processor and its interaction with local cache memory 
size. 

In Table 3 we present results of experiments executed 
on the NEC Server Azusa Express5800/1160Xa. This 
machine is an SMP (Symmetric Multiprocessor) and thus 
it is a very different architecture that the previously 
considered two – classical cluster computers.  

The first important observation is that the execution 
time on Azusa is substantially longer than in the case even 
of Shooner. This reduction in speed cannot be simply 
explained by 20% reduction in clock speed of the 
processor. The results on the Azusa were run about a year 
ago and we used a current for that time version of the NEC 
compiler. This being the case, combined with the fact that 
the Itanium technology is very new can explain some 
inefficiencies of the compiler. Furthermore, since we did 
not have any direct support and thus we used the simplest 
possible optimizations.  

While the run-time on Azusa is much longer than on 
Shooner, its parallel efficiency is higher and a super-linear 
speed-up is observed very often. While this could be 
explained by the fact that its processors are even slower, 
we have to keep in mind that Azusa not only has slower 
processors, but also appropriately older remaining 
components of the system (e.g. the Azusa has SDRAM, 
while Shooner has DDR RAM memory). We would like to 
conjecture that what matters more is the fact that Azusa is 
an SMP computer and thus its network parameters are 
substantially better (smaller data access and transfer time) 
than in the case of a network-based cluster. It is the SMP 
architecture that is responsible for the extremely good 
efficiency of 96% when running the problem of size n=96 
on 32 processors. 

Table 4 shows results obtained on Cray Opteron cluster 
(Strider). The results are very similar to the results 
obtained on Boomer, but there are some interesting 
differences.  



 Benchmark 1 Benchmark 2 

p Time Sp Ep Time Sp Ep 

n=32 

1 24.29  100.67   

2 12.58 1.93 0.97 51.40 1.96 0.98 

4 6.598 3.68 0.92 26.99 3.73 0.93 

8 3.44 7.05 0.88 13.94 7.22 0.90 

16 1.85 13.16 0.82 7.49 13.45 0.84 

32 1.275 19.06 0.60 5.25 19.17 0.60 

n=48 

1 666.45  1143.17   

2 331.12 2.01 1.01 607.57 1.88 0.94 

3 226.48 2.94 0.98 417.84 2.74 0.91 

4 171.12 3.89 0.97 313.39 3.65 0.91 

6 118.17 5.64 0.94 216.00 5.29 0.88 

8 90.01 7.40 0.93 164.82 6.94 0.87 

12 59.80 11.14 0.93 109.18 10.47 0.87 

16 45.39 14.68 0.92 77.30 14.79 0.92 

24 30.990 21.51 0.90 57.07 20.03 0.84 

48 18.198 36.62 0.76 33.35 34.28 0.71 

n=64 

1 1533.96  2533.75   

2 756.18 2.03 1.01 1250.47 2.03 1.01 

4 391.53 3.92 0.98 648.45 3.91 0.98 

8 202.50 7.58 0.95 337.85 7.50 0.94 

16 112.74 13.61 0.85 182.89 13.85 0.87 

32 56.13 27.33 0.85 92.92 27.27 0.85 

64 32.26 47.55 0.74 53.15 47.67 0.75 

n=96 

1 11101.9  18430.80   

2 5541.60 2.00 1.00 9204.99 2.00 1.00 

3 3722.11 2.98 0.99 6210.83 2.97 0.99 

4 2800.50 3.96 0.99 4665.51 3.95 0.99 

6 1913.57 5.80 0.97 3182.44 5.79 0.97 

8 1435.91 7.73 0.97 2393.06 7.70 0.96 

12 976.18 11.37 0.95 1618.29 11.39 0.95 

16 741.59 14.97 0.94 1238.29 14.88 0.93 

24 515.44 21.54 0.90 862.23 21.38 0.89 

32 388.67 28.56 0.89 649.49 28.38 0.89 

48 270.01 41.12 0.86 451.46 40.82 0.85 

96 149.26 74.38 0.78 246.16 74.87 0.78 

 
Table 4. Results obtained on Strider. 

Let us consider the largest problem studied (Benchmark 
2; n=96). Here, for a single processor Boomer is faster 
(execution time of 17011 second, while Strider time is 
18430 seconds – the difference of about 8%). For 96 
processors situation is exactly the opposite. Here, Boomer 
time is 386 seconds, while Strider time is only 246 

seconds (difference of about 36%). This result is quit 
rather unexpected. It shows, that in the case of the real-life 
problem considered here – when code is executed on a 
single processor – the two 2.0 GHz processors from Intel 
and AMD behave very similarly (performance difference 
of 8% can be associated with compiler quality and options 
used during compilation), the big difference is in parallel 
performance. Let us stress that both systems use “the 
same” Myrinet 2000 switch and have a very similar total 
number of computational nodes.  Thus the only way to 
explain the difference seems to be by pointing to the 
computer vendor. Cray surely knows supercomputers and 
it shows in this case through a 36% performance gain.  

Finally, we compare results reported here with earlier 
results collected on a Sun Sunfire 6800. In Figure 1 we 
depict parallel speed-up of execution of a single iteration 
of our code obtained on different parallel systems in the 
case of Benchmark 2, for n=96. 

 
Fig.1 Speed-up for one iteration 

 
What is particularly revealing is the fact that most 

systems have very similar speed-up. However Boomer, 
definitely lags behind and this is related to the fact that it 
is the fastest of the machines we experimented with when 
a single-processor performance is considered, but when it 
comes to parallel performance (and thus issues related to 
data transmission), then even though it is utilizing a very 
good switching infrastructure, its performance falls 
behind. 
 
7. Concluding remarks 
 

In this note we have used a real-life geomechanics 
modeling code to compare performance of four parallel 
computers (2 clusters and one SMP). The main finding is 
that the general behavior of the code on all machines is 
very good and in agreement with theoretical estimates. At 
the same time we were able to make a few interesting 
observations about each of computers used in our 
experiments.  



 
Acknowledgments 
 

This research was supported by the bilateral IPP–BAS – 
ICS–WSSP interacademy exchange grant "Parallel and 
Distributed Computing Practices". It was supported also 
by the Bulgarian NSF grant I–1402/2004. Computer time 
grant from the Oklahoma Supercomputing Center is 
kindly acknowledged. The results on Azusa and Strider 
were obtained during the HPC-Europa research visit at the 
University of Stuttgart supported by the European 
Commission through grant number R113–2003–506079. 
 
References 
[1] I. Lirkov, MPI solver for 3D elasticity problems, 
Mathematics and computers in simulation, 61 3–6, 2003, 509–
516. 

[2] A. Georgiev, A. Baltov, and S. Margenov, Hipergeos 
benchmark problems related to bridge engineering applications, 
project report HG CP 940820MOST4. 

[3] I. Lirkov, Parallel Performance of an MPI Solver for 3D 
Elasticity Problems, Numerical methods and applications, (I. 
Dimov, I. Lirkov, S. Margenov, Z. Zlatev eds.), Lecture Notes in 
Computer Sciences, 2542, Springer Verlag, 2003, 527–535. 

[4] O. Axelsson and I. Gustafsson, Iterative methods for the 
solution of the Navier equations of elasticity, Comp. Meth. Appl. 
Mech. Eng. 15 (1978) 241–258. 

[5] R. Blaheta, Displacement decomposition–incomplete 
factorization preconditioning techniques for linear elasticity 
problems, Num. Lin. Alg. Appl. 1 (1994) 107–128. 

[6] I. Lirkov, S. Margenov, MPI parallel implementation of CBF 
preconditioning for 3D elasticity problems, Mathematics and 
computers in simulation, 50 1–4, 1999, 247–254. 

[7] M. Snir, St. Otto, St. Huss-Lederman, D. Walker, J. Dongara, 
MPI: The Complete Reference, Scientific and engineering 
computation series, The MIT Press, Cambridge, Massachusetts 
(1997) Second printing. 

[8] D. Walker, J. Dongara, MPI: a standard Message Passing 
Interface, Supercomputer, 63 (1996) 56–68. 

[9] http://www.oscer.ou.edu/resources.php#boomer 

[10] http://www.oscer.ou.edu/resources.php#schooner 

[11] http://www.hlrs.de/hw-access/platforms/azusa/ 

[12] http://www.hlrs.de/hw-access/platforms/strider/ 


