
Benchmarking Performance of an MPI-based Solver for 3D Elasticity Problems

Ivan Lirkov, Svetozar Magenov
Institute for Parallel Processing
Bulgarian Academy of Sciences

Acad. G. Bonchev, Bl. 25A, 1113 Sofia, Bulgaria
ivan@parallel.bas.bg, margenov@parallel.bas.bg Poland

Marcin Paprzycki

Computer Science, SWPS
ul. Chodakowska 19/31, 03-815 Warszawa, Poland

marcin@cs.okstate.edu

Abstract

Numerical solution of 3D linear elasticity equations is
considered. Problem is described by a coupled system of
second order elliptic partial differential equations. This
system is discretized by trilinear parallelepipedal finite
elements. Preconditioned Conjugate Gradient iterative
method is used for solving large–scale linear algebraic
systems arising after the Finite Element Method (FEM)
discretization of the problem. The displacement
decomposition technique is applied at the first step to
construct a preconditioner using the decoupled block–
diagonal part of the original matrix. Then circulant block–
factorization is used to precondition thus obtained block–
diagonal matrix. Since both preconditioning techniques,
displacement decomposition and circulant block–
factorization, are highly parallelizable, a portable parallel
FEM code based on MPI is developed. Results of
numerical tests performed on a number of modern parallel
computers using real–life engineering problems from the
geomechanics in geosciences are reported and discussed.

1. Introduction

Our work concerns development and implementation of
efficient parallel algorithms for solving elasticity problems
arising from geomechanics in geosciences. In this area,
typical application problems include, among others, a
variety of simulations of foundations of engineering
constructions, which transfer and distribute the total
loading into the bed of soil (e.g. piles supporting bridges
or central columns carrying construction of a tall building)
and multi–layer media with strongly varying material
characteristics. Here, the spatial framework of the

construction produces a composed stressed–strained state
in active interaction zones. A modern design of a cost–
efficient construction with a sufficient guaranteed
reliability requires determining parameters of this
stressed–strained state.

Application problems, of the type that attempt at coming
close to modeling actual real-life situations, are three-
dimensional nonlinear elasticity problems, which are
described mathematically by a system of partial
differential equations. When applied, a finite element (or
finite difference) discretization reduces problem described
by partial differential equations to a system of
linear/nonlinear equations. To make a reliable prediction
of the construction safety, which is sensitive to soil
deformations, a very accurate model and thus a large
system of sparse linear equations is required. Specifically,
in real–life applications, such linear systems can be
extremely large – containing up to several millions of
unknowns. Hence, these problems have to be solved by
robust and efficient parallel iterative methods on powerful
multiprocessor computers.

Note that numerical solution of linear systems is a
fundamental operation in solving elasticity problems. In
fact, nonlinear equations generated from the discretization
of the nonlinear elasticity problem have to be solved by an
iterative procedure, in which a system involving millions
of linear equations has to be solved in every iteration.
Solving these linear systems is usually very time–
consuming (consuming up to 90% of the total solution
time). Hence, development of fast algorithms for solving
systems of linear equations is essential. Furthermore,
observe that solution of real-life problems under
consideration occur usually in the context of engineering
simulations. In this case multiple instances of the problem
(for varying design parameters) have to be solved.

Therefore efficient solution algorithms can significantly
speed up simulations. In this context note also that, due to
the size of the system, an efficient iterative solver should
not only have a fast convergence rate but also high parallel
efficiency. Moreover, the resulting program should be
efficiently implementable on a variety of modern parallel
computer architectures, e.g. shared–memory, distributed
memory, and mixed shared–distributed memory.

2. Elasticity problems

For simplicity, in this note we focus our attention on 3D
linear elasticity problems that are guided by two basic
assumptions: (1) displacements are small, and (2) material
properties are isotropic.

Precise mathematical formulation of the considered
problem can be found in [1]. Here let us only remind, that
the 3D elasticity problem in the stressed–strained state can
be described by a coupled system of three differential
equations. After applying standard linearization, nonlinear
equations can be simplified to a system of three linear
differential equations, which is often referred to as Lamé
equations.

Let us restrict our considerations to the case where the
computational domain Ω has the form of a cube

] x[0,] x[0,] x[0, max
3

max
2

max
1 ××

, and where boundary
conditions on each side of Ω are of a fixed type.

In the numerical tests reported here we utilize
benchmark problems put forward in [2]. These
benchmarks model (1) a situation where a single pile is
placed in a homogeneous sandy clay soil (reported as
Benchmark 1) and (2) where two piles are placed in an
inhomogeneous sandy clay soil (reported as Benchmark
2); see [1, 2, 3] for more details. In the solution process,
uniform grid is used with n1, n2 and n3 grid points along
the coordinate directions.

3. Displacement decomposition circulant

block factorization preconditioner

There exists a large body of research dealing with

preconditioning of iterative solution methods for the
elasticity systems discretized using Finite Element
Method. In [4] Axelsson and Gustafson construct their
preconditioners based on the point–ILU (Incomplete LU)
factorization of the displacement decoupled block–
diagonal part of the original matrix. This approach is
known as a displacement decomposition (DD, for more
details see, e.g., [5]). In [6] circulant block–factorization is
used for preconditioning of the obtained block–diagonal
matrix and a displacement decomposition circulant block
factorisation preconditioner is constructed. The estimate of
the condition number of the proposed preconditioner

shows that DD CBF solver is asymptotically as fast as
preconditioners based on the point–ILU factorization.
Moreover the DD CBF solver has a very good parallel
efficiency.

4. Computer Systems

The proposed approach has been tested on two cluster

computers, located in the Oklahoma Supercomputing
Center for Education and Research (OSCER) in Norman,
Oklahoma, and two parallel machines located in the High
Performance Computing Center of the University of
Stuttgart, Stuttgart, Germany.

Boomer is a Pentium 4 Xeon Linux Cluster
manufactured by Aspen Systems [9]. It has a total of 135
compute nodes. Each compute node consists of two Intel
P4 Xeon processors running at 2.0 GHz and each having
512 KB of cache memory. Each computational node has 2
GB of memory. All nodes are connected by a Myrinet
2000 interconnect. We have been using Intel C compiler
version 8.0 and compiled our code using the following
options: -fast, -ptt7, -xW. MPI is supported by the MPICH
software.

Shooner is an Itanium2 Linux Cluster also manufactured
by Aspen Systems [10]. It has 33 compute nodes, each
consisting of 2 Itanium Deerfield processors (64-bit
architecture) running at 1.0 GHz; each with 1.5 MB of
cache memory. Each compute node has 4 GB of memory.
Nodes are connected through a SilverStorm 3000
interconnect (formerly known as InfiniCon Systems). We
have used Intel C compiler version 8 and compiled the
code with the following options: -O, -tpp2, -ftz. In both
cases the compiler options have been suggested to us (by
H. Neeman; director of OSCER) as one of the best
standard optimizing configurations.

Azusa is a NEC server – Azusa Express5800/1160Xa
computer [11]. It has 16 Intel Itanium processors running
at 800 Mhz, with 4 MB of cache memory and 32 GB main
memory. We have used a NEC C Compiler with -O3
option.

Strider is a Cray Strider Opteron Cluster [12]. It has 125
compute nodes with two AMD Opteron processors each;
running at 2.0 GHz and having 516 GB of memory. Nodes
are connected through a Myrinet 2000 interconnect. We
have used a PGI C Compiler with -O3 option.

5. Benchmarking performance

Let us recall that the parallel code has been
implemented in C and the parallelization has been
facilitated using the MPI library [8]. Times have been
collected using the MPI provided timer. In all cases we
report the best results from multiple runs. Specifically, we
report the elapsed time Tp on p processors (in seconds),
the speed-up defined in a standard way Sp=T1/Tp, and the

parallel efficiency Ep=Sp/p. In our experiments we used
discretizations with n1=n2=n3=n where n=32, 48, 64, and
96. Obviously, sizes of discrete problems are n3.

 Benchmark 1 Benchmark 2

p Time Sp Ep Time Sp Ep

n=32

1 26.78 105.75

2 16.52 1.62 0.81 64.85 1.63 0.82

4 8.919 3.00 0.75 35.19 3.01 0.75

8 4.43 6.05 0.76 17.55 6.06 0.75

16 2.63 10.18 0.64 10.19 10.38 0.65

32 1.97 13.59 0.42 7.81 13.54 0.42

n=48

1 603.15 1106.71

2 354.07 1.70 0.85 648.96 1.71 0.85

3 208.62 2.89 0.96 354.41 3.12 1.04

4 189.02 3.19 0.80 346.15 3.20 0.80

6 132.24 4.56 0.76 223.55 4.95 0.83

8 99.02 6.09 0.76 181.35 6.10 0.76

12 63.99 9.43 0.79 116.33 9.51 0.79

16 48.48 12.44 0.78 82.74 13.38 0.84

24 34.97 17.25 0.72 64.97 17.03 0.71

48 24.15 24.98 0.52 41.12 26.91 0.56

n=64

1 1499.02 2461.25

2 975.12 1.54 0.77 1602.1 1.54 0.77

4 492.41 3.04 0.76 815.43 3.02 0.75

8 262.913 5.70 0.71 432.61 5.69 0.71

16 145.37 10.31 0.64 240.26 10.24 0.64

32 72.45 20.69 0.65 115.87 21.24 0.66

64 48.24 31.07 0.49 78.81 31.23 0.49

n=96

1 9916.38 17011

2 6428.79 1.54 0.77 10783.6 1.58 0.79

3 3359.32 2.95 0.98 5551.98 3.06 1.02

4 3188.2 3.11 0.78 5120.63 3.32 0.83

6 2084.96 4.76 0.79 3428.16 4.96 0.83

8 1535.64 6.46 0.81 2550.48 6.67 0.83

12 1050.39 9.44 0.79 1744 9.75 0.81

16 795.42 12.47 0.78 1332.45 12.77 0.80

24 561.88 17.65 0.74 940.77 18.08 0.75

32 435.61 22.76 0.71 720.302 23.62 0.74

48 292.2 33.94 0.71 484.13 35.14 0.73

96 230.17 43.08 0.45 386 44.07 0.46

Table 1. Results obtained on Boomer.

In Table 1 we present results of experiments executed
on Boomer. The parallel efficiency on up to 48 processors
is above 50%, which confirms our general expectations

that the proposed approach parallelizes very well. As
expected, as the size of the problem increases, parallel
efficiency increases as well (for n=96, efficiency of 73%
has been observed on 48 processors, and even on 96
processors efficiency of almost 50% was recorded).

 Benchmark 1 Benchmark 2

p Time Sp Ep Time Sp Ep

n=32

1 45.96 185.71

2 24.1 1.91 0.95 96.88 1.63 0.96

4 12.35 3.72 0.93 49.19 3.01 0.94

8 6.28 7.32 0.91 25.18 6.06 0.92

16 3.48 13.21 0.83 13.84 10.38 0.84

32 1.7 27.04 0.84 11.2 13.54 0.52

n=48

1 952.94 1744.28

2 485.61 1.96 0.98 889.92 1.96 0.98

3 320.64 2.97 0.99 586.61 2.97 0.99

4 247.78 3.85 0.96 422.03 4.13 1.03

6 167.8 5.68 0.95 285.02 6.12 1.02

8 125.58 7.59 0.95 229.44 7.60 0.95

12 83.97 11.35 0.95 154.17 11.31 0.94

16 64.66 14.74 0.92 110.64 15.77 0.99

24 44.33 21.50 0.90 80.8 21.59 0.90

n=64

1 2566.04 4247.67

2 1336.46 1.92 0.96 2212.14 1.92 0.96

4 663.91 3.87 0.97 1099.84 3.86 0.97

8 339.25 7.56 0.95 559.704 7.59 0.95

16 175.32 14.64 0.91 289.24 14.69 0.92

32 95.57 26.85 0.84 158.3 26.83 0.84

n=96

1 15257.2 25000

2 7826.49 1.95 0.97 12976.8 1.93 0.96

3 5036.91 3.03 1.01 8384.87 2.98 0.99

4 3879.16 3.93 0.98 6450.12 3.88 0.97

6 2610.47 5.84 0.97 4336.2 5.77 0.96

8 1970.25 6.46 0.97 3279.75 7.62 0.95

12 1321.53 9.44 0.96 2198.85 11.37 0.95

16 1004.52 12.47 0.95 1671.92 14.95 0.93

24 681.54 17.65 0.93 1130.18 22.12 0.92

32 516.2 22.76 0.92 867.62 28.81 0.90

Table 2. Results obtained on Shooner.

The super-linear speed-up was been observed in some of
the runs (for 3 or 4 processors). There are two reasons for
this fact: (1) splitting the entire problem into subproblems
of what could be considered an “optimal” size for the
computer architecture in question and (2) following from

it better usage of cache memories of individual parallel
processors.

Table 2 shows results obtained on Shooner. These
results are quite interesting. Here we can “compare”
execution time on (and thus performance of) a 2.0 GHz P4
processor (32-bit architecture) with that of the 1.0 GHz
Itanium processor (64-bit architecture). The execution
time on Schooner is substantially longer than on Boomer.
This indicates that the very fact that Itanium processors
are a 64-bit architecture and, overall, were introduced with
promise of higher performance does not compensate for a
50% drop in clock speed. This also seems to indicate that
while tools like compilers have been around long enough
to optimize performance of 32-bit processors (in the case
of a realistic application, rather than a synthetic
benchmark), their 64-bit counterparts still have long way
to go to reach the same level of code optimization.

 Benchmark 1 Benchmark 2

p Time Sp Ep Time Sp Ep

n=32

1 117.37 480.55

2 60.26 1.95 0.97 246.89 1.95 0.97

4 30.34 3.87 0.97 123.32 3.90 0.97

8 15.38 7.63 0.95 62.63 7.67 0.96

16 8.42 13.94 0.87 44.18 10.88 0.68

n=48

1 2520.68 4315.42

2 1273.73 1.98 0.99 2321.31 1.86 0.93

3 835.88 3.02 1.01 1444.70 2.99 1.00

4 638.68 3.95 0.99 1170.25 3.69 0.92

6 445.49 5.66 0.94 813.99 5.30 0.88

8 318.97 7.90 0.99 584.28 7.39 0.92

12 215.70 11.69 0.97 368.12 11.72 0.98

n=64

1 6885.60 11216.40

2 3345.32 2.06 1.03 5648.49 1.99 0.99

4 1689.63 4.08 1.02 2706.94 4.14 1.04

8 867.27 7.94 0.99 1437.97 7.80 0.98

16 664.12 10.37 0.65 1081.92 10.37 0.65

n=96

1 42632.1 68353.40

2 20613.8 2.07 1.03 34507.20 1.98 0.99

3 14140.6 3.01 1.01 22984.70 2.97 0.99

4 10342.3 4.12 1.03 17066.10 4.01 1.00

6 7140.59 5.97 1.00 11652.60 5.87 0.98

8 5354.38 7.96 1.00 8793.15 7.77 0.97

12 3570.23 11.94 1.00 5935.70 11.52 0.96

Table 3. Results obtained on Azusa.

Furthermore, when comparing the results obtained on
Boomer and Shooner one can see that, in general, parallel
efficiency is substantially higher on Shooner. In this
context let us note that, overall, it is easier to obtain high
level of efficiency on a machine with relatively slower
processors. However, efficiency on Shooner is extremely
good – note that in the case of n=96 it stays above 90% for
all numbers of processors used. This can be further
explained by the fact that the network parameters start-up
time and time for transferring of single word are smaller
on the second cluster. Again one can see that the speed-up
and efficiency increase with the increase in the size of the
discrete problem.

Two cases of super-linear speed-up (for n=48 and 3 and
4 processors) can be explained by the problem size
division hitting a sweet-spot of memory usage per
processor and its interaction with local cache memory
size.

In Table 3 we present results of experiments executed
on the NEC Server Azusa Express5800/1160Xa. This
machine is an SMP (Symmetric Multiprocessor) and thus
it is a very different architecture that the previously
considered two – classical cluster computers.

The first important observation is that the execution
time on Azusa is substantially longer than in the case even
of Shooner. This reduction in speed cannot be simply
explained by 20% reduction in clock speed of the
processor. The results on the Azusa were run about a year
ago and we used a current for that time version of the NEC
compiler. This being the case, combined with the fact that
the Itanium technology is very new can explain some
inefficiencies of the compiler. Furthermore, since we did
not have any direct support and thus we used the simplest
possible optimizations.

While the run-time on Azusa is much longer than on
Shooner, its parallel efficiency is higher and a super-linear
speed-up is observed very often. While this could be
explained by the fact that its processors are even slower,
we have to keep in mind that Azusa not only has slower
processors, but also appropriately older remaining
components of the system (e.g. the Azusa has SDRAM,
while Shooner has DDR RAM memory). We would like to
conjecture that what matters more is the fact that Azusa is
an SMP computer and thus its network parameters are
substantially better (smaller data access and transfer time)
than in the case of a network-based cluster. It is the SMP
architecture that is responsible for the extremely good
efficiency of 96% when running the problem of size n=96
on 32 processors.

Table 4 shows results obtained on Cray Opteron cluster
(Strider). The results are very similar to the results
obtained on Boomer, but there are some interesting
differences.

 Benchmark 1 Benchmark 2

p Time Sp Ep Time Sp Ep

n=32

1 24.29 100.67

2 12.58 1.93 0.97 51.40 1.96 0.98

4 6.598 3.68 0.92 26.99 3.73 0.93

8 3.44 7.05 0.88 13.94 7.22 0.90

16 1.85 13.16 0.82 7.49 13.45 0.84

32 1.275 19.06 0.60 5.25 19.17 0.60

n=48

1 666.45 1143.17

2 331.12 2.01 1.01 607.57 1.88 0.94

3 226.48 2.94 0.98 417.84 2.74 0.91

4 171.12 3.89 0.97 313.39 3.65 0.91

6 118.17 5.64 0.94 216.00 5.29 0.88

8 90.01 7.40 0.93 164.82 6.94 0.87

12 59.80 11.14 0.93 109.18 10.47 0.87

16 45.39 14.68 0.92 77.30 14.79 0.92

24 30.990 21.51 0.90 57.07 20.03 0.84

48 18.198 36.62 0.76 33.35 34.28 0.71

n=64

1 1533.96 2533.75

2 756.18 2.03 1.01 1250.47 2.03 1.01

4 391.53 3.92 0.98 648.45 3.91 0.98

8 202.50 7.58 0.95 337.85 7.50 0.94

16 112.74 13.61 0.85 182.89 13.85 0.87

32 56.13 27.33 0.85 92.92 27.27 0.85

64 32.26 47.55 0.74 53.15 47.67 0.75

n=96

1 11101.9 18430.80

2 5541.60 2.00 1.00 9204.99 2.00 1.00

3 3722.11 2.98 0.99 6210.83 2.97 0.99

4 2800.50 3.96 0.99 4665.51 3.95 0.99

6 1913.57 5.80 0.97 3182.44 5.79 0.97

8 1435.91 7.73 0.97 2393.06 7.70 0.96

12 976.18 11.37 0.95 1618.29 11.39 0.95

16 741.59 14.97 0.94 1238.29 14.88 0.93

24 515.44 21.54 0.90 862.23 21.38 0.89

32 388.67 28.56 0.89 649.49 28.38 0.89

48 270.01 41.12 0.86 451.46 40.82 0.85

96 149.26 74.38 0.78 246.16 74.87 0.78

Table 4. Results obtained on Strider.

Let us consider the largest problem studied (Benchmark
2; n=96). Here, for a single processor Boomer is faster
(execution time of 17011 second, while Strider time is
18430 seconds – the difference of about 8%). For 96
processors situation is exactly the opposite. Here, Boomer
time is 386 seconds, while Strider time is only 246

seconds (difference of about 36%). This result is quit
rather unexpected. It shows, that in the case of the real-life
problem considered here – when code is executed on a
single processor – the two 2.0 GHz processors from Intel
and AMD behave very similarly (performance difference
of 8% can be associated with compiler quality and options
used during compilation), the big difference is in parallel
performance. Let us stress that both systems use “the
same” Myrinet 2000 switch and have a very similar total
number of computational nodes. Thus the only way to
explain the difference seems to be by pointing to the
computer vendor. Cray surely knows supercomputers and
it shows in this case through a 36% performance gain.

Finally, we compare results reported here with earlier
results collected on a Sun Sunfire 6800. In Figure 1 we
depict parallel speed-up of execution of a single iteration
of our code obtained on different parallel systems in the
case of Benchmark 2, for n=96.

Fig.1 Speed-up for one iteration

What is particularly revealing is the fact that most

systems have very similar speed-up. However Boomer,
definitely lags behind and this is related to the fact that it
is the fastest of the machines we experimented with when
a single-processor performance is considered, but when it
comes to parallel performance (and thus issues related to
data transmission), then even though it is utilizing a very
good switching infrastructure, its performance falls
behind.

7. Concluding remarks

In this note we have used a real-life geomechanics
modeling code to compare performance of four parallel
computers (2 clusters and one SMP). The main finding is
that the general behavior of the code on all machines is
very good and in agreement with theoretical estimates. At
the same time we were able to make a few interesting
observations about each of computers used in our
experiments.

Acknowledgments

This research was supported by the bilateral IPP–BAS –
ICS–WSSP interacademy exchange grant "Parallel and
Distributed Computing Practices". It was supported also
by the Bulgarian NSF grant I–1402/2004. Computer time
grant from the Oklahoma Supercomputing Center is
kindly acknowledged. The results on Azusa and Strider
were obtained during the HPC-Europa research visit at the
University of Stuttgart supported by the European
Commission through grant number R113–2003–506079.

References
[1] I. Lirkov, MPI solver for 3D elasticity problems,
Mathematics and computers in simulation, 61 3–6, 2003, 509–
516.

[2] A. Georgiev, A. Baltov, and S. Margenov, Hipergeos
benchmark problems related to bridge engineering applications,
project report HG CP 940820MOST4.

[3] I. Lirkov, Parallel Performance of an MPI Solver for 3D
Elasticity Problems, Numerical methods and applications, (I.
Dimov, I. Lirkov, S. Margenov, Z. Zlatev eds.), Lecture Notes in
Computer Sciences, 2542, Springer Verlag, 2003, 527–535.

[4] O. Axelsson and I. Gustafsson, Iterative methods for the
solution of the Navier equations of elasticity, Comp. Meth. Appl.
Mech. Eng. 15 (1978) 241–258.

[5] R. Blaheta, Displacement decomposition–incomplete
factorization preconditioning techniques for linear elasticity
problems, Num. Lin. Alg. Appl. 1 (1994) 107–128.

[6] I. Lirkov, S. Margenov, MPI parallel implementation of CBF
preconditioning for 3D elasticity problems, Mathematics and
computers in simulation, 50 1–4, 1999, 247–254.

[7] M. Snir, St. Otto, St. Huss-Lederman, D. Walker, J. Dongara,
MPI: The Complete Reference, Scientific and engineering
computation series, The MIT Press, Cambridge, Massachusetts
(1997) Second printing.

[8] D. Walker, J. Dongara, MPI: a standard Message Passing
Interface, Supercomputer, 63 (1996) 56–68.

[9] http://www.oscer.ou.edu/resources.php#boomer

[10] http://www.oscer.ou.edu/resources.php#schooner

[11] http://www.hlrs.de/hw-access/platforms/azusa/

[12] http://www.hlrs.de/hw-access/platforms/strider/

