Towards a Grid-aware Computer Algebra System

Dana Petcu''2, Diana Dubu'-2, Marcin Paprzycki®

! Computer Science Department, Western University, > Institute e-Austria, Timisoara,
3 Computer Science Department, Oklahoma State University
{petcu,ddubu}@info.uvt.ro, marcin@cs.okstate.edu

Abstract. One of the developments that can lead to a wider usage of
grid technologies is grid-enabling of application software, among them
computer algebra systems. A case study described here involves Maple.
The proposed maple2g package allows the connection between the cur-
rent version of Maple and the computational grid based on Globus.

1 Introduction

Computer algebra systems (CASs) are frequently used by mathematicians or
engineers to perform complicated calculations and are rightfully seen as one of
major sources of user’s productivity. In practice it is often desirable to be able
to augment the CAS with functionality from an external software artifact (e.g.
pakage, application etc.). Nowadays, in this process one can rely on already
available solutions, such as the grid technology.

Several projects aim at providing APIs to execute scientific libraries or pro-
grams over the grid. NetSolve [1] is a grid based server that supports Matlab
and Mathematica as native clients for grid computing. MathLink [8] enables
Mathematica to interface with external programs via an API interface. Math-
GridLink [6] permits the access to the grid service within Mathematica, and the
deployment of new grid services entirely from within Mathematica. The Geodise
toolkit [3] is a suite of tools for grid-services which are presented to the user as
Matlab functions, calling Java classes which in turn access the Java CoG API.
MapleNet [4] offers a software platform to effective large-scale deployment of
comprehensive content involving live math computations.

To be able to facilitate development of parallel grid distributed CAS applica-
tions, a CAS interface to a message-passing library is needed. There exist more
then 30 parallel Matlab projects [2]. gridMathematica [8] allows the distribution
of Mathematica tasks among different kernels in a distributed environment.

Maple is utilized as the CAS of choice in our attempt to couple a CAS
and a computational grid. The main reason for this choice is that, despite its
robustness and ease of use, we were not able to locate efforts to link Maple
with grids. Second, it is well known that Maple excels other CAS in solving se-
lected classess of problems like systems of nonlinear equations or inequalities [7].
Furthermore, Maple has already a sockets library for communicating over the
Internet, and a library for parsing XML (a data-exchange standard widely uti-
lized in the grid community). Finally, distributed versions of Maple have been
recently reported in [5].



To obtain our goal we proceeded by developing Maple2g: the grid-wrapper
for Maple. It consists of two parts: one which is CAS-dependent and the other,
which is grid-dependent and thus any change in the CAS or the grid needs to be
reflected only in one part of the proposed system. The CAS-dependent part is re-
latively simple and can esily be ported to support another CAS or a legacy code.

2 Developing a grid-aware Maple extension

Our analysis of the grid aware CAS systems indicates that any such a system
must have at least the following facilities:

Ability to accept inputs from the grid: the CAS must be opened to augment its
facilities with external modules, in particular it should be able to explore
grid facilities, to connect to a specific grid service, to use the grid service,
and to translate its results for the CAS interface.

Being a source of an input for the grid: the CAS or some of its facilities must
be seen as grid services and activated by remote users in appropriate security
and licensing conditions; furthermore, deployment of grid services must be
done in an easy way from the inside of the CAS.

Ability to communicate and cooperate over the grid: similar or different kernels
of CASs must be able to cooperate within a grid in solving general prob-
lems; in order to have the same CAS on different computational nodes a
grid-version of the CAS must be available; in the case of different CASs,
appropriate interfaces between them must be developed and implemented or
a common languages for inter-communication must be adopted.

Rewriting a CAS kernel in order to improve its functionality towards grids
can be a complicated and high-cost solution. Wrapping the existing CAS kernel
in code acting as the interface between the grid, the user and the CAS can be
done relatively easily as an added-functionality to the CAS. In addition, it can
also be adapted on-the-fly when new versions of the CAS in question become
available.

Maple2g is a prototype of a grid/cluster-enabling wrapper for Maple. As
described below it consists of two components, MGProxy, a Java interface between
Maple and the grid/cluster environment, and m2g, a Maple library of functions
allowing the Maple user to interact with the grid/cluster middleware.

MGProxy has three operating modes:

1. user mode: activated from inside of the Maple environment (by the m2g MG-
Proxy_start command), receives the user command from the user’s Maple
interface via a socket interface, contacts the grid/cluster services (including
also other MGProxy processes), queries the user requests to the contacted
services, and sends the results of the queries to the main Maple interface.

2. server mode: activates a Maple twin process (which enters in a infinite cycle
of interpreting commands incoming via the socket interface from MGProxy),
acts as a server waiting for external calls, interprets the requests, sends
the authentications requests to the Maple twin process, receives the Maple
results, and sends them back to the user.



Table 1. Functions available in m2g library

Function Description

m2g_connect() Connection via Java COG to the grid

m2g_getservice(s, [) Search for a service s and retrieve its location [

m2g_jobsubmit(¢, c) Allows a job submission in the grid environment labeled with the
number ¢: the command c is a string in the RSL format

m2g_results(t) Retrieve the results of the submitted job labeled ¢

m2g_maple(p) Starts p processs MGProxy in parallel modes

m2g-send(d, t,c) Send to the destination kernel d a message labeled ¢ containing
the command c¢; d —’all’ or a number, £ — number, ¢ — string

m2g_recv(s,t) Receive from the kernel labeled s results from the

command labeled ¢; s — 'all’ or a number, ¢ — number
m2g_rank MGProxy rank in the MPI World, can be used in a command
m2g_size Number of MGProxy processes, can be used in a command

3. parallel mode: is activated from user’s interface with several other MGProxy
copies; the copy with the rank 0 enters in user mode and runs in the user envi-
ronment, while the others enter in server mode; the communication between
different kernels is established through a standard message passing interface.

The current version of Maple2g has a minimal set of functions (described in
Table 1) allowing access to the grid services. These functions are implemented in
the Maple language, and they call MGProxy which accesses the Java CoG API.
For example, accessing a grid-service can be done in the steps described in Fig.1.

The component responsible for accessing Maple as a grid-service is similar to
that of the MapleNet [4]. In the current version of the Maple2g prototype, the
access to the fully functional Maple kernel is allowed from the grid: MGProxy act-
ing as CAS-grid interface implements only an account check procedure in order to
verify the user rights to access the licensed version of Maple residing on the grid.

Parallel codes using MPICH as their message-passing interface can be easily
ported to grid environments due to the existence of a MPICH-G version which
runs on top of the Globus Toolkit. On other hand, the latest Globus Toolkit is
build on Java, and the Java clients are easier to write. This being the case, we
selected the mpiJava as the message-passing interface between Maple kernels.

> with(m2g): m2g_MGProxy_start(); m2g_connect();
[m2g_connect, m2g_getservice, m2g_jobstop, m2g_jobsubmit, m2g_maple,
m2g_MGProxy_end, m2g_MGProxy_start, m2g_rank, m2g_recv, m2g_results,
m2g_send ,m2g_size]
Grid connection established
> m2g_getservice("gauss", ‘service_location‘);
["&(executable=/home/Diana/m2g/Gauss.sh)","&(executable=/tmp/gauss)"]
> m2g_jobsubmit (3,service_location[1]);
job submitted
> m2g_results(3); m2g_MGProxy_end();
Solving linear syst. with Gauss method: Input in.txt, Output out.txt
Grid connection closed

Fig. 1. Accessing in Maple an external linear solver, available as a grid service



>with(m2g) : m2g_MGProxy_start(); m2g_maple(4): d:=‘all‘:
>m2g_send(d,1,"f:=(x,y)->(x"2-y~2+0.32, 2%x*y+0.043):"):
>m2g_send(d,2,"g:=(x,y)->x"2+y"2:"):

>m2g_send(d,3,"h:=(x,y)->if g((£@0130) (x,y))<1 then 0 else 1 fi:"):
>m2g_send(d,4,"plot3d(‘h(x,y) ¢,grid=[400/mg_size,400],y=-1.15..1.15,
> x=-142*mg_rank/mg_size..-1+2* (mg_rank+1)/mg_size,style=point,

> view=[-1..1,-1.15..1.15,0..0.1],orientation=[90,0]);"):
>plots[display3d] (m2g_recv(‘all‘,4)); m2g_MGProxy_end();

Fig. 2. A Julia fractal: the plotting time of order O(10%) s in the sequential case can be
reduced by a speedup factor of 3.5 using 4 Maple kernels treating equal vertical slices

In Maple2g a small number of commands is available to the user, for sending
commands to other Maple kernels and for receiving their results (Table 1). These
facilities are similar to those introduced in PVMaple [5]. The user’s Maple in-
terface is seen as the master process, while the other Maple kernels are working
in a slave mode. Command sending is possible not only from the user’s Maple
interface, but also from one kernel to another (i.e. a user command can contain
inside a send/receive command between slaves).

To test the feasibility of this approach to developing distributed Maple appli-
cations, tests have been performed on a small PC cluster (8 Intel P4 1500 MHz
processors, connected by a Myrinet switch at 2Gb/s). When splitting the time-
consuming computations we have observed an almost linear speedup. While a
detailed report on parallel Maple2g is outside of the scope of this note, in Fig.2
we give an example of a parallel Maple2g code.

At this stage Maple2g exists as a demonstrator system; however it already
shows its potential. In the near future it will be further developed to include
facilities existing in other systems, in order for it to become comparably ro-
bust as NetSolve or Geodise. Tests on grid on a large domain of problems will
help guide further development of the system. Deployment of grid services from
Maple in other languages than Maple using the code generation tools will be
also taken into consideration. Finally, the next version of MGProxy will allow
the cooperation between different CAS kernels residing on the grid.

References

1. Casanova H. and Dongarra J.: NetSolve: a network server for solving computational
science problems. Inter.J. Supercomputer Appls. & HPC, 11-3 (1997) 212-223

2. Choy R., Edelman A.: Matlab*P 2.0: a unified parallel MATLAB, In Procs. 2nd
Singapore-MIT Alliance Symp. (2003), in print.

3. Eres M. H. et al: Implementation of a grid-enabled problem solving environment
in Matlab. In Procs. WCPSE03 (2003), in print, www.geodise.org

4. MapleNet. www.maplesoft.com/maplenet/

5. Petcu D., PVMaple: A distributed approach to cooperative work of Maple pro-
cesses. LNCS 1908, eds. J.Dongarra et al., Springer (2000) 216-224

6. Tepeneu D. and Ida T.: MathGridLink - A bridge between Mathematica and the
Grid. In Procs. JSSST03 (2003), in print.

7. Wester M.: A critique of the mathematical abilities of CA systems. In CASs: A
Practical Guide, ed. M.Wester, J. Wiley (1999), math.unm.edu/ wester/cas_review

8. Wolfram Research: MathLink & gridMathematica, www.wolfram.com.



