
CHAPTER 27

Symbolic Computations on Grids

Dana Petcu,1 Dorin Ţepeneu,2 Marcin Paprzycki,3 Tetsuo Ida2
1Institute e-Austria Timişoara, and University of Timişoara, Romania
2University of Tsukuba, Japan
3Oklahoma State University, USA

CONTENTS

1. Introduction . 1
2. Parallel and Distributed Symbolic Computations 2
2.1. Parallel Algorithms for Symbolic Computations 2
2.2. Parallel and Distributed CASs—State-of-the-Art 3
2.3. Web-Enabled Systems . 5

3. Grid-Enabled Systems . 6
4. Case Study: Maple2g . 7
5. Case Study: MathGridLink . 10
6. Conclusions . 14
References . 14

1. INTRODUCTION
There exist two basic approaches to computational solution of mathematical problems:
numerical and symbolic. For a long time, the numerical approach had an advantage of being
capable of solving a substantially larger set of problems. Recently the symbolic approach
gained more recognition as a viable tool for solving large-scale engineering problems. Sym-
bolic solution of mathematical problems involves manipulations of symbolic objects, like
logical or algebraic formulae, rules or programs. Unlike the numerical approach, one of the
main goals of the symbolic approach is exactness. Typically, the final answer is either a ratio-
nal number, or a formula that represents the answer. In this way symbolic calculations can
be used (a) to find an exact solution to a given problem, (b) to study the problem when only
partial information is available and the formula obtained through symbolic calculations rep-
resents simplification of the mathematical model through application of existing knowledge
about the problem in question, and (c) in simulations, where the mathematical formula is
parameterized and used to study a range of solutions depending on the choice of parameters.
Developments in symbolic computing are lagging relative to numerical computing, mainly

due to the inadequacy of available computational resources: most importantly computer
memory, but also processor power. Continuous growth in the capabilities of computer hard-
ware led to an increasing interest in symbolic calculations and resulted, among others things,
in development of sophisticated Computer Algebra Systems (CASs). These systems allow

ISBN: 1-58883-038-1
Copyright © 2006 by American Scientific Publishers
All rights of reproduction in any form reserved.

1

Engineering the GRID
Edited by B. Di Martino, J. Dongarra, A. Hoisie,

L. T. Yang, and H. Zima
Pages (1–17)

2 Symbolic Computations on Grids

users to “directly” study computational problems on the basis of their mathematical formu-
lations and to focus on the problems themselves instead of spending time transforming the
problems into forms that are numerically solvable. As an effect, symbolic computations are
being applied in a number of diverse disciplines such as, among others, pure and applied
mathematics, physics, engineering and economics [1]. Symbolic computation is also becom-
ing a basis for advanced applications in many areas of computer science, such as computer
aided design or software development, VLSI design, geometric modeling and reasoning,
robot programming etc. Finally, symbolic methods have also become popular in life sciences,
in particular in studying human genome.
While the major purpose of the CAS is to manipulate formulas symbolically, many systems

have substantially extended their capabilities. Nowadays, robust CASs offer other function-
alities like graphics and simulations allowing a more comprehensive approach to problem
solving. Furthermore, modern CASs are capable of solving very large problems. While, typ-
ically, CAS systems are utilized in an interactive mode, to solve large problems they can be
also used in a “batch” mode and programmed using languages that are very close to com-
mon mathematical notation. Lists of existing CASs can be found in Refs. [2–4] and their
facilities were compared in Refs. [5–7].
As CASs become capable of solving large problems, they follow the course of development

that has already been taken by numerical software: from sequential computers to parallel
machines to distributed computing and finally to the grid. It is particularly the grid that has
high potential as a discovery accelerator. Currently, its widespread adoption is still impeded
by a number of problems, one of which is difficulty of developing and implementing grid-
enabled programs.
The aim of this chapter is two-fold. In the next section we present the state-of-the-art of

symbolic and algebraic computations involving parallel and distributed environments as well
as the path leading toward grid-enabled CASs. Secondly, we follow up the discussion with
two case studies of porting CAS systems to the grid: Maple2g—-grid enabled Maple and
MathGridLink-—grid enabled Mathematica.

2. PARALLEL AND DISTRIBUTED SYMBOLIC COMPUTATIONS
Many users utilize CASs as tools performing “small scale” mathematical calculations that
would be tedious and error-prone when performed by hand. For them, those systems running
on a single processor computer are quite satisfactory. However, there exists a class of users
who employ CASs to solve large and very large problems. Here, the solution to the problem
may involve, for instance, large scale symbolic computations requiring a significant amount
of computational resources, or a combination of symbolic and numerical computations used
in the context of multivariable simulation (the CAS environment becomes an “interface”
to a set of computational kernels). These users often encounter the limitations of single-
processor systems: processor speed and available memory. It is this class of users that could
truly benefit from availability of parallel and distributed versions of CASs.
It is well known, that the two main reasons driving the development of parallel computers

are: (a) ability to reduce the wall-clock time i.e., the user’s waiting time for the solution
(problems that are processor bound), (b) ability to solve problems that cannot fit into mem-
ory of a “workstation” (problems that are memory bound). An argument has been formu-
lated, that for the CASs it is the latter restriction that is the driving force for parallelization
[8]. The argument relies on the following observations. Computation with algebraic terms
involves interaction between the amount of available memory and the amount of memory
required by the algorithm at any stage of the computation; the input size of a problem may be
small, but its memory use in intermediate stages of the computation may grow considerably.
In this context, let us briefly look at algorithms that play a significant role in large-scale

symbolic and algebraic computations.

2.1. Parallel Algorithms for Symbolic Computations

Multiprecision integer arithmetic is one of most important fields in symbolic and alge-
braic computations. It appears, among others, in factorizations [9] or Gröbner base

Symbolic Computations on Grids 3

computations [10]. For parallel arithmetic in finite fields there exists an implementation on
a massive parallel processor [11]. Modular integer multiplication [12] and exponentiation
[13] have been also implemented on parallel architectures. Systolic algorithms for integer
arithmetic were developed and presented in Ref. [10]. Furthermore, systems for multivariate
integer arithmetic on distributed memory machines [14] and on the Internet [9] have been
developed. Parallel implementation of the Karatsuba algorithm for multiprecision integer
multiplication is reported in Ref. [15].
The second class of algorithms that utilize significant amount of computational resources

are implementations of polynomial arithmetic. Two categories of algorithms can clearly ben-
efit from multiple resources usage are (a) algorithms that depend on identification of similar
terms such as the polynomial addition, and (b) knowledge based algorithms such as the sym-
bolic differentiation or Gröbner base computations [8]. The greatest common divisor is an
example of a frequent operation on both integers and polynomials. Parallel GCD algorithms
were reported inRefs. [16] and [17]. InRef. [18] two aspects of parallelism in symbolic comp-
uting are discussed: implementation of parallel programs used in factorization of polynomials
and automatic generation of parallel codes for finite element analysis. The first aspect illus-
trates the use of parallel programming to speed up symbolic manipulation, while the second
one shows how symbolic systems can help create parallel software for scientific computation.
The third class of algorithms that can benefit from extra memory and processing power

availability in parallel systems are the Cramer’s rule and the Gaussian elimination with back
substitution used to solve sparse systems of linear equations [8].
Finally, the Gröbner base algorithm has application in several mathematical fields. Here,

the size of the computation and the irregular data structures required make parallelization
an attractive option for improving the algorithm performance. Several parallel implemen-
tations of the algorithm have been developed. The one proposed in Ref. [19] consists of
parameterized work distribution on shared memory architecture. In Ref. [20] application
level threads are used on a distributed memory system. Algorithm implementations on dis-
tributed memory systems are reported also in Ref. [8, 21, 22].
While memory-bound algorithms are clearly the most important driving force for the

development of parallel CASs, there is one more reason that becomes more important with
every new release of each of the major CAS. As indicated above, CASs increase their utility
not only through adding new symbolic capabilities, but also by expanding their reach through
adding new functionalities, such as visualization or numerical modules. In this way, modern
CASs become less of a computational engine and more of a problem solving environment:
the CAS is seen as an interface to a number of computational kernels. This change poses
a need for addressing the parallelization of processor bound tasks. As examples of such
tasks we can list: rendering of images for an animation illustrating the evolution of a system
or a multivariable simulation illustrating the solution space of an optimization problem. In
these cases, all of the typical problems involved in parallelization of numerical computations
appear also in the context of parallel or distributed CAS.
The design and implementation of a robust and scalable CAS relies on the same prin-

ciples as those applied in other large systems (e.g., modularity, abstraction), but there are
also some specific development problems (identified, for instance, in Ref. [8]) that play an
important role, when development of a parallel or distributed CAS is concerned like the
algorithmic dependence on irregular data which are difficult to be dynamically partitioned,
or the complexity of some of ensuing algebraic computations limiting ability to estimate
resource requirements. Keeping this in mind, let us now survey the state-of-the-art in parallel
and distributed CASs.

2.2. Parallel and Distributed CASs—State-of-the-Art

It is a well known fact that developing completely new parallel or distributed systems,
although efficient, in most cases is rather difficult. Moreover, usually only a few parallel algo-
rithms within such a system are fully implemented and tested, making the resulting artifact
too limited for practical uses. An alternative approach is to add parallelism to an existing
system (consisting of a large number of implemented and tested sequential algorithms). In
this case parallelism becomes an added value to the existing environment. Several parallel

4 Symbolic Computations on Grids

and distributed CASs have been developed this way, but based on different requirements
and targeted for competing parallel architectures.
Overall, the following developmental strategies were identified in Ref. [8]:

• develop CASs for shared memory architecture;
• develop computer algebra hardware;
• add parallel primitives for communication and cooperation to existing CASs;
• build distributed memory systems based on standard communication middleware;
• build distributed systems for loosely coupled machines or across the Internet.

Let us now proceed with a summary of existing CASs and other symbolic computation
systems or tools that have been extended towards parallel and distributed computations. It
should be stressed, that even though the authors of this chapter have spent considerable
time researching the subject, the list presented in the next sections is far from complete.
Our presentation is structured in the following way. We start with three most popular CASs:
Maple [23], Matlab [24], and Mathematica [25] and subsequently present a combined list
of smaller-scale or niche projects.

Maple. There exist a large number of efforts to extend Maple to parallel and distributed
environments and a comprehensive review can be found in Ref. [26]. Here, we present a
few selected examples to illustrate the most important approaches taken by various research
groups. A message passing interface to port Maple to the Intel Paragon was presented in
Ref. [27]: a master-slave approach to distributed scheduling was used to maintain a single
node access in interactive use of Maple. A parallel version of Maple running on a network of
workstations was reported in [28]: it is a message-passing system with primitives spawn and
kill for creating and terminating processes, and procedures send, receive and reply for com-
munication. �Maple� [29] is a portable system for parallel symbolic computations built as an
interface between the parallel programming language Strand and the sequential CAS Maple.
Distributed Maple [26] allows the creation of concurrent tasks and have them executed by
multiple Maple kernels running on separate networked computers: a Java configuration pro-
gram starts and connects external computational kernels and schedules concurrent tasks for
execution, while a Maple package implements an interface to the scheduler and provides a
parallel programming model. The design principles behind PVMaple [30] are very similar
to those of the Distributed Maple: a special binary is responsible for the message exchanges
between Maple processes, coordinates the interaction between Maple kernels via PVM dae-
mons, and schedules tasks among nodes, while a Maple library implements a set of parallel
programming commands available within Maple.

Matlab. More than 20 different versions of parallel Matlab have been developed by
different groups of researchers and an overview of them was presented in Ref. [31]. They
can be compared according to their process-communication and user interfaces. A signifi-
cant number of parallel versions of Matlab make use of message-passing for interprocessor
communication and provide message-passing interface to the user. Commands like send
and receive are based on standard MPI/PVM libraries and utilized in DP-ToolBox [32],
MPITB/PVMTB [33], and MultiMatlab [34]. Simple communication functions have been used
in Matlab Parallelization Toolkit [35], ParMatlab [36], and PMI [37], while file I/O synchro-
nization functions via a shared file system has been implemented in MatlabMPI [38]. A few
parallel Matlabs are designed for shared-memory systems and provide shared-memory pro-
gramming interfaces—in MATmarks [39], for example, commands are provided for shared
variable declaration and process synchronization. Other versions of Matlab are designed to
release the user from parallel details by overloading several existing Matlab functions with
their parallel versions—for example, Matlab*p [40]. Another approach is to use Matlab com-
pilers, like Conlab [41] or Otter [42]. These compilers can automatically translate a Matlab
program into a parallel program written in C. It is worth noting that the Symbolic Math
Toolbox provided within Matlab uses the Maple kernel for symbolic computations.

Mathematica. Parallel Computing Toolkit (PCT) [43] is an extension of Mathematica
which allows communication between servers using rsh: a typical installation involves

Symbolic Computations on Grids 5

a master kernel to handle inputs, outputs, and scheduling, a license manager to manage
licenses and passwords, and one Mathematica kernel per each available node. Based on
PCT, gridMathematica [44] was constructed as a parallel computing solution for dedicated
clusters facilitating parallel computing within Mathematica, requiring only TCP/IP connec-
tivity. Since it is focused on management of a clusters of heterogeneous machines, a better
name for this environment would be clusterMathematica. Distributed Mathematica [45],
similar to Distributed Maple, is a system for writing parallel programs in Mathematica allow-
ing to create concurrent tasks and have them executed by Mathematica kernels running on
different machines of a network.

Special Libraries and Systems. Threads for parallel symbolic computations on a shared-
memory computers were used in parallelizing the SAC-2 CAS, resulting in the ParSac-2
parallel system [46], written in C. It has been used to substantially improve performance
of applications such as Gröbner base computations [19] or Karatsuba multiplication. Paclib
[47] is a parallel extension of Saclib, a library of C programs for computer algebra derived
from the SAC-2 CAS: communication between processes is achieved through access to
shared data, and since shared memory limits scalability, very large problems could not have
been solved. Givaro [48] is a more recent C++ library that supports parallel program-
ming for arithmetic and algebraic computations with basic algebraic objects, such as vectors,
matrices and univariate polynomials.
A special language designed for L-machines was provided by Ref. [49] for parallel pro-

gramming of computer algebra algorithms: the L-machine consists of a reconfigurable assem-
bly of processors, memory, a bus switch, and a sensor bit used for access rights to the shared
memory and for synchronization. Another dedicated machine called FLATS [50] was con-
structed for large scale CAS applications: it was equipped with special hardware for arbitrary
precision arithmetic and parallel hashing in addition to the instruction set for executing Lisp
primitives directly by the hardware. In Ref. [51] Lisp was extended with a tool for automatic
identification of concurrency: the system accepts a Lisp program, analyses it for available
concurrency and generates a program for parallel execution on a multiprocessor comprising
a network of workstations. This data flow analyzer can be utilized to analyze a complete
Lisp-based CAS such as the Reduce [52] and identify areas that can be parallelized. A
different Lisp extension for a distributed network of workstation was given in Ref. [53]
where explicit concurrency primitives were provided. Another system called Star/MPI [54]
is available for Gnu Common Lisp and GAP [55].
The first version of Cabal [56] written for polynomial algebra, uses the PVM library for

parallelization. A later development switched to MPI and several packages for multiprecision
integers, matrix algebra and Gröbner base computations were added [57].
MuPad [58], the multi-processing algebra data tool, developed for shared memory parallel

machines allows fast access to large databases and functional programming.
Form [59], used in quantum field theory computations, is a program for symbolic manip-

ulation of algebraic expressions that was tuned to handle very large expressions, involving
millions of terms. A parallel prototype ParForm, based on MPI, was presented in Ref. [60]:
the Form user does not need to modify the sequential versions of the programs, as paral-
lelization being facilitated internally within the environment.
The FoxBox system [61] provides client-server interfaces to several CASs running in dis-

tributed computing environments; distribute, wait, kill functions are compliant with the MPI.
The DSC system [62] is designed for symbolic computation on network of workstations and
across the Internet: a master scheduler distributes tasks based on availability of resources
determined through some threshold conditions. It has been used in algebraic computing with
large integers and sparse linear systems [63].

2.3. Web-Enabled Systems

In number theory there exist a number of successful Internet projects [64] aiming, among
others, at finding large prime numbers, factoring large numbers, computing digits of �,
finding collisions on known encryption algorithms etc. A CAS web-wrapper component that
can be used by multiple systems was reported in Ref. [65]. Here, shared-memory parallelism

6 Symbolic Computations on Grids

was used to speed up Gröbner basis computations. Another online system for Gröbner basis
computations, OGB [66], has been recently deployed.
MapleNet [67] is a software platform to enhance mathematics and related courses over

the web. The client uses only the Java virtual machine. To access web pages and the applets
associated with them users will connect to the server. It is also the server that manages
concurrent Maple instances launched to serve client requests for mathematical computations
and display services, and facilitates additional services such as user authentication, logging
information, and database access.
WebMathematica [68] offers access to Mathematica applications through a web browser,

using standard Java technologies It allows a site to deliver HTML pages that incorporate
Mathematica commands. Input can come from HTML forms, applets, JavaScript, and web-
enabled applications. It is also possible to send data files to a server for processing. Output
can use different formats such as HTML, images, Mathematica notebooks, MathML, XML,
PostScript, PDF.
A framework for description and provision of web-based mathematical services was recently

designed within the Monet project [69]. Its aim was to demonstrate the applicability of the
semantic web to the world of mathematical software. The key to such a framework is the
ability to discover services dynamically based on published descriptions which express both
their mathematical and non-mathematical attributes. The discovery service and subsequent
interactions are mediated by software agents capable of recognizing the criteria which should
determine how particular problems are to be solved, and extracting them from the user’s
problem description. A symbolic solver wrapper was also designed to provide an environment
that encapsulates CASs and expose their functionalities through symbolic services.Maple was
chosen for the computing engine in the initial implementation, and Axiom was used to demon-
strate the ability to incorporate different computational engines without major changes.

3. GRID-ENABLED SYSTEMS
There exist a number of grid-oriented projects that involve CASs. Even though some of
these projects have just been initiated, we report their existence and goals for completeness
of the overview of the field.
Open source package NetSolve [70] was one of the earliest grid systems developed. Its ini-

tial motivation was focused on the usability, portability and availability of existing optimized
software libraries for high-performance computing, particularly those for numerical linear
algebra. NetSolve is a middleware between desktop systems equipped with simple APIs and
the existing services supported by the grid architecture. One of the goals of NetSolve project
is to create a system capable of integrating arbitrary computational resources. NetSolve
APIs are available for Matlab, Mathematica, and Octave [71]. Version 2.0, released in 2003,
introduces GridSolve for interoperability with the grid. GridSolve is a GridRPC [72] based
client-server-agent system that enables users to solve complex scientific problems remotely
using distributed resources on the grid. When a user submits a problem to the NetSolve
agent, the agent searches the grid, chooses a set of suitable services and requests that the
problem be solved. After the task is completed the NetSolve agent returns the solution to
the user. Load balancing and retry for fault-tolerance are handled automatically by the sys-
tem. Access to different grids is made possible through proxies. At the present time, proxies
for Globus and Condor-G are available. Ninf-G [73] is another GridRPC system implement-
ing the Ninf system on top of the Globus. In version 3, released in 2004, different Ninf client
API were build, including one for Mathematica.
The Grid Enabled Numerical and Symbolic Services [74] project, Genss, was initiated in

2004 and follows the ideas formulated in the Monet [69] project. It intends to combine grid
computing and mathematical web services using a common open agent-based framework.
Thus far research was focused in two areas: (1) matchmaking techniques for advertisement
and discovery of mathematical services, and (2) design and implementation of an ontology
for symbolic problems.
The Geodise [75] system, implemented within the Matlab environment, is an engineering

portal providing grid access to computational fluid dynamics and design optimization tools.

Symbolic Computations on Grids 7

Two different mechanisms are used to submit jobs to computing resources. The first one
uses a web service interface to Condor [76]. The second one is implemented as a collection
of Matlab functions allowing to run and control jobs on the grid, to archive, query, and
retrieve data, or to notify the (mobile) user about the status of the job; submission of jobs
to Globus-enabled resources is achieved via Java CoG.
Another on-going project [77] based on Java CoG builds two sets of software tools to

enable access to Globus grid resources from Matlab. The first one is a set of wrappers neces-
sary to invoke the CoG batch files directly from the Matlab command line. The second one
is a set of Java CoG libraries providing the integration of user codes. Another project, Mat-
lab*g [31] builds a parallel Matlab on a platform-independent grid. It exploits a client-server
architecture based on distributed shared memory model. Each server receives a work pack-
age, performs computations, and sends results back to the client. First implementation of
Matlab*g was based on Alice [78], while a more recent implementation is based on Globus.
Another grid extension of Matlab reported in Ref. [79] is based on Matlab*p, mpich-G2,
and Globus: it has three components, a server connection manager handling communica-
tions, a matrix manager handling the task distribution and a package manager registering
the available services.
Grid-Elimino [80] is a recent Java-based computation system for grids based on Globus

and Iamc [81]. A master program controls the slave servers, i.e., Elimino instances running
as grid services (Elimino is a stand-alone symbolic computation system). The user Java client
describes the tasks for each Elimino instance.
The Grid-TLSE [82] project, commenced in 2003, aims to design an expert site for users

who are searching for sparse matrix solvers. The administrator interface, called Weaver is
used to define, to deploy, and to exploit services over the grid. The web interface, called
Websolve, allows a web browser to submit computational requests to a grid by using third-
party software such as Matlab, Octave, Scilab, NetSolve, Diet.
Finally, Gemlca [83] is a recent solution to deploy a legacy code application as a grid

service without modifying the code. The Gemlca front-end, described in WSDL, offers grid
services to deploy, query, submit, check the status of, and get the results back from compu-
tational jobs. In order to access a legacy code program, the user executes the grid service
client that creates a code instance with the help of a code factory, and the system submits
the job to the compute server through Globus.
As can be seen from the above presented summary of the state-of-the-art in parallel and

distributed CASs, this area is brimming with activities. In particular, very large body of
research is devoted to facilitating symbolic computations on the grid. In order to illustrate
in more detail issues involved in porting CASs to the grid we present two case studies based
on ongoing research projects involving Maple and Mathematica.

4. CASE STUDY: MAPLE2G
Our analysis of the grid aware CASs presented in the previous section indicates, that any
such a system must have at least one of the following facilities (Fig. 1):

— Ability to accept services from the grid: the CAS must be capable to augment its facilities
with external modules, in particular it should be able to explore computational grid
facilities, to connect to a specific grid service, to use it, and to translate its results
for the CAS interface. This approach is taken into consideration by the Geodise,
Matlab*g, Grid-TLSE, NetSolve/GridSolve.

— Being a source of grid or web services: the CAS or some of its facilities must be reachable
as grid or web services and allowed to be activated by remote users under appropriate
security and licensing conditions; furthermore, deployment of the services must be
done in an easy way from the inside of the CAS. This approach is taken into account
by the Genss project.

— Ability to communicate and cooperate over the grid: several kernels of CASs must be
able cooperate within a grid in solving problems; in order to have the same CAS on
different computational nodes a “grid-version” must be available; in the case of differ-
ent CASs, appropriate interfaces between them must be developed and implemented

8 Symbolic Computations on Grids

User
environment

CAS

Grid Service

(a) (b) (c)

Interface CAS

CASCAS
Grid

environment

Figure 1. Operating modes between a CAS and a computational grid: (a) CAS as an interface for the grid services;
(b) CAS as grid service; (c) multiple CAS kernels on user and grid sides.

or a common language for inter-communication must be adopted. This approach is
considered by the Grid-Elimino.

Here we describe a tool supporting the first and the third aspect of grid-enabling of the
CAS. More specifically, the Maple2g package allows the connection between Maple and
computational grids based on the Globus Toolkit.
The prototype of a grid-enabling wrapper for Maple, consists of two parts (a) a CAS-

dependent and (b) a grid-dependent one:

(a) m2g, the library of functions allowing the Maple user to interact with the grid/cluster
middleware;

(b) MGProxy, the middleware, a package of Java classes, acting as an interface between
the m2g and the grid environment.

The m2g functions are implemented in the Maple language, and they call the MGProxy
which accesses the Java CoG API. In this way, any change in the CAS or the grid will be
reflected only in one part of the proposed system. The CAS-dependent part is relatively
simple and can be easily modified to support another CAS or a legacy code.
For the first approach mentioned above we have implemented a minimal set of functions

(described in Table 1) allowing access to the grid services.
The m2g package translates functions from the syntax familiar to the Maple user into

commands, allowing the initiation and further communication with the MGProxy middle-
ware. The MGProxy is activated from inside the Maple environment by the m2g command
m2g_MGProxy_start. The user command(s) originating from the user’s Maple interface
are send to the MGProxy via a socket interface, when the m2g_getservice and the
m2g_jobsubmit functions are invoked. The MGProxy contacts grid services, queries the con-
tacted services, and sends to the Maple interface the results of performed queries. User
receives the results through the m2g_receive. Maple commands are passed in the system as
strings and the results are presented in the MathML format. m2g_getservice is based on a
combination of LDAP and Globus commands.
Several examples of using Maple2g have been presented in Refs. [84] and [85]. Here

we present an example of multiplication of two large integers consisting of 10 million, 20
million, and 40 million decimal digits. We have attempted running the Maple code presented
in Figure 2 on a PC with a Pentium IV processor running at 1.5 GHz and with 512Mb RAM
and encountered the following situations. When Maple 7 was used, the multiplication used
the Karatsuba algorithm and the computation time was around 770 seconds for the first
pair and would have taken several hours for the subsequent pairs. When Maple 9 was used,
the multiplication used the Schönhage-Strassen algorithm and the multiplication time was

Table 1. M2g functions enabling Maple to use grid services.

Function Description

m2g_connect() Connects to the grid
m2g_getservice(c� l) Searches for a service c and give a link to it, retrieve its location l

m2g_jobsubmit(t� c) Performs a job submission, labeled t: the command from the string c is send
to the MGProxy which treats it as a grid-service request

m2g_status(t) Queries the status of the submitted job labeled t

m2g_results(t) Retrieves the results of the submitted job labeled t

Symbolic Computations on Grids 9

Figure 2. Example: Multiplying three pairs of big integers of the order of tens millions decimal digits—Maple code
crashes due to memory and time limitations; C++ code based on CLN library and used as grid service to multiply
the same big integers; Maple2g code using the grid service to check the multiplication time.

around 9 seconds for the first pair, 21 seconds for the second pair, but the third multiplication
could not have been performed (an error “Stack limit reached” occurred, caused by the
recursive nature of the algorithm). In the second case, four times more memory was needed
to complete the multiplication. A solution to overcome this limit of Maple is that of using
an appropriate grid service which can complete the multiplications. We have selected, for
testing purpose, the CLN package [86], a C++ library, which allows computations with
integers with unlimited precision and which uses the Schönhage-Strassen multiplication for
integers larger than 12 thousands decimal digits. The C++ code for the multiplication of
the three pairs of big integers is also included in Figure 2. The time of multiplications is
less than but comparable to the time obtained with Maple 9, with the difference, that this
time we were able to complete the task for the largest integer pair. Time tests have shown
that if the CLN package is registered as a grid service, the Maple2g code presented in the
same figure can activate it, and the overhead is approximately 16 seconds if the service is
local. Additional 12 seconds are required if the service is located remotely within the same
fast network (a cluster environment with 2 Gbs connections), and another 18 seconds are
required if the service is located remotely in another country.

Table 2. M2g functions for remote process launch/communications.

Function/const. Description

m2g_maple(p) Starts p processes MGProxy and p Maple processes
m2g_send(d� t� c) Sends at the destination kernel labeled d a message labeled t containing the Maple com-

mand c; d and t are numbers, c is a string; when ‘all’ is used in destination field, c is send
to all Maple kernels

m2g_recv(s� t) Receives from the source kernel labeled s a message containing the results from the a
previous Maple command which was labeled with t; when ‘all’ is used in source field, a
list is returned with the results from all Maple kernels which have executed the command
labeled t

m2g_exit() Kills all MGProxy processes, shutdowns the twin Maple kernels
m2g_rank MGProxy rank in the MPI world, can be used in a command
m2g_size Number of MGProxy processes, can be used in a command

10 Symbolic Computations on Grids

Figure 3. Example: Multiplying two integers of 10 millions decimal digits—Maple code used for efficiency compar-
isons; Maple2g code using Karatsuba algorithm and three Maple kernels to speedup the computation.

Let us now consider grid-based parallel computing involving Maple. Parallel codes using
MPICH as the message-passing interface can be easily ported to grid environments due to
the existence of a MPICH-G version which runs on top of the Globus Toolkit. On other hand,
the latest Globus Toolkit is built in Java, and Java clients are easier to write. This being the
case, we selected mpiJava [87] as the message-passing interface between Maple kernels.
In order to follow the third aspect of porting CASs to the grid, Maple2g provides a

number of commands for communicating with other Maple kernels. These commands have
been summarized in Table 2. Maple2gs parallel computing facilities are similar to those
introduced in PVMaple [30]. The user’s Maple interface is seen as the master process, while
the other Maple kernels are working in a slave mode. Sending commands is possible not
only from the Maple interface, but also from one kernel to another, i.e., a user command
can contain inside a send/receive command involving slaves.
While additional details and examples of parallel usage of Maple2g can be found in Ref.

[88], here, we continue with the integer multiplication example. We consider the case of using
three Maple 7 kernels to speedup the multiplication of two integers with 10 million decimal
digits. As stated above, the Maple 7 code from Figure 3 running on the PIV 1.5 MHz based
PC with 512 Mb RAM uses approximately 770 seconds to finish the multiplication. Using
three Maple kernels running the Maple2g code from Figure 3 on a homogeneous cluster
consisting of similar PCs connected at 2 Gbs, the running time was reduced to approximately
320 seconds (efficiency of 80%). A 7% loss in efficiency was due to the use of grid environ-
ment instead of direct application of MPI). Another loss of 6% of efficiency was registered
when one kernel has run remotely (Internet connection between Romania an Austria was
involved).
At this stage, Maple2g exists as a demonstrator system. It preserves the regular Maple

instruction set while adding several new instructions. Further work is necessary to make it
more comprehensive and robust. In the near future we plan intensive tests on grids on a large
domain of problems to help guide further development of this system. Among others, the
master-slave relationship between nodes will be extended to allow slaves to become masters
themselves and thus facilitate the development of hierarchical grid applications [89, 90].

5. CASE STUDY: MATHGRIDLINK
Despite the fact that Mathematica is a widely used programming environment for symbolic
computation, grid-aware components for Mathematica have not been developed yet. Only
functions for accessing the standard web services are available in Mathematica 5.0, provided
as a free add-on. Note that gridMathematica is not a grid-aware Mathematica since it is not
intended to be used within a computing grid (see subsection 2.2). Mathematica lacks support

Symbolic Computations on Grids 11

for integration of grid services within its standard framework. Neither accessing grid ser-
vices nor development/deployment of grid services is supported by default. There are some
projects aiming to integrate Mathematica into the grid infrastructure, but none of them
provide bidirectional access to the grid. Usually, grid-based systems providing Mathematica
extensions (e.g., NetSolve/GridSolve, Ninf-G2, etc.) focus only on using Mathematica as a
client, using a dedicated service sever specially designed for the particular project. More-
over, the goal of most such systems is to design a proprietary system on top of the grid
infrastructure, thus departing from the main idea of grid computing: creating loosely coupled
systems, able to seamlessly interact with each other.
In this section we present an overview of MathGridLink, a software component designed

to act as a middleware between Mathematica and the grid and thus, to the best of our
knowledge, the only system involving Mathematica to overcome limitations of, described
above, “one-sided” approaches (for a complete description, see Ref. [91]). MathGridLink
allows both the development/deployment of Mathematica computational services on the grid
and the usage of any existing grid service from within Mathematica.
MathGridLink is built on top of the Globus Toolkit 3 (GT3) and its skeleton is depicted in

Figure 4. The system is composed of three main components:

1. MathGrid Service Client (MGSC)—a general purpose grid service client;
2. MathGrid Service Generator (MGSG)—-a component used for grid service generation
from Mathematica;

3. MathGrid Service Manager (MGSM)—a specialized Mathematica kernel manager pro-
viding remote access to grid services implemented in Mathematica.

Let us now look in some detail at each of these components.

MathGrid Service Client. The first component, MathGrid Service Client (MGSC), is
responsible for the invocation of grid services from Mathematica. There are two known main
methods for accessing a remote service: (i) by using specific client stubs (generated from the
WSDL description of a given service); and (ii) by using a general purpose client. The former
involves generation of a client stub and requires writing specialized code for each service we
intend to use. The latter method is more flexible, allowing access to any service without the
need of writing any additional code. MGSC implements the second approach.
MGSC is implemented in Java and the interface of the invoked grid service is adapted so

that the user has full access to the requested service’s methods and their usage description.
Furthermore, access to any grid service is transparent, in the sense that the access is made
only by invocation of eight simple Mathematica functions, presented in Table 3.
Some computational services perform heavyweight computations requiring a significant

time for their completion. When such operations are performed remotely, client application
has to wait until the results are ready. In contrast, some “informative” grid services require
a very short execution time (e.g., a grid service which informs about the current temperature

Globus Tool kit 3

MGSG

MGSC

SOAP

MGSM

MathGridLink

The Grid

Mathematica Kernel

Globus Toolkit 3

MGSG

MGSC

C
lie

nt
 /

D
ev

el
op

er

MGSM

MathGridLink

Mathematica Grid Service

The Grid

Figure 4. General MathGridLink overview.

12 Symbolic Computations on Grids

Table 3. Mathematica functions provided by MGSC for usage of remote grid services.

Function Description

MGUseService[s] Connects to the grid service s, creates a new service instance and fetches the
information about the deployed methods. If successfully completed, it returns
the reference to the newly created service instance.

MGCall[sr , m, args] Performs a blocking call of the method m for the service sr using the arguments
args. It returns the result.

MGModelessCall[sr , m, args] Initiates a non-blocking call of the method m for the service sr using the argu-
ments args. It does not return anything.

MGWait[sr] Blocks the current Mathematica kernel until the service instance referenced by
sr finishes a previous MGModelessCall call and the result is ready.

MGGetResult[sr] Gets the result of the previous call to this service instance. During a non-blocking
execution, it returns Null.

MGDestroy[sr] Destroys the service instance referenced by sr .
MGList[sr] Returns a list of available methods for service instance referenced by sr .
MGHelp[sr , m] Returns the invocation details for method m of the service referenced by sr .

for a specific city). Based on this observation, a general-purpose client has to be able to deal
with these different behaviors. MGSC supports two different kinds of service invocation:
1. blocking call: The Mathematica kernel cannot do anything else until the service has
sent the result;

2. non-blocking call: A parallel implementation of service invocations using a semaphore-
based synchronization.

To illustrate the case of a blocking call, assume that a grid service is running at
http://myweather.org/Temperature implementing a method named getTemperature that
accepts as parameter a zip-code. In order to find current temperature, a typical blocking call
will involve the following skeleton:

...
GSH = ‘‘http://myweather.org/Temperature’’;
...
s = MGUseService[GSH];
Print[MGCall[s, ‘‘getTemperature’’, ‘‘305-8573’’]];
...
MGDestroy[s];
...

Since the execution time of some computational services may take several minutes, or
even hours, the non-blocking call is, obviously, a more sensible one. Let us assume that
we have a grid service running at http://myservice.org/Prime which implements a method
named findPrimes accepting a number as the parameter and returning a list of all prime
numbers smaller than the given number. If the number is very large, the computation time
will be significant. If, while the computations are being performed, we want to use the
Mathematica’s front end, or to invoke another service, we could use the following non-
blocking call of the service:

...
GSH = ‘‘http://myservice.org/Prime’’;
...
arg = 9834573499762396452479;
...
s = MGUseService[GSH];
MGModelessCall[s, ‘‘findPrimes’’,arg];
(* do some other computations *)
...
MGWait[s];
Print[MGGetResult[s]];
...
MGDestroy[s];
...

Symbolic Computations on Grids 13

As a result, the use of the Mathematica Kernel is not blocked, and other operations may be
executed while the remote service completes our request.

MathGrid Service Generator. The second component, MathGrid Service Generator
(MGSG), is responsible for automatic generation of grid services. The MGSG is written in
Java. It is callable from Mathematica, and can be used for generating a grid service, even
if the user has no knowledge of Java and/or the grid. A Mathematica grid service could be
generated by using the five functions summarized in Table 4.
From the point of view of the Mathematica user, the process of creating a grid service

consists of 2 parts:

(a) creation of a Mathematica package containing the Mathematica implementation of
the service;

(b) generation of a grid service for linking others to this Mathematica implementation.

Note that MathGridLink does not translate the implementation of the service code into
a Java code in order to deploy it on the grid. Instead, it creates a connecting “bridge”
between the grid and the Mathematica kernel. In this way, the service will be able to take
advantage of Mathematica computational engine while being available to other systems and
programming languages as well.
The process of generating a grid service can be seen as a two-phase process consisting

of the configuration phase and the service generation phase. During the configuration phase,
minimal information about the desired grid service has to be supplied:

1. the name of the service to generate;
2. the name of the Mathematica package containing the implementation;
3. the methods to deploy: The Mathematica package implementing our service methods
may have several exported functions. However, only the explicitly specified functions
will be made available to the others through the generated grid service.

Once the information is supplied, the grid service is generated and the process is displayed
in the Java console. The MGSG creates the grid web service interface (based on the devel-
oper’s specifications of exported Mathematica functions), the server stub, theWSDL and the
WSDD service description files, and generates ready-to-deploy Grid ARchive (GAR). The
resulting service will deploy the specified Mathematica functions as grid service methods,
providing a transparent remote access to the Mathematica kernel. The GAR file contains all
files and classes required for deployment, except the Mathematica package which has to be
provided together with the GAR file. The service may be deployed on any system with GT3
and Mathematica installations.
To illustrate the process let us consider the following example. Let us assume that a Math-

ematica package named NumericalFunctions, implements the LargestPrimeGap function
for finding the largest difference between consecutive primes not exceeding a given number
N . To generate and deploy a service namedMathService and make this LargestPrimeGap
function available to the grid as myPrimeGap, we can use the following Mathematica code:

...
InitMGSG[];
MGSGSetServiceName[‘‘MathService’’];

Table 4. Mathematica functions provided by MathGrid Service Generator (MGSG).

Function Description

InitMGSG[] Initializes the MGSG engine.
MGSGSetServiceName[n] Sets the name of the service to n.
MGSGSetMathematicaPackage[p] Specifies the Mathematica package containing the implementation of the

grid service as Mathematica functions.
MGSGAddMethod[f , d] Adds Mathematica function f to the list of methods deployed by the

service. We have to specify in d the invocation details in a Java-like
format.

MSGSGenerate[] Generates, compiles and packs the service as a standard GAR (Grid
ARchive) file.

14 Symbolic Computations on Grids

MGSGSetMathematicaPackage[‘‘NumericalFunctions’’];
MGSGAddMethod[‘‘LargestPrimeGap’’, ‘‘int myPrimeGap(int x)’’];
MGSGGenerate[];
...

These commands will generate a GAR file containing all that is needed for deploying the
service.

MathGrid Service Manager. The third component, MathGrid Service Manager (MGSM),
is responsible for the remote access to the Mathematica grid service and it can be configured
to use single or multiple Mathematica kernels for a single grid service. MGSM provides
concurrent access to the Mathematica kernels. The user persistency problem that occurs
in concurrent access to Mathematica kernels is solved by imposing a different context for
each user.

Limitations of the Current Version. Two important design and implementation issues
are pending: GT3 Security and GT3 Index Service. At present, only unrestricted services
can be used and deployed, and the access to the grid service can be performed only by
knowing the GSH (Grid Service Handle) of the service.

6. CONCLUSIONS
In this chapter we have tried to achieve two objectives. First, to introduce recent devel-
opments in symbolic computations, in particular, computer algebra systems. Here, we were
particularly interested in initiatives leading to porting CASs to parallel and distributed com-
puters as well and making them Web and grid enabled. We have presented a rather extensive
list of past present and future projects attempting to reach these goals. Second, to illustrate
issues involved in porting CASs to the grid, we have presented two case studies involving
some of the more popular CASs Maple and Mathematica. The most important findings can
be summarized as follows:

• a growing interest in symbolic computations and computer algebra systems can be
observed;

• application of CASs to solution of large problems often demands application of parallel
and/or distributed computers;

• porting CASs to parallel and distributed computers is not a trivial task;
• number of existing and freshly started projects indicates fast growing interest in porting
CASs to the Web and to the grids in particular;

• real world applications of CASs on grids are in very early phases and efficiency of
proposed tools will have to be further investigated and improved;

• while most of project involving CASs and grids are in very early stages, existing tools
are mature enough to allow experimental work to be initiated and this is this type of
work that is required to lay ground for future developments.

REFERENCES
1. J. von zur Gathen and J. Gerhard, “Modern Computer Algebra.” Cambridge Press, 2003.
2. Cain, http://research.mupad.de/CAIN/.
3. Sac, http://www.symbolicnet.org/systems/Systems.html.
4. SAL, http://www.sai.msu.su/sal/A/1/index.shtml.
5. L. Bernardin, “A Review of Symbolic Solvers” (1996), http://www.inf.ethz.ch/personal/bernardi/solve/
review_A4.ps.

6. P. Stewart, “Symbolic Computation—A Review” (1992), http://www.bham.ac.uk/ctimath/reviews/nov92/
symbol.pdf.

7. M. Wester, in “A Critique of the Mathematical Abilities of Computer Algebra Systems” (M. Wester, Ed.),
CASs—A Practical Guide. Wiley, 1999, http://math.unm.edu/˜wester/cas_review.

8. M. Matooane, Parallel Systems in Symbolic and Algebraic Computation, Ph.D. Thesis, Cambridge, 2001,
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-537.pdf.

9. R. P. Brent, “Some Parallel Algorithms for Integer Factorisation” (P. Amestoy, Ed.), In Proceedings of Euro-
Par’99, LNCS 1685, Springer, 1999, http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pd/rpb193sp.pdf.

Symbolic Computations on Grids 15

10. T. Jebelean, in “Integer and Rational Arithmetic on MasPar” (J. Calmet, Eds.), pp. 162–173, Design and
Implementation of Symbolic Computation Systems, LNCS 1128, Springer, 1996.

11. E. Sibert, H. F. Mattson, and P. Jackson, “Finite Field Arithmetic Using the Connection Machine” (R. E. Zippel,
Ed.), pp. 51–61, In Proceedings of the 2nd Workshop CA&Parallelism, LNCS 584, Springer, 1990.

12. M. Diab, “Systolic Architectures for Multiplication over Finite Fields GF2m” (S. Sakata, Ed.), pp. 329–340,
In Proceedings of the 8th International Conference on Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, LNCS 508, Springer, 1990.

13. M. Morii and Y. Takamatsu, “Exponentiation in Finite Fields Using Dual Basis Multiplier” (S. Sakata, Ed.),
pp. 354–366, In Proceedings of the 8th International Conference on Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes, LNCS 508, Springer, 1990.

14. J. L. Roch, “PAC: Towards a Parallel Computer Algebra Co-processor” (Della Dora and J. Fitch, Eds.),
pp. 33–50, Computer algebra and parallelism, Academic Press, 1989.

15. T. Jebelean, M. Drăgan, D. Ţepeneu, and V. Negru, Technical Report 00–42, Parallel algorithms for practical
multiprecision arithmetic using the Karatsuba method, RISC, 2000, ftp://ftp.risc.uni-linz.ac.at/pub/techreports/
2000/00-42.ps.gz.

16. R. Kannan, G. Miller, and L. Rudolph, “Sublinear Parallel Algorithm for Computing the Greatest Common
Divisor of Two Integers,” SIAM Journal Comp. 16, 7–16 (1987).

17. P. L. Montgomery, “An FFT Extension of the Elliptic Curve Method of Factorization,” Ph.D. Thesis, University
of California, 1992, ftp://ftp.cwi.nl/pub/pmontgom/ucladissertation.ps.gz.

18. P. S. Wang, “Symbolic Computation and Parallel Software, 1991, http://icm.mcs.kent.edu/reports/1991/ICM-
9109-12-ab.pdf.

19. B. Amrhein, O. Gloor, and W. Küchlin, “A Case Study of Multithreaded Gröbner Basis Completion,”
In Proceedings of the ISSAC96, ACM Press, 1996, http://www-sr.informatik.uni-tuebingen.de/projects/pareqs/
issac96.ps.

20. S. Chakrabarti and K. Yelick, “Implementing an Irregular Application on Distributed Memory Multiprocessor,”
In Proceedings of the 4th ACM SIGPLAN POPP’93, ACM Press, 1993, p. 169–178, http://www.cs.berkley.
edu/˜yelick/soumen/grobner-ppopp93.ps.

21. C. G. Ponder, in “Evaluation of Performance Enhancements in Algebraic Manipulation Systems” (J. Della
Dora and J. Fitch, Eds.), pp. 51–73, Computer Algebra and Parallelism, Computational Mathematics and
Applications, Academic Press, 1989.

22. A. A. Reeves, “A Parallel Implementation of Buchberger’S Algorithm over zp for p ≥ 31991,” J. Symb. Comp.
26, 229–244 (1998).

23. Maple, http://www.maplesoft.com/.
24. Matlab, http://www.mathworks.com/.
25. Mathematica, http://www.wolfram.com/products/mathematica/.
26. W. Schreiner, C. Mittermaier, and K. Bosa, in “Distributed Maple–Parallel Computer Algebra in Networked
Environments,” J. Symb. Comp. 35, 305–347 (2003).

27. L. Bernardin, “Maple on a Massively Parallel, Distributed Memory Machine” (M. Hitz and E. Kaltofen, Eds.),
pp. 217–222, In Proceedings of PASCO’97, ACM Press, 1997.

28. S. M. Watt, “A System for Parallel Computer Algebra Programs” (B. F. Caviness, Ed.), pp. 537–538, In Pro-
ceedings of Eurocal’85, LNCS 204, Springer, 1985.

29. R. Pirastu and K. Siegl, “Parallel Computation and Indefinite Summation: A �Maple� Application for the
Rational Case,” J. Symb. Comp. 20, 603–616 (1995).

30. D. Petcu, “PVMaple—A Distributed Approach to Cooperative Work of Maple Processes” (J. Dongarra et al.,
Ed.), pp. 216–224, In Proceedings of EuroPVM/MPI, LNCS 1908, Springer, 2000.

31. Y. Chen, and S. Fong Tan, “Matlab*g: A Grid-Based Parallel Matlab,” SMA, NUS, Singapore, 2002, http://
ntu-cg.ntu.edu.sg/Grid_competition/report/grid-9.pdf.

32. DP-Toolbox, http://www-at.e-technik.uni-rostock.de/dp/.
33. MPI/PVM Toolbox for Matlab (MPITB/PVMTB), http://atc.ugr.es/javier-bin/mpitb_eng and http://atc.ugr.es/
javierbin/pvmtb_eng.

34. MultiMatlab, http://www.cs.cornell.edu/Info/People/lnt/multimatlab.html.
35. Matlab Parallelization Toolkit, http://www.mathworks.com/matlabcentral/fileexchange/ (utilities, distributed com-
puting).

36. ParMatlab, http://petrydpc.itm.mh.se/tools/.
37. Pmi, ftp://ftp.mathworks.com/pub/contrib/v5/tools/PMI.
38. MatlabMPI, http://arXiv.org/abs/astro-ph/0107406.
39. MATmarks, http://polaris.cs.uiuc.edu/matmarks/.
40. R. Choy, Matlab*p 2.0: Interactive Supercomputing Made Practical, MS Thesis, EECS, MIT, 2002, http://
www.cs.ucsb.edu/˜ gilbert/cs290iSpr2003/ChoyThesis.ps.

41. Conlab, http://www.cs.umu.se/research/conlab/.
42. Otter, http://www.cs.orst.edu/˜ quinn/papers/hpdc7.ps.
43. Parallel Computing Toolkit, http://www.wolfram.com/products/applications/parallel/.
44. gridMathematica, http://www.wolfram.com/products/gridmathematica/.
45. C. Pau and W. Schreiner, Distributed Mathematica, 2000, www.risc.uni-linz.ac.at/software/.
46. W. Küchlin, “Parsac-2: Parallel Computer Algebra” (J. Fleisher, J. Grabmeier, F. Hehl, and W. Küchlin,
Eds.), Computer Algebra in Science and Engineering, World Scientific, 1995, http://www-sr.informatik.uni-
tuebingen.de/projects/pareqs/zif94.ps.

16 Symbolic Computations on Grids

47. H. Hong, A. Neubacher, and W. Schreiner, “The design of the SacLib/PacLib Kernels” (A. Miola, Ed.), In Pro-
ceedings DISCO’93, Gmunden, Austria, LNCS 722, Springer, Berlin, 1993, http://www.risc.uni-linz.ac.at/people/
schreine/papers/disco93.ps.gz.

48. Givaro, http://www-lmc.imag.fr/Logiciels/givaro/.
49. B. Buchberger, “The L-Machine: An Attempt at Parallel Hardware for Symbolic Computation,” In Proceedings
of AAECC-3, LNCS 229, Springer-Verlag, 1986, pp. 333–347.

50. E. Goto, “Design of a Lisp machine FLATS,” In Proceedings of ACM Symposium on Lisp and Functional
Programming, Pittsburgh, 1982, pp. 208–215.

51. J. Marti and J. Fitch, “The Bath concurrent LISP machine,” In Proceedings of European Computer Algebra
Conference on Computer Algebra, LNCS 162, 1983, pp. 78–90.

52. Reduce, http://www.uni-koeln.de/REDUCE/.
53. R. H. Jr. Halstead, “Parallel Symbolic Computing: Languages, Systems, and Applications,” In Proceedings of
US/Japan Workshop, Cambridge, LNCS 748, 1992.

54. G. Cooperman, “Star/MPI: Binding a Parallel Library to Interactive Symbolic Algebra Systems,” In Proceedings
of ISSAC’95, ACM Press, 1995, pp. 126–132.

55. GAP, http://www-gap.dcs.st-and.ac.uk/˜ gap/.
56. A. Norman and J. Fitch, “Cabal: Polynomial and Power Series Algebra on a Parallel Computer” (M. Hitz and
E. Kaltofen, Eds.), pp. 196–203, In Proceedings of PASCO’97, ACM press, 1997.

57. M. Matooane and A. Norman, “A Parallel Symbolic Computation Environment: Structures and Mechanics”
(P. Amestoy, Eds.), pp. 1492–1495, In Proceedings of Euro-Par, LNCS 1685, Springer, 1999.

58. MuPAD, http://research.mupad.de/.
59. Form, http://www.nikhef.nl/˜ form/.
60. D. Fliegner, A. Retey, and J. A. M. Vermaseren, “Parallelizing the Symbolic Manipulation Program FORM,”
1999, http://arXiv.org/abs/hep-ph/9906426.

61. A. Diaz and E. Kaltofen, “FoxBox: A System for Manipulating Symbolic Objects in Black Box Representation”
(O. Gloor, Ed.), pp. 30–37, In Proceedings of ISSAC’98, ACM Press, 1998.

62. A. Diaz, E. Kaltofen, K. Schmitz, and T. Valente, “DSC: A System for Distributed Symbolic Computation”
(S. M. Watt, Ed.), pp. 323–332, In Proceedings of ISSAC’1991, ACM Press, 1991.

63. A. Diaz, M. Hitz, E. Kaltofen, A. Lobo and T. Valente, “Process Scheduling in DSC and the Large Sparse
Linear Systems Challenge,” J. Symb. Comp. 19, 269–282 (1995), and LNCS 722, p. 66–80, ftp://ftp.cs.rpi.edu/pub/
kaltofen/DSC/DISCO93/jsc.ps.

64. Internet-Based Distributed Computing, http://www.aspenleaf.com/distributed/ap-math.html.
65. A. Weber, W. Küchlin, B. Eggers, and V. Simonis, Parallel Computer Algebra Software as a Web Component,
http://www.cs.ucsb.edu/conferences/java98/papers/algebra.pdf.

66. M. McGettrick, OGB: Online Gröbner Bases, Technical report NUIG-IT-251103, National University of
Ireland, Galway, 2003, http://grobner.it.nuigalway.ie.

67. MapleNet, http://www.maplesoft.com/maplenet/.
68. webMathematica, http://www.wolfram.com/products/webmathematica/.
69. Monet, http://monet.nag.co.uk.
70. S. Agrawal, J. Dongarra, K. Seymour, and S. Vadhiyar, in “NetSolve: Past, Present, and Future—A Look at a
Grid Enabled Server” (F. Berman, Ed.), p. 613–622, Making the Global Infrastructure a Reality, Wiley, 2003,
http://icl.cs.utk.edu/news_pub/submissions/netsolve-ppf.pdf.

71. Octave, http://www.octave.org/.
72. H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee and H. Casanova, “GridRPC: A Remote Procedure
Call API for Grid,” www.eece.unm.edu/˜ apm/docs/APM_GridRPC_0702.

73. Ninf, http://ninf.apgrid.org/.
74. Genss, http://genss.cs.bath.ac.uk/index.htm.
75. Geodise, http://www.geodise.org/.
76. Condor, http://www.cs.wisc.edu/condor/.
77. CoG Kit Matlab Page, http://www-unix.globus.org/cog/matlab/index.php.
78. ALiCE, http://www.comp.nus.edu.sg/˜teoym/alice.htm.
79. I. Patel and W.Mohiuddin, “Matlab*p on the Grid,” 2003, pompone.cs.ucsb.edu/˜imran/matlabpg/.
80. Y. Wu, W. Liao, P. Wang, D. Lin, G. Yang, “An Internet Accessible Grid Computing System: Grid-Elimino,” In
Proceedings of IAMC, 2003, www.symbolicnet.org/conferences/iamc03/grid.pdf.

81. P. S. Wang, S. Gray, N. Kajler, D. Lin, and W. Liao, “IAMC Architecture and Prototyping,” In Proceedings of
ISSAC, London, Ontario, 2001, http://icm.mcs.kent.edu/research/IAMC.icm/issac01.pdf.

82. GridTLSE, http://www.enseeiht.fr/lima/tlse.
83. Gemlca, http://www.cpc.wmin.ac.uk/GEMLCA.
84. D. Petcu, D. Dubu, and M. Paprzycki, “Towards a Grid-aware Computer Algebra System” (M. Bubak et al.,
Eds.), pp. 490–495, In Proceedings of ICCS’04, LNCS 3036, Springer, 2004.

85. D. Petcu, D. Dubu, and M. Paprzycki, “Extending Maple to the Grid: Design and Implementation” (J. Morrison,
Ed.), pp. 209–216, In Proceedings of ISPDC’04, IEEE Computer Press, Los Alomitos, 2004.

86. B. Haible, “CLN, a Class Library for Numbers,” 2004, ftp://ftp.ilog.fr/pub/Users/haible/gnu/cln-1.18.tar.bz2.
87. mpiJava, http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html.
88. D. Petcu, D. Dubu, and M. Paprzycki, “Grid-Based Parallel Maple” (D. Kranzmüller et al., Eds.), pp. 215–223,
In Proceedings of EuroPVM/MPI’04, LNCS 3241, Springer, 2004.

Symbolic Computations on Grids 17

89. A. Gilbert, A. Abraham, and M. Paprzycki, “A Framework for Ensuring Data Integrity in Grid Environments,”
In Proceedings of ITCC’04, IEEE Computer Society, 2004, Vol. 1, pp. 435–439.

90. A. Gilbert, J. Thomas, and I. Jonyer, “Modeling Work Flow in Hierarchically Clustered Distributed Systems,”
In Proceedings of PDPTA04, 2004, http://www.cs.okstate.edu/˜jonyer/pub/pdpta04.pdf.

91. D. Ţepeneu and T. Ida, “MathGridLink—Connecting Mathematica to the Grid,” In Proceedings of IMS’04,
Banff, Alberta, Canada, 2004.

