
Chapter 1
Dimensions of semantic similarity

Paweł Szmeja, Maria Ganzha, Marcin Paprzycki, Wiesław Pawłowski

Abstract Semantic similarity is a broad term used to describe many tools, models
and methods applied in knowledge bases, semantic graphs, text disambiguation, on-
tology matching and more. Because of such broad scope it is, in a “general” case,
difficult to properly capture and formalize. So far, many models and algorithms have
been proposed that, albeit often very different in design and implementation, pro-
duce a single score (a number) each. These scores come under the single term of
semantic similarity. Whether one is comparing documents, ontologies, entities, or
terms, existing methods often propose a universal score—a single number that “cap-
tures all aspects of similarity”. In opposition to this approach, we claim that there
are many ways, in which semantic entities can be similar. We propose a division of
knowledge (and, consequently, similarity) into categories (dimensions) of seman-
tic relationships. Each dimension represents a different “type” of similarity and its
implementation is guided by an interpretation of the meaning (semantics) of that
similarity score in a particular dimension. Our proposal allows to add extra infor-
mation to the similarity score, and to highlight differences and similarities between
results of existing methods.
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1.1 Introduction

Semantic similarity, understood broadly, has been applied in very different fields
such as psychology, linguistics, biology, knowledge modeling, artificial intelligence,
and others. Even though, in our work, we focus on computer science (and mathemat-
ics), the understanding of similarity in any domain is influenced by other domains.
Within the scope of computer science there are many areas of interest for similar-
ity scoring, such as graphics (e.g. face recognition), information retrieval, machine
learning, etc. In this context, semantic similarity algorithms are focused mostly on
computational linguistics and semantic reasoning, each with multiple applications.
The most popular direct areas of application are ontology matching and document
(i.e. text) similarity scoring.

To introduce some order into our considerations, let us declare specific objects
that we consider most relevant (in the scope of this work). Those are documents
(natural language texts organized in corpora), terms (e.g. atomic parts of a text), on-
tologies (a representation of a knowledge base, e.g. a semantic graph) and entities
(atomic parts of a knowledge base or an ontology). We also look at entity descrip-
tions contained in ontologies. We mostly consider pairwise comparisons between
any two objects of the same type (e.g. two documents, and not one document and
one ontology). However, to avoid gratuitous verbosity, the focus is on comparison
of entities and their descriptions. Nevertheless, this paper presents a theoretical ap-
proach, or a “meta-model” of semantic similarity and the presented ideas can be
applied in different fields where similarity is relevant and to objects other than enti-
ties.

To formulate specific examples we use OWL [4] (the most popular ontology
description language) and, occasionally, description logic formulas. This is done in
order to illustrate practical applicability of our ideas.

This paper is an extension and continuation of our previous work [1], where we
have briefly introduced and justified the idea of semantic similarity dimensions.

We proceed as follows. Section 1.2 contains a short introduction to relevant con-
cepts from the description logic. In following sections 1.3 and 1.4 we summarize
the existing approaches (both theoretical and practical) to calculating semantic sim-
ilarity. We also briefly explore the general truths about similarity. Semantic simi-
larity dimensions are introduced in section 1.5. Its subsections present archetypes
of dimensions, along with general information and examples. Section 1.6 illustrates
practical application of the dimensional similarity method in the field of ontologies,
while section 1.7 confronts the dimensional similarity score and results of other
similarity methods. Properties of similarity dimensions are examined in section 1.8,
while section 1.9 outlines more general use cases. Finally section 1.10 presents a
summarized case for semantic similarity dimensions.
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1.2 Description logic

Let us start with a brief introduction to description logic (DL). Information pre-
sented here is needed in order to understand some examples given in later sections.
This is because OWL is based on DL, and OWL axioms can be written in the form
of mathematical formulas expressed in DL. This representation gives a useful per-
spective on ontological entities.

In description logic, knowledge is stored in knowledge bases that contain axioms
(also called facts). An ontology is a collection that contains knowledge and, within
the scope of this paper, is considered to be an equivalent of a knowledge base. More
formally, a knowledge base is part of a mathematical model and ontology document
(specifically in computer science) is a presentation of this model.

Each knowledge base (KB) (and each ontology) can be partitioned into TBox,
ABox and RBox. Each of those boxes contains different kinds of axioms. This divi-
sion extends to different entities and entity descriptions.

The TBox contains concepts (also called classes), i.e. the declarations and de-
scriptions of concepts. A declaration is simply a statement about the kind of an
entity (in this case—a class), and each description of a concept is constructed from
concept names, role names, constants and a set of DL constructors. The description
is said to provide the explanation of a semantic meaning of a class.

A set of classes, organized into a hierarchy, is called a taxonomy. In taxonomy
classes may have descendants (specializations) and ancestors (subsumers or gener-
alizations). A relation of subsumption in many semantic graphs has the name IS-A
e.g. “computer IS-A machine”. The IS-A relations occur very often and form di-
rected sub-graphs in semantic graphs. In DL every taxonomy contains a special
class—Thing (>), that is the “top” of the hierarchy, i.e. it has no ancestors. More-
over each concept is necessarily a descendant of>, which means that every concept
in an ontology is a part of the same hierarchy. In other words every concept is of type
Thing and, in semantic graphs, there exists at least one path along the IS-A relation
between any two concepts. Thing is considered to be the root of a taxonomy tree. In
this paper, concepts with rich descriptions are called complex, as opposed to simple
concepts, descriptions of which consist only of class names and describe only the
concepts’ position within the taxonomy. Historically, simple concept descriptions
are important, because many old ontologies were formulated exclusively in terms
of taxonomies, and, consequently, some similarity algorithms consider only the tax-
onomic part of ontologies. Taxonomies and classes are still considered central to a
lot of ontologies.

The ABox contains declarations and descriptions of individuals. Individuals are
instances of classes, i.e. each instance is of at least one type and, necessarily, of type
Thing. A description of an individual is comprised of types and assertions about
properties built from concept names, role names and constants. Property assertions
are parts of a description that are specific to each individual and together with indi-
vidual’s types describe the meaning of the entity. Individuals usually do not form a
hierarchy. They are, nevertheless, strongly tied (via the types) to the taxonomy. As a
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consequence of the meaning of subsumption, an individual that is explicitly of type
A is also of all types that are ancestors of A (including >).

The RBox contains declarations and descriptions of roles (also called proper-
ties). A role description defines the role’s domain, range and characteristics (such as
symmetry, transitivity and others), which likens roles to mathematical binary rela-
tions. In OWL DL [4], an OWL variant,two types of roles are distinguished: object
properties and data properties. The range of an object property is a class, while the
range of a data property is a literal (e.g. a numerical value or a string). For both
types of roles the domain is a concept. The RBox is often considered to be a part of
ABox, as opposed to a “box” of its own. In any case the main line of division of a
knowledge base lies between ABox and TBox.

Following the division of KB into “boxes”, within the scope of this paper the
term (ontological) “entities” refers to concepts, individuals or properties. The most
relevant similarity calculation is between entities from the same “box”, although
comparison between, for instance, a class and an individual is also, theoretically,
possible (we touch upon this later).

Different varieties of DL (sometimes called profiles) determine what construc-
tors are available when formulating axioms, as well as what syntactic variant is
allowed (i.e. what symbol sequences are allowed). In order to clearly present our
ideas, in this paper, most examples of DL expressions are given in a simple DL for-
malism E L (see table 1.1), unless otherwise noted. We also discuss how the ideas
may be extended to more expressive description logics.

Table 1.1 DL constructors
E L Name Syntax
∗ top concept >

bottom concept ⊥
concept (class) C
concept negation ¬C

∗ concept conjunction C1uC2
concept disjunction C1tC2

∗ existential restriction ∃R.C
universal restriction ∀R.C

In what follows, concept names are denoted by capital letters A,B,C, .., individ-
ual names by lowercase letters a,b, ..,o, and role names by lowercase letters p,r, ..,z.
Each name may have an optional index, e.g. C1. An expression C(a) means that in-
dividual a is of type C. Expression r(a,b) is a role assertion and denotes that a is
related to b by role r, a being the realization of the roles domain and b its range.
Table 1.1 summarizes relevant DL constructors. Constructors in E L are (by def-
inition) limited to: top concept, concept conjunction and existential quantification
(restriction). For more details about DL, its constructors, semantics, and varieties
refer to [40].

Some relations defined in DL are of special importance to similarity scoring.
Those are primarily subsumption (w), inclusion (v) and equivalence (≡). The v
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corresponds directly to the IS-A relation, and the w combined with the v means
the same as the ≡. While subsumption is usually reserved for classes, the equiva-
lence relation can be applied to any entity and has special interpretation of “maximal
similarity”. Unsurprisingly, when two entities are equivalent, they should be treated
as one and the same entity, and their similarity score should be maximal. In sim-
ilar fashion, a negated (¬) entity should be maximally different from the entity it
negates, but most often negation is neither part of the DL profile of an ontology, nor
is considered when calculating similarity.

There are two definitions that are highly relevant to calculation of similarity, that
can be expressed in DL—the least common subsumer [41] and the most specific
concept [42].

The least common subsumer (LCS) of two entities X and Y is the most specific
(i.e. farthest from the root) entity that is an ancestor to both X and Y . In a taxonomy,
it is a concept that shares the most types with compared concepts, and itself is a
type (generalization) of compared concepts. In other words, the LCS is a class that
is a superclass to both X and Y . Since there may be multiple such superclasses, we
choose the one that is least general, i.e. as far from the Thing and as close to X and
Y as possible. Since LCS represents, in a sense, the most information the entities
have in common, it is sometimes treated as the central part of similarity algorithms.

The most specific concept (MSC) of an individual is a concept whose description
is built from assertions about the individual in a way that includes every such as-
sertion. In other words it is a class that is built specifically to contain an individual
and in its construction is guided by the description of the individual. It is often so
specific that it only contains the one individual it was constructed for. The process of
construction of the MSC utilizes standard semantic deduction [57] and is described
in detail in [56]. The MSC is, in general case, not unique and, because of that, its
usefulness is put into question. The details are beyond the scope of this work and we
refer interested readers to [56]. Even more information about both LCS and MSC
can be found in [40, 41, 42]. In further sections we give specific examples for LCSs.

1.3 Similarity

There is a multitude of works dedicated to similarity across multiple domains, in-
cluding psychology and sociology [86, 87], as well as more technical fields, such
as mathematics, computer science, or engineering (i.e. similitude [88]). To keep
the text coherent, and not to stray too far from the core ideas, in this section we
present some general observations about similarity, relevant to the main content of
this work. Since computer science is the main focus, articles relevant to this field of
science are referenced throughout the text. Let us now start our general considera-
tions.
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Features of similarity

There are many properties that may apply to a similarity measure. Most measures
reflect the following two general observations about similarity:

• It grows with the commonality of objects
• It decreases with the difference between objects

Those two terse and laconic statements are ones of very few that, for all prac-
tical purposes, can be applied to vast majority of formalized similarity measures.
Whether we compare documents, terms, ontologies or other objects, the factors that
increase similarity can be summarized as the commonality between objects. What
contributes to decrease of similarity is the disparity, often included in the score im-
plicitly, as opposite to the commonality.

Here, it should be stressed that, although other observations can be made about
similarity, there is no strong/community-wide consensus, based on which, one could
construct a general definition. Furthermore, there are a number of “features” of sim-
ilarity, both formal and informal, that have support and opposition. A notable infor-
mal feature of similarity is that, in human judgment, common features carry more
weight than disparate ones [48]. This is exemplified in measures that explicitly con-
sider only commonality and discard differences, i.e. work under the supposition that
the initial similarity is minimal (zero) and each common feature increases it. A
different approach relies on a “balancing” between commonalities and disparities,
where each of those increase and decrease similarity (respectively) that, initially, is
set at a middle score (e.g. 0.5 on a scale from 0 to 1).

Attentiveness

Another concept relevant to similarity is classification that stems from computer
graphics, and divides similarities into “Pre-attentive” and “attentive” [89, 90]. Pre-
attentive similarity is measured before “interpretation” of entities (or “stimuli”, in
graphics processing terminology), while attentive methods are used after entities
have been interpreted, classified and put into context. The “interpretation” process,
while specific to computer graphics, can be extended to semantic similarity in gen-
eral. At first glance, semantic similarity falls squarely into the attentive category,
because semantic descriptions or features are already an interpretation of entities.
On the other hand, similarity algorithms commonly do not distinguish between pos-
sible different interpretations of the same entity. This is highly relevant in graphic
databases, where, for instance, searching for images most similar (to a reference
image) requires different queries, depending on whether we are interested in shape
or color palette similarity. Other, advanced features of an image may be calculated,
such as painting style, and they all require attentive methods. Extending this idea
into general semantic similarity, we may add similarity scoring with respect to
provenance (e.g. authorship) information for the same images. The different “views”
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on similarity are, from the point of view of attentive methods, different interpre-
tations of the same entities. This idea is expanded upon, although with different
terminology, in later sections, where we describe semantic similarity dimensions.

Reference similarities

Another notable point is that similarity often depends on the context, where each
feature has a weight based on subjective evaluation of importance (i.e. opinion) and
circumstances surrounding the comparison. In human judgment, knowledge of the
person performing the comparison is very important [53] and is de facto the implicit
“knowledge base” that we score against. However, it is not directly relevant in case
of comparison of DL entities, because, the knowledge used for such comparison is
explicitly defined and available in KB. It has, however, heavy bearing on the quality
of similarity methods, because their results are often judged against human (expert)
opinions. In this way, the evaluation of a similarity algorithm is dependent not only
on the expert doing the evaluation, but also on the quality of the ontology.

There are reference sets of similarities, such as the Miller’s benchmark [43]. The
benchmark itself (building on previous work [53]) produced a set of 30 pairs of
generic terms along with a similarity score averaged from judgments of 38 students.
It was conceived as a way to gain insight into how humans score similarity. The
terms were chosen to be purposefully ambiguous, which adds another layer of (dis-
ambiguation) challenge for the similarity algorithms. Moreover, such benchmarks
are not a good reference point for big ontologies, since those are usually detailed and
contain expert knowledge of a certain domain, which means that there are no am-
biguous terms in them. Later, the benchmark was reproduced [50] with considerably
different results, which further questions its validity as a similarity algorithm evalu-
ation tool. Nevertheless, many works refer to this specific benchmark as a reference
and proof of good (i.e. correct) results [44, 45, 46, 47, 91].

There are organized efforts to counteract the difficulties in evaluating (semi-)auto-
mated methods of similarity scoring, such as OAEI (Ontology Alignment Evalua-
tion Initiative) [8]. This initiative is dedicated specifically to evaluating only ontol-
ogy alignment tools and its evaluations are organized into yearly editions, each with
many “tracks”. In each track there are some reference ontologies and alignments
prepared. By ensuring that both ontologies and reference alignments are of good
quality, OAEI is able to, at least in principle, provide more meaningful evaluation
results, than simple comparison to a benchmark. Another approach was adopted by
Reuters, which publishes corpora of documents for text categorization, e.g. Reuters-
21578 or RCV1 (Reuters Corpus Volume 1). Instead of declaring an authoritative
reference categorization, the corpora may be used to compare results of different
methods, or to test improvement of a single method over its previous iteration.
Other similar corpora exist, e.g. Ohsumed [92] for medical documents and 20News-
Groups [93] for newsgroup documents.
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Granularity

It is worth noting that granularity of information has an influence on similarity. In-
formally, the more details we include in our comparison, the less impact on similar-
ity each of them will have. Consequently, a general feature of observation about an
object has a bigger weight than a detailed description of the same feature. In other
words, an expert (or an expert ontology) has a different (more detailed) view than a
layman (a general ontology). In case of human judgment, but also algorithms mod-
eled after it, taking into account that commonality carries more weight, the similarity
of a feature is likely to decrease, when we take a closer look at it. For example, a
simple property, such as age of people, might be exactly the same, when we look
only at the birth year, but will decrease with the increase of accuracy to days or even
minutes. For a layman, creatures such as monkeys and chimpanzees would be much
more similar, than in the eyes of an expert. A more general observation is that the
amount of information we have about an entity greatly influences similarity, which
is most pronounced in probabilistic methods, such as in [50], where similarity can
change, even if we add knowledge seemingly unrelated to the compared objects.
In particular, granularity of information may strongly influence human performed
quality evaluation of similarity measures (cf. [43]).

Distance and closeness

Similarity is often considered in the context of distance between entities. The idea
comes from psychology [86] and states that entities may be put into a multi-
dimensional space, where each dimension is a separate characteristic. In such theo-
retical space, the distance between entities is the evidence of dissimilarity, which is,
informally, an inverse of similarity. While in specific applications it may be possible
to construct a finite set of dimensions [90], in general, the sheer number of possible
characteristics in semantic descriptions makes construction of general algorithms
based on this idea difficult [25]. The distance-based similarity is also applicable to
graph structures (more on this in later sections).

Similarity ordering

It has been argued that just an ordering of concepts, with respect to similarity, is
more useful than a number. In many applications one is primarily interested in find-
ing an entity that is closest to a reference entity, the actual value of “closeness” being
secondary. In case of three objects, one reference object and two compared objects,
we might be satisfied just knowing, which of the comparison objects is more simi-
lar to the reference object, rather than learning the numerical score. This is clearly
pronounced in the difference between regular search and search based on similarity
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measures. The first is a partition of the search space into entities that fit the search
criteria (i.e. the query), and those that do not. Similarity search, essentially, responds
with the complete search space, ordered by similarity. Note that, in practice, we are
usually interested only in those entities that have an extreme value of similarity—
either very high or very low. In both cases, the actual numerical scores, often are
irrelevant, as long as they are above (or below) some threshold.

1.4 Similarity calculation methods

Let us now present a, non-exhaustive, list of selected algorithms and methods of
calculation of similarity, that are both used in practice and relevant to presentation
of dimensions of semantic similarity. In order to focus on presentation of our own
ideas, rather than summarizing all existing similarity methods, we have chosen to
describe only a few methods. For a richer list of similarity methods, see [34]. Note
that the semantic measures library (SML) [85] contains implementations of a large
number of methods described here, as well as many others.

Edge methods

Edge-based models work on assumption that edge distance in a graph is meaningful
for similarity. Needless to say, edge-based methods require a graph structure, such
as a taxonomy. Those methods view ontologies as directed graphs, where small dis-
tance along some edge type is the evidence of similarity, and long paths indicate
dissimilarity. A common criticism of edge methods, when applied to ontologies,
is that they work under the assumption, that each edge in a path has the same se-
mantic distance. In practice, however, there is no formal evidence to back up this
assumption, and some evidence that indicates the opposite [30, 33].

The simplest approach considers similarity to be equal to the length of the short-
est path between a pair of entities (e.g. concepts) SRada(X ,Y ) = min(paths(X ,Y ))
([35]), where paths(X ,Y ) is the set of path lengths in an IS-A graph (see, Sec-
tion 1.5). More sophisticated methods, such as e.g. SimWu(X ,Y ) = 2∗depth(LCS(X ,Y ))

depth(X)+depth(Y )
([37]), involve normalization and take into account depth of the compared entities,
depth of their LCS, or length of path between the root, LCS and entities. Finally, [39]
utilizes multiple relations (not just IS-A) in a graph (multigraph). Because edge
methods regularly use simple mathematical rations, they are often applicable to the
dimensional approach to similarity, where the same formulas are used on distances
along dimensions, instead of path lengths.
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Feature methods

A big class of similarity algorithms are feature methods. In these methods, each en-
tity is represented by a set of semantic features and the entity similarity is equivalent
to similarity of feature sets. What the features are, and how to identify and construct
them, depends on the domain of application and, sometimes, on a particular im-
plementation. For instance, in computer graphics, a set of features for each image
depends on the software, and may include shape, size, texture, color, position, etc.
In general case, however, the situation is complicated and there is no universal al-
gorithm of representing entities as a set of features. Feature methods are applied in
different domains (e.g. graphics [3], reasoning [36] and others) and “features” have
slightly different meaning and are constructed (or extracted) in a different way, de-
pending on the domain model. Usually, features are crisp (not fuzzy), i.e. a feature
either belongs to a feature set, or not. This approach makes it difficult to evaluate
similarity of features that have numerical representations, like the aforementioned
color (e.g. in the RGB color space). When put into a set, a specific numerical value
of a color is, in general, an entirely different feature than any other color value, no
matter how close the color are. This property is another reason for the division of
feature methods into specific implementations (e.g. in graphics) and general formu-
las (with crisp feature sets).

In ontologies there are many ways in which feature sets can be constructed from
a description of an entity. In case of concepts, the features are usually considered
to be the concept’s ancestors, its roles, instances, or a set of all of those. Details of
how a complex description is converted into a set of features depend on particular
method and underlying logic (see, Section 1.5 and onward). A set of features of an
individual may be constructed from its types and role assertions. A usual approach
is to use only role assertions directly mentioned in the entity definition. In such
approach, the semantic descriptions with color properties (e.g. X hasColor red and Y
hasColor light-red) consider the property and its value as atomic, and do not go into
detail about possible similarity of red and light-red. It is worth noting that, in some
specific cases, the feature sets can be constructed in a very natural way. This is the
case of WordNet [61], which explicitly defines synsets (sets of synonyms) that can
be, with no additional effort, treated as feature sets. Another noteworthy property
is that the feature sets in a taxonomy may be defined as a IS-A neighborhood of
a class. In such case, the feature method is, conceptually, very close to an edge
method, because they both use very similar information as input.

In Tversky’s ratio model [48] similarity of two sets of features XF and YF is given
by the formula STv(XF ,YF) =

α f (XF∩YF )
α f (XF∩YF )+β f (XF−YF )+γ f (YF−XF )

, where X −Y is a set
difference (relative complement of Y in X), f is a monotonically increasing function
(usually set cardinality), while α,β and γ are positive coefficients. The coefficients
control importance (“weight”) of common features and features exclusive to either
set. For different choices of values of the coefficients, Tversky’s ratio model has
different properties and produces different formulas. In particular, for α = β = γ = 1
and f = | · | the model becomes the Jaccard index [2] J(XF ,YF) =

|XF∩YF |
|XF∪YF | . Some
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methods ([83, 84]) include an ad-hoc weighting of coefficients for different features,
instead of a fixed set of coefficients for all features. Tversky also proposed a contrast
model represented by the formula STvC(XF ,YF) = α f (XF ∩YF)− β f (XF −YF)−
γ f (YF −XF).

Information-theoretic methods

Methods from an information-theoretic class approach similarity from the point of
view of information theory [54] and assume that similarity is strictly related to the
amount of information each of compared entities provides. This class is represented
by Information Content (IC) model proposed by Resnik ([50]). IC of an entity e is
computed from its probability p(e): IC(e) = − log(p(e)). When applied to a tex-
tual entity in a corpus, p(e) is equal to the probability that this entity appears in a
given document from the corpus. In the context of a taxonomy, probability of an
entity is inversely proportional to the number of entities it subsumes. By this def-
inition, IC is monotonically decreasing from leaves (most informative) to the root
(least informative). Resnik’s similarity is calculated from IC of the most informa-
tive common ancestor (MICA)—a common subsumer that has the maximum IC:
SRes(X ,Y ) = IC(MICA(X ,Y )). MICA is closely related to LCS. Some works build
on Resnik’s approach by relaxing it’s reliance on the LCS. For instance, Lin pro-
posed a formula that involves the Information Content of the entities themselves,
alongside their LCS: SLin(X ,Y ) = 2×SRes(X ,Y )

IC(X)+IC(Y ) . Other methods, such as the one pro-
posed in [52], use only the number of immediate children as a measure of IC, where
high number of children denotes low IC. Several other methods of calculating IC
have been proposed [96, 95, 97], with a lot of them focusing specifically on Word-
Net.

Geometric methods

In the geometric approach to similarity, objects are represented as points in a multi-
dimensional geometric space. Any feature of an object is converted to a number
that serves as a coordinate. This approach directly corresponds to multi-dimensional
similarity space described earlier. A set of coordinates represents the entire object
in a space. The similarity is simply calculated as the shortest geometric (usually
Euclidean) distance between two points. As such, just like any metric distance, it
has the properties of minimality, and those of a mathematical metric. Unfortunately,
many features are not easily subjected to conversion into a geometric dimension,
as it requires them to be represented as a set of points on a continuous line. While
some features have a natural representation in a geometric dimension, such as the
RGB model of color, others do not, unless they are specifically designed to have that
property (such as a brand of a product). A work on high-dimensional spaces [25]
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describes other problems that are relevant when dealing with a high number of geo-
metric dimensions. In practice, only domain and problem specific implementations
of geometric methods exist, such as the one proposed in [90] for an image database.

Other methods

Some methods do not fit neatly into the above categories and are considered “hy-
brid”. Such methods (e.g. [84, 51]) use characteristics from multiple categories and
combine, for instance, path length with depth in taxonomy, or taxonomic neighbor-
hood. Often, such methods use weighted sum (with weights tuned to a specific data
set) of separate results for each considered perspective, or “sub-method”.

A decisively syntactic (i.e. non-semantic) class of methods that deserve men-
tion, are the edit distance methods, most prominent of which is the Hamming dis-
tance [94]. The general idea is that high number of edits that need to be done in
order to transform one entity into the other is indicative of dissimilarity. Different
methods define “edits” in a different way, and for strings those usually include re-
moving a character or adding one. Edit distance is usually not applied to feature sets,
although some feature set methods compute similarity score in a way reminiscent to
the edit distance. It is, however, relevant to ideas presented in section 1.5.

Notice that each of the methods, presented in this section, makes some assump-
tion as to the model of information. A feature method requires a set of features, an
edge method needs a graph, etc. In order to apply each of those methods to a knowl-
edge base we need to present it in a particular fashion—as a graph, a DL formula, a
set of features and so on. In order to be applied to an ontology, each method requires
a different perspective.

1.5 Semantic similarity dimensions

Let us now recall that, in their foundation, similarity and meaning (semantics) are
inherently human concepts. From this point of view, a similarity score should have
an explanation (or interpretation) that is understandable for a human. Let us con-
sider a simple example of comparison of two physical objects. There are many ways
in which they can be similar or dissimilar, two of them being shape and color. Those
two kinds of features are independent with respect to similarity, e.g. objects can
have similar color and different shape (and vice-versa). Canonical ways of auto-
mated calculation of similarity (described above) would produce a single score that
would in some way combine similarity of shape and color. However, the two simi-
larities, when treated separately, provide more information to a human, because they
have a clear interpretation. Therefore we can assume that a person that knows this
interpretation has a better understanding of how similar any two physical objects
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are. In this toy example shape and color contribute to two separate dimensions of
similarity.

From this, it can be conjectured that similarity of semantic entities has many dif-
ferent aspects that are being grouped together, based on what part of available data
(or knowledge) is used (regardless of the actual similarity method). Those groups
represent different types (dimensions) of semantic relationships and, therefore, simi-
larity. This idea draws on the concept of knowledge dimensions originating from [6],
where authors also divided ontological knowledge into subsets (dimensions) and
applied (in [5]) to calculation of similarity in WordNet. However, there the scores
from each dimension were still combined into a final similarity score (a single num-
ber). Our idea also borrows from geometric and feature models of similarity, and is
closely related to attentiveness and multi-dimensional similarity space, described in
section 1.3.

When approaching this from a different perspective, observe that approaches to
either grouping attributes (features), or dividing the data into (what we call) dimen-
sions were focused on results given by some predetermined method. In other words,
the starting point was a method that provided foundation to interpret the result. Our
approach starts from explaining the nature / semantics of the dimension that we are
interested in, and then finds the method that would produce said result. In this way
the recognized dimensions are interpretation driven, rather than method driven. In
fact, the same method may be used in different dimensions, as exemplified in sec-
tion 1.6.

Note that the concept of different kinds of similarity has been present in the
literature, in one form or another, for a long time. For instance [12] contains a sum-
mary of ontology matching methods and categorizes them by the kind of data they
use. Sample “kinds” of methods use comparisons of entity labels, their “attributes”
(in DL terms—assertions), instances of classes, position of entities in taxonomy
and others. Categorization described in [12] complements a more general work on
schema matching [22] that presents its own division of matching methods by type.
Later work [13] reviews methods of ontology matching and distinguishes methods
that use structure of the ontologies and those that utilize entities (called structure-
level and element-level dimensions). The categorization goes deeper with dimen-
sions such as syntactic, semantic, external, terminological, extensional and others,
some of which overlap (for more detais, see [13]). The state of the art for ontol-
ogy matching, described in [103], contains more detailed descriptions of different
matching methods with specific examples of implementations. Later work [14], pro-
poses a slightly different division into language-, linguistic-, string-, and structure-
based approaches. Another example is [49], which mentions in its opening chapters
that different similarity measures have differing implicit assumptions, hinting at the
existence of similarity dimensions. The Gene Ontology [62] defines two types of
similarity measures, namely pairwise and groupwise, which are akin to kinds of
similarity, albeit specific to that ontology only. Another work on semantic similar-
ity [26], classifies existing methods for biomedical ontologies with respect to scope
(what entities are taken into account), data source (edges, nodes or other) and metric
(used algorithm). Authors of [26] observe that methods that use different metric and
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data produce different results, but all claim to produce a similarity score that is “uni-
versal”. To the best of our knowledge [6] was the first paper in which different kinds
of similarity were the explicit focus, and were given the name “dimensions”. Finally,
let us also note that an implemented ontology matching system ASMOV [9] utilizes
four (lexical, relational, internal and extensional) dimensions that are weighted and
summed to obtain the final score.

It’s important to note that, ideally, similarity dimensions should form an orthog-
onal partition of a “total” similarity. Since, as discussed previously, the distinction
lies in the kind of data used, the available knowledge should be partitioned into
subsets, one for each dimension. Under this characteristic, the similarity scores for
each dimension would be independent. In practice, however, such clear division is
not always possible (see, following sections).

In this context, let us now introduce selected dimensions and formalization of a
general case of pairwise comparison of entities in an ontology based on description
logic.

External and internal dimensions

From the point of view of the origin of data, similarity dimensions can be catego-
rized into external and internal ones.

External dimensions. An External similarity dimension uses information from
outside of the main knowledge base or ontology. In case of entities, external meth-
ods use a small (likely atomic) part of an entity description that serves as an iden-
tifier, to find information about it in external sources. A good candidate for such
an identifier is a label of an entity, because it is available for all named entities and
may be written in a natural language. A complex description is, in such case, simpli-
fied into a single term, so that it can be easily identified and searched for in outside
sources. The assumption behind this operation is that the entity has a meaning out-
side of the original knowledge base, and this meaning is relevant to calculation of
similarity.

For a pairwise comparison of entities this means that the used methods are actu-
ally independent of the DL formalism used to describe the entities. The information
we use for scoring comes from an independent, external source (possibly having its
own formalization). For English words a method commonly used in ontology align-
ment systems [9, 10, 11] is to utilize the English WordNet ontology and calculate
similarity with a method specific to WordNet (e.g. feature method that works on
synsets).

External methods have two inherent weaknesses, as they rely on: existence of a
good term that describes each compared entity, and on the quality and relevance of
the external data source.

The External dimension gives a perspective on how similarity of entities is
viewed outside of known and specific context. The lack of this specific context
causes disambiguation problems. For that reason external similarity scoring is best
suited for entities that are general and relatively insensitive to context. For instance
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it is useful when performing entity resolution for duplicate detection in data analy-
sis, because often our data describes a broad range of items from multiple domains
(e.g. items from a big online store). One of the simplest techniques of doing that is
to convert entities into a canonical form, that serves as a representative and could be
used as an external identifier.

Internal dimensions. Internal dimensions are those that make use of information
either explicitly provided in the knowledge base of compared entities, or inferred
from that knowledge base. In this case we are not interested in any independent
outside sources and assume that any knowledge we might use must come from what
we already have in the knowledge base, or an ontology connected to it (e.g. via
Linked Data [68]). Vast majority of similarity methods are internal; especially, ad-
hoc ones that are restricted to a single ontology (e.g. [5] that works on WordNet
only). Here, we assume that any discussed ontology can be expressed in description
logic.

Usually, in description logic, entities compared internally are of the same type,
i.e. both come from the same “box”—ABox, TBox or RBox (we compare concept
with concept, role with role, etc.), although it is possible to compare “across boxes”
(e.g. a concept with an individual), which is explained in what follows.

Note that some similarity dimensions have interpretations for both categories—
internal and external, while others are exclusive to one category.

Lexical dimension

Lexical methods utilize dictionaries and lexical ontologies to asses similarity of en-
tities (e.g., see [5]). In a general case of an ontology, lexical methods are external.
Entities are considered in the context of a dictionary (where they are referenced to
by an identifier) and not the original ontology. A pair of labels, or entity names, writ-
ten in a natural language can be subject to the lexical dimension similarity methods.
The methods themselves might be very complex and utilize big ontologies (such as
WordNet).

Lexical dimension is most useful when entities have uniquely identifying labels.
For that reason we can expect that, for example, comparing terms “dolphin” and
“porpoise” will yield useful results. A simple lexical method for concepts could,
for instance, extract the labels of entities and use WordNets synsets of the labels as
features, in a feature-based method. On the other hand, this is not the case when
labels are human names (e.g. Mary, Adam), because, even though technically be-
ing labels, those are a properties of an individual, rather than unique identifiers. In
different ontologies these might refer to different people. Similar problem arises
when identifying terms are words with multiple meanings (e.g. “seal”). Generally,
any identifier that is sensitive to context of a knowledge base (like human names)
is not a good candidate for a lexical similarity scoring. This is because in any ex-
ternal similarity dimension we lose the original context. In a lexical method the
additional context we need to consider is the natural language itself (e.g. English,
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French etc.). Lexical scores might differ between languages, because of varying
sets of homonyms and many natural differences between languages. Despite this,
as mentioned before, many ontology alignment methods use external lexical sim-
ilarity as a way to find connections between ontologies that have no links defined
between them. Sometimes the lexical scores are used as a bootstrap to discover other
connections between ontological entities and improve the alignment.

Informally, the lexical dimension specifies similarity of names of entities in a
dictionary. Unfortunately, it suffers from the problem common in dictionaries, i.e.
ambiguity. So-called “word sense” disambiguation is a big issue in text process-
ing [27] and semantic ontologies (e.g. applied to named entities [28]). Ambiguity of
language negatively impacts accuracy of the lexical similarity score. Notice that, in
the case of a well defined ontology, there is no ambiguity problem, because the en-
tity descriptions are compared directly. When comparing terms we first need to find
out what entity each term represents (what is the underlying entity) and then com-
pare the entities. Miller’s benchmark [43], often used to evaluate WordNet methods,
does not, unfortunately, have explicit concept descriptions, and the word sense in
each word pair needs to be decided solely on the two words in each pair.

In short, the interpretation of the lexical dimension is that entities lexically similar
have names that are similar, according to a dictionary. In order for a lexical method
to be semantic, it should not rely on any edit distance.

Co-occurrence

Another group of methods dealing mostly with the external dimension are the
co-occurrence methods. Like lexical methods, they also use a single term or la-
bel (identifier). Similarity is calculated based on a highly controversial assumption
that entities that often appear together are similar. For instance, the web search co-
occurrence methods measure the number of web pages that contain both identifiers
(or terms). Methods in this dimension are often used for text similarity scoring, and
work under the assumption that words that appear together in a high number of text
corpora are similar. More advanced co-occurrence methods distinguish between dif-
ferent meanings of words [29]. Their authors, realized that, like in the case of lexical
methods, disambiguation is an issue. In data analysis co-occurrence is used as an
evidence of similarity (called “linkage pattern”).

Co-occurrence methods usually do not take into account the reason for two
entities appearing together. For instance, they do not take into account that co-
occurrence might be a result of a single event, local culture, specific names (e.g.
names of sports teams), or even a coincidence. In this way, co-occurrence is an evi-
dence of relatedness, but not necessarily similarity. Overall, co-occurrence methods
are known to give questionable results [30].

Co-occurrence dimension is external, because it uses many data sources (e.g.
web pages, documents etc.). A commonly used sources are those that are publicly
available, such as Wikipedia [44], or Freebase [91]. Although, in an ontology we
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might construct a co-occurrence method based on an assumption that entities that
appear in a high number of axioms together are similar. Such methods would give
results that would come under the same questions as ones from other co-occurrence
methods [30]. Moreover, since the axioms contain detailed knowledge about se-
mantic relationships between entities it is better to consider why the entities appear
together, rather than disregarding that information. For this reason the type of axiom
(e.g. RDF predicate, if available) should always play an important role in similarity
scoring.

Interpretation of a co-occurrence similarity is, simply put, that entities often ap-
pear together and are referenced in the same contexts.

Taxonomic (sort) dimension

Similarity in the sort dimension (also called hierarchical or taxonomic) describes
how similar entities are, according to data from taxonomy and, therefore, uses
mostly the TBox.

Theoretically sort dimension is most easily described in terms of types of con-
cepts (i.e. subsumers or ancestors). For instance, in a hypothetical ontology of ge-
netic ancestry two classes of creatures are similar, if both are reptiles (they share a
type). Similarity increases with each type that the creatures have in common. At the
same time it decreases with each disparate type (e.g. when one creature is a lizard,
and the other a snake). This is in accordance with the general tenets of the concept
of similarity (see, section 1.3).

Practically, taxonomy is often visualized as a graph, where nodes are concepts
and edges are IS-A relations. Because of the structure of a description logic taxon-
omy, each common type of compared entities lies on some path from the root (>)
to either of the entities. More precisely the commonality is defined by any path to
the lowest common subsumer (LCS) of both entities. Any edge on such path is be-
tween two common types. Any edges from > to any of the entities that does not lie
between > and LCS is an evidence of dissimilarity.

Many edge-counting methods (that use taxonomic ancestry of entities, [64]),
some IC methods (like [55] or [81]) and feature methods (e.g. [31]) can be used
in this dimension.

Formally hierarchical dimension includes information exactly about DL rela-
tions of subsumption (w) and, consequently, inclusion (v) and equivalence (≡).
Recall that a concept is a specialization of all its types (classes), including the root,
and a generalization of all its children (subclasses). The root (>) is a generalization
of any concept. Similarity measures that work on subsumptions usually take into
account subsumers of measured classes, rather than descendants. For instance edge-
counting methods “count” classes (types) that are on a path between the LCS and
the root. Some IC methods make use of number of descendants (subsumed classes)
to calculate “probability” of a node. Taxonomic similarity is also linked to distance
between measured entities, either directly, or through IC of LCS.
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Other than concepts, sort dimension can also be applied to roles or individuals.
In some profiles of description logic roles have their own hierarchy (e.g. H subpro-
file of DL [65]) with a separate set of IS-A relations (whose domain and range are
roles, not concepts) that also form a set of data for the sort dimension. In practice,
however, the hierarchies of roles are almost never rich and deep enough to pro-
vide enough information for a useful hierarchical similarity score. Simply put, such
score would not be useful. Individuals do not form their own hierarchy, however,
there are ways to relate entities of that type to the taxonomy, e.g. the most specific
class (MSC, [56]). Another method is to use only concept membership (asserted and
inferred) for compared individuals as taxonomic knowledge. In this method we es-
sentially compare sets of types of each compared individual, which is a good fit for a
feature method, where each type would represent a feature. Since we can construct
a set of ancestors for a concept and set of types for an individual (both ancestors
and types are concepts themselves) it is possible to compare concepts with individ-
uals using a feature method. Thus, in taxonomic dimension we can compare pairs
of concepts, individuals and roles as well as a concept—individual pairs.

In E L , concepts can be represented as an intersection of terms e.g. C ≡ D1 u
D2 u∃p1 u∃p2 and E v D1 u∃p3 u∃p4. In this example, the knowledge that per-
tains to sort dimension is the part of the expressions that contains concept names,
namely C ≡ D1 uD2 and E v D1. The role assertions are not considered a part of
this dimension, so we do not take them into account. If we are interested in compar-
ing the two example concepts C and E with respect to subsumption (note that A≡ B
is equivalent to A v B and B v A) we would use two expressions: C v D1 uD2
and E v D1 that can easily be converted into sets (through itemization with respect
to intersection) [D1,D2] and [D1] respectively, and used in a feature method. For
individuals a,b, assuming C(a), E(b), sort similarity of a and b is equal to sort
similarity of C and E.

The general idea of “truncating” a complex description to one containing only
symbols for concepts and constructors (to “extract” sort similarity) holds for more
expressive DLs. For instance the expression C2 ≡ D1t∀p1.(D2u∃p1.D2) does not
seem to be easily subjected to “extraction” of sort terms. In practice, however, we
can rely on semantic reasoners to build an inferred taxonomy that puts all named
classes in order with respect to subsumption (and inclusion) while taking into ac-
count complex expressions [40]. New concepts, such as MSC, can also be put in a
proper place in a taxonomy with the help of semantic reasoners. It is also common
for the taxonomy tree to be explicitly created (asserted) by the author of the knowl-
edge base. In sort dimension we are only interested in the existence of IS-A relation
between entities and not the reasons for existence of such relation. Combining as-
serted and inferred hierarchies produces data that accurately represents taxonomic
dimension.

In summary, taxonomic similarity of two entities is interpreted as the entities
being of similar type or class, or sharing a number of types. While, in layman terms
a “type” is a vague term, it has a very specific meaning in practical applications i.e.
ontologies.
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Descriptive dimension

From a theoretical point of view the descriptive dimension contains properties that
an entity “has”, as opposed to what it “is” (which is covered in taxonomic dimen-
sion). For animals, similarities in size, weight or age belong to the descriptive di-
mension. Generally speaking, descriptive dimension encapsulates attributes, char-
acteristics, or properties of entities. Properties such as “having a child” are also in-
cluded (and distinct from “being a child”, which belongs to taxonomic dimension).
Again, the more disparate attributes, the less similarity and vice-versa.

In certain ontologies, clearly distinguishing between taxonomic and descriptive
data might be problematic, when it comes to entities that form a hierarchy. The dif-
ference between two dimensions, and whether they overlap or are entirely orthogo-
nal, comes down to the way the hierarchy is constructed by the authoring ontology
engineer. Let’s consider a hierarchy of classes. A taxonomy might be created in an
entirely expert-driven fashion, in which case it would not contain any explanation as
to why any given class has the subsumers that it does. It would be simply an asser-
tion of expert knowledge, stating that any instance of an example class A is of every
type that subsumes A. On the other hand the taxonomy construction might be driven
by roles of every class. Here, the reason for enclosing two classes in a subsumption
relation is that they share a role restriction. In this case, a subsumption implies that
A has a property that is shared among all its subsumers. In other words the basis for
subsumption is inheritance of role restrictions. Informally, if an information about
a role is “included” in a taxonomy (or used in its creation), then it overlaps with
the taxonomic dimension, where it is included implicitly. The descriptive dimen-
sion considers all roles explicitly. More formally, orthogonality of taxonomic and
descriptive dimensions depends on whether the ontology follows the principle of
cognitive saliency [98]. Overall, this principle states that new concepts are created
and subsumed only when there is a need to differentiate them, and put them in their
own class. This principle is, often unknowingly followed in a lot of ontologies, and
one can assume that the taxonomic and descriptive overlap is small or does not exist
at all.

Practically, in ontologies that have both subsumption relations and role restric-
tions, the taxonomy includes results of both methods described above—expert asser-
tion and inheritance. Specifically the inherited roles are the cause of partial overlap
between taxonomic and descriptive dimensions. Notice that for any two concepts,
the set of role restrictions that they have in common is at least the set of roles of
their LCS, because both concepts inherit those roles from the LCS. In a very spe-
cial case, where each class has only one non-inherited role restriction, each IS-A
relation has a corresponding role restriction. Numerically, this means that number
of contributing relations for both dimensions is exactly the same, so we can expect
the results from both dimensions to be close. Such cases are very rare in practice,
where some roles are the explicit reason for the shape of taxonomy, and some are
independent of it. In an example biological ontology of creatures, properties such
as type of reproductive system are the base of phylogenetic taxonomy. Other, such
as diet or geo-spatial distribution are not considered in phylogeny. This is because
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they are not inherited genetically, which is the basic requirement for a phylogenetic
subsumption.

Notice that, even when considering full set of roles of a concept (both inherited
and not inherited), its cardinality might be different from the cardinality of the set
of types (ancestors). For every item in the set of types we might have any number
of role restrictions inherited for that type. In other words, every ancestor contributes
only one piece of data (one superclass for taxonomic dimension), while roles in-
herited from the ancestor might contribute (to descriptive dimension) a different
number (0 or more). For two concepts with complex descriptions that are on the
first level of taxonomy (i.e. direct children of >), if we apply an edge-counting
method, their descriptions are essentially irrelevant for taxon omic similarity score
(only distance to each other or >—their LCS—matters). In fact, this is the case
in the semantic sensor network ontology (SSN) [69], where concepts close to >
have a lot of roles. Those roles could have big impact on a similarity score, but are
disregarded by taxonomic methods. This observation suggests that a clear way to
distinguish the two discussed dimensions is to consider only non-inherited part of
complex concept description, or, alternatively, not consider part of the description
inherited from the LCS. The lack (in practice) of full overlap of dimensions suggests
that descriptive similarity is useful along side of sort similarity and produces results
with a different interpretation.

More formally, in descriptive dimension we are interested in relations that are
roles and are not of type IS-A. Hierarchy constructed from any such relation is not
taken into account. Instead, only existence of a relation and its value is considered.
In DL terms, those are either role assertions (e.g. r(a,b)) in case of individuals, or
quantified restrictions (e.g. ∃p.C, ∀t.5) in case of concept descriptions. Descriptive
dimension fits naturally with feature methods, because we can treat each role asser-
tion or restriction (a “descriptive” expression) as an item in a set of features, either
for TBox or ABox. In E L , extracting a set of such features from concept descrip-
tion is simple and very similar to the method described for sort dimension (it yields
sets [∃p1,∃p2] and [∃p3,∃p4] for concepts C and E, defined earlier, respectively).

Individuals do not form a hierarchy, so comparisons between this type of entities
do not suffer from overlap with taxonomic dimension and as such are a good fit
for descriptive dimension. For a set of statements (role assertions) r(a,b), r(b,b),
r(a,c), p(a,c), t(b,5) about individuals a, b and roles r, p and t, the first two (r(a,b),
r(b,b)) contribute to similarity of a and b, because the predicate (role) and object
(individual) are the same for both a and b. Expressions r(a,c), p(a,c) and t(b,5)
contribute to dissimilarity of a and b, because those assertions do not share both
role and object for a subject of a or b.

Comprehensive implementation of descriptive dimension in expressive DLs is
highly problematic. While it’s relatively easy to construct a transformation of a
complex description to a normal form (e.g. conjunctive normal form) there is no
universal way to compare complex restrictions. For instance there is no universally
accepted method to calculate similarity of each pair of ∃r.A, ∀r.A and ∃r.B other
than to treat those as entirely different (similarity score of 0), even though intu-
itively we might conclude that, since all 3 expressions pertain to the same role r,
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they are not absolutely different and the similarity score should not be zero, even if
its close to it. Unfortunately, when it comes to roles in DL, the canonical approach
is that they can be either identical or not, with no degrees of similarity in-between.
The binary treatment of role restrictions or, widely speaking, features is a big weak-
ness of many similarity methods. Moreover, comparison of complex descriptions,
especially in expressive DLs, is a complicated problem, and is beyond the scope of
this paper. For those interested, [80] proposes a method of comparison of complex
descriptions.

It should be stressed that, unfortunately, existing methods usually do not dis-
tinguish between taxonomic and descriptive data, instead implicitly assuming that
every role restriction contributes to a concepts place in a taxonomy and has no ad-
ditional bearing on similarity. Consequently, there are no methods known to us that
are purely descriptive. That being said, feature set methods are a natural fit for this
dimension, because of the clear division between descriptive features, and other
features.

Descriptive similarity is (informally) interpreted as standing for similarity of
properties, attributes or characteristics, i.e. the items that describe what an entity
“has”.

Other dimensions

Up to this point we have presented four similarity dimensions that are very general
and thus widely applicable. There are many other ways to divide knowledge, as was
suggested in section 1.5. Each of the relevant works [12, 22, 49, 5, 6, 26] uses differ-
ent kind of semantic relations and axioms. One could even argue that any partition
of knowledge forms a set of semantic dimensions. The ones proposed in this paper
were designed (on the basis of analysis of existing methods and ontologies) to be
relatively simple in interpretation and generic enough to be available in almost any
knowledge base. There are, however, other, more specific dimensions, that are worth
mentioning.

Let us start from the the membership dimension. It can be used to measure sim-
ilarity (only) between concepts by gathering and comparing sets of individuals that
are of specific type. Compared to others dimensions, this one produces simple data
even for expressive DLs, because the membership function is a binary predicate—an
individual either is or is not of a given type. From simple statements A(a), A(b), C(a)
we know that concept A has members a and b, and C has member a. This knowl-
edge can be easily used to construct a feature method. The membership dimension
is implicitly used in [56] where authors build feature sets composed of members and
calculate similarity in a way very similar to Tversky’s feature method. Because any
individual of any type A is also of all types that are ancestors of A, the membership
dimension uses data that overlays, in part, with the taxonomic dimension, but still
brings its own perspective on similarity.
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Separately, the descriptive dimension contains knowledge about all of the prop-
erties without discrimination. One simple way to create a new similarity dimension
is to isolate a set of types of roles from the descriptive dimension. The resulting set
should have its own specific interpretation to be considered a separate dimension.

An example resulting from this method is the compositional dimension. It is com-
prised of roles that denote “being a part of,” “having parts,” “having ingredients,”
etc. It has a very clear interpretation and, as humans, we can often look at compo-
sition of any physical object. Formally, it is represented by roles such as hasPart,
isPartOf, isIngredient, etc. In SSN [69] this kind of relations are represented by the
hasPart role (inherited from DUL ontology). A similar role exists in WordNet [61]
(also named hasPart) and in many other ontologies.

Another “sub-descriptive” dimension is the physical dimension. It contains all
roles that describe any kind of physical characteristic. What roles are included
specifically varies between ontologies. They might include size (e.g. height, width,
area), mass, color, shape and others.

A practical problem with the subdivision of the descriptive dimension is that ap-
plication of a dimension constructed by this method requires specific roles. Even
guided by the interpretation, the specific dimensions might be represented by dif-
ferent roles in different knowledge bases. In one ontology the physical dimension
would include a hasWeight and hasHeight roles, while in another by a hasArea role.
A third ontology might not contain any roles relevant to the physical dimensions
and, therefore, the physical similarity score would not be available. Any subdivision
of the descriptive dimension generally means a loss of universality, i.e. one cannot
apply our new dimension to every ontology. Another downside of this method is
that the “sub-descriptive” knowledge in a very obvious way overlaps with the de-
scriptive dimension. As a consequence, for instance, the compositional score and
descriptive score are not independent (in fact, one is contained within the other), and
the dimensions are not orthogonal. On the other hand, sub-descriptive dimensions
are easy to implement in edge methods, such as [91]. What is required is simply to
use only edges of a certain type, instead of all edges. One needs to be mindful that
not all edge types appear often enough in a graph to form an interesting and useful
dimension.

Let us recall that conversion of roles into a set of features is easy for simple DLs,
but gets complicated for more expressive DLs. This is relevant for the descriptive
dimension and its sub-dimensions, where we need to compare DL expressions (role
assertions or restrictions). For a sub-dimension that contains only role p, a simple,
single-term expression, such as p.D1 is easy to parse and compare. A complicated
expression, such as p.((D1 t (∀p.D2))u (D1 t∀p.(∃p.D2))) is difficult to use in a
comparison with others, because the class expression under the property restriction
in the example is very complex. Moreover, it might have many equivalent forms,
which are relevant in practical implementations of similarity algorithms. The sim-
plest approach to solving this problem is to consider only the binary similarity of
complex expressions.
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Section 1.8 contains a description of interesting properties of semantic similarity
dimensions that should be considered when designing new dimensions. Before that,
let us present an example of application of dimensions introduced up to this point.

1.6 Example of multi-dimensional similarity

Let us consider an example of dimensional similarity scores in a mock-up biologi-
cal ontology. The ontology in question (see Fig. 1.1) is an extract of a phylogenetic
ontology with added roles. It compares three concepts—short-beaked common dol-
phin [70], silvertip shark [71] and lesser electric ray [74] denoted D, S and R re-
spectively. Taxonomy describes the current understanding of the genetic ancestry of
these creatures. It is complemented by roles selected to best aid in presentation of
the idea of semantic similarity dimensions. The roles represent traits or features that
are not genetically inherited and, therefore, in the example the descriptive dimen-
sion does not overlap with the taxonomic one (see, section 1.5). Note that this is in
no way a complete set of information about these creatures. Data contained in these
roles comes from [70, 71, 72, 74, 75] and was prepared with ease of understanding
of the example in mind. Note that biology is not the main focus of this paper and
accuracy of the data was not verified. This example is meant to demonstrate usage
and indicate usefulness of similarity dimensions. Let us note that all used formulas
are symmetric, normalized and have the properties of minimality and maximality.

Data used by taxonomic methods is the hierarchy of concepts and in this exam-
ple there are 20 phylogenetic concepts (classes, including >). Resnik’s method [50]
specifies similarity as the IC (information content) of the MICA (most informa-
tive common ancestor), which in the example is equivalent to the LCS (least com-
mon subsumer); SRes(X ,Y ) = IC(MICA(X ,Y )), IC(e) = − log(p(e)). According
to this method, similarity scores are as follows: SRes(D,S) = IC(CHORDATA) =
− log( 18

20 ) ≈ 0.105, SRes(S,R) = IC(SELACHIMORPHA) = − log( 9
20 ) ≈ 0.799,

SRes(D,R) = IC(CHORDATA) ≈ 0.105. Note that this example contains only a
fraction of available phylogenetic classes and in a full ontology Resnik’s method
would give a different score, because IC is sensitive to the total number of concepts,
which is the basis of calculating the “probability” of a concept. Calculation of Jac-
card index J(A,B) = |A f∩B f |

|A f∪B f |
, where A f is a set of features of A and assuming that

each ancestor of a concept (including >) is a feature, gives the following results:
J(D,S) = 3

16 ≈ 0.188, J(S,R) = 6
14 ≈ 0.429, J(D,R) = 3

16 ≈ 0.188.
In the descriptive dimension, the data we use are role restrictions. We can, again,

use Jaccard index, this time using roles as features. This is an indication that we can
use one method to calculate similarity in many different dimensions. In this example
D and S have 6 roles each, while R has 4 roles. As mentioned in section 1.5, the
simplest way to compare two values of a single role is to say that the similarity
is binary (1 only if those values are identical and 0 otherwise); i.e. Sim(r.5) and
Sim(r.4.99) is 0, despite their perceived numerical “closeness.” Under this condition,
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Fig. 1.1 Phylogeny example

descriptive Jaccard scores are as follows: J(D,S) = 2
10 = 0.2, J(S,R) = 0

10 = 0,
J(D,R) = 0

10 = 0.
Final dimension considered here is the physical dimension that is meant to

represent any physical feature, i.e. roles for mass, length and coloration. In or-
der to better represent difference between numerical values, a simple ratio method
is used for data values of the same role (assuming the same unit). This similar-
ity is equal to the smaller value divided by the larger one Sval(kr, lr) = min(kr ,lr)

max(kr ,lr) ,
where kr and lr are values of role restrictions or assertions, about the same role r.
For instance similarity of average weight between D and S is 118

130 ≈ 0.907. Total
similarity is this dimension is calculated by taking arithmetic average over sim-

ilarity of each relevant role. The scores are: Simavg
ph (D,S) =

118
130+

200
225+1
3 ≈ 0.932,

Simavg
ph (S,R) =

45
225+0+0

3 ≈ 0.067, Simavg
ph (D,R) =

45
200+0+0

3 ≈ 0.075. Using the same
method of simple arithmetic average the results for the entire descriptive dimen-

sion are as follows: Simavg
desc(D,S) =

118
130+

200
225+

10
12+

1
4+1+1

6 ≈ 0.813, Simavg
desc(S,R) =

0+ 45
225+0+0+ 2

4+0
6 ≈ 0.117, Simavg

desc(D,R) = 0+ 45
200+0+0+ 2

4+0
6 ≈ 0.121.
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Table 1.2 Approximate similarity scores

Sim(D,S) Sim(S,R) Sim(D,R)
taxonomic

Resnik 0.105 0.799 0.105
Jaccard 0.188 0.429 0.188

descriptive
Jaccard 0.2 0.0 0.0
arithmetic average 0.813 0.117 0.121

physical subdimension
arithmetic average 0.932 0.067 0.075

Analysis of results

Obtained similarity scores are summarized in Table 1.2. Observe that each method
produces different similarity scores, even in the same dimension. In the taxonomic
dimension, Resnik’s and Jaccard’s methods produce different scores. This is, for in-
stance, because of the assumption of Resnik that distance to the root in an ontology
(a level) is significant. The levels of example concepts do not correspond with levels
of phylogenetic classification, e.g. the dolphin does not have a biological subclass
or superorder, so technically its order (CETACEA) is on the same ontological level
as subclass of the shark (ELASMOBRANCHII), even though intuitively (and in
accordance with biological research) an order should be more informative than a
subclass. Such structure is a good example of a graph, in which edges do not uni-
formly represent the same value of difference in specificity (this was described in
more detail in section 1.4).

Differences between dimensions are very apparent in the results. In particular
S and R have very small descriptive similarity (Jaccard gives a score of 0), while
their taxonomic similarity is significant. Explanation of those results lays in the fact
that descriptive features from the example were not used when constructing phy-
logeny. Features such as diet, type of reproduction, coloration, period of gestation,
and others vary in the same genus, so species are not classified based on those char-
acteristics. Purely taxonomic methods (such as Resnik’s) do not take such features
into account at all. Consequently, in this case, descriptive results are independent of
taxonomy.

Another noteworthy observation is that the physical dimension score does not
coincide with the descriptive Jaccard score, even though the former is, theoretically,
a subdimension of the latter. This difference stems from difference in used methods.
The physical arithmetic average method takes into account degree of difference be-
tween values corresponding to the same role, while the descriptive one does not,
and only accepts identical values as similar. This, very simple, method works for
this example, but cannot be applied universally (e.g. because of the division by zero
problem). Unfortunately, disregarding custom ad-hoc methods (that work well, but
cannot be easily applied outside of one specific ontology), there is no good and uni-
versal method that would compare complex descriptions in expressive DLs in an
in-depth manner.
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Notice that ordering of similarity changes between dimensions. Taxonomicaly S
is closer to R than to D, while descriptively S is closer to D. Taking into account
interpretation of the used dimensions this suggests that short beaked dolphins and
silvertip sharks look similar (high physical similarity), but their evolutionary ances-
try is different (low or average taxonomic score). This statement is possible because
separate dimensions of similarity have been independently evaluated and thus can
be interpreted on the basis of their own semantics. It is impossible to infer such
information from a single score.

One dimension that was not included in the example (for sake of brevity) is the
compositional dimension. It would comprise of physical “components” of the ani-
mals with additional details, for instance, fins (e.g. small pointed dorsal fin), details
of bone structure (e.g. serrated teeth), specific organs and functions (e.g. Ampullae
of Lorenzini [73]). In this case the hasPart properties would refer to body parts.
Note that this dimension has an interpretation in the context of phylogeny that fits
the general interpretation and description from section 1.5.

The final answer to the question of “how similar are two concepts?,” for the dol-
phin and shark, according to Resnik’s method is 0.105. According to the method of
dimensional similarity D and S have taxonomic similarity of 0.188, descriptive simi-
larity of 0.2 and physical similarity of 0.932. However, on the basis of the discussion
presented thus far we strongly argue that dimensional scores are much more infor-
mative and, thus, useful to the “end user.” We present further justification of this
statement in section 1.10. This being the case we propose a dimensional method,
which produces multiple scores that can be organized into a dimensional similarity
vector. Let us discuss this now this idea in some detail.

1.7 Combining similarity dimensions

As discussed so far, the canonical approach to similarity scoring is to present a
single number as a result. Sometimes a range of intermediate results is calculated, in
which case a method of combining those results into one, such as a weighted sum, is
utilized. In this case, there are many weighting methods including metrics [77, 76],
machine learning [5], aggregation operators [78, 79] and others [23].

For instance, in [5] authors used a weighted sum of 5 similarity scores of Word-
Net concepts and various machine learning methods. The weights were trained
against a (human) survey similarity scores for pairs of concepts. The authors re-
marked that for the scores from each dimension considered alone (for a test set of 20
pairs), each dimension at least once (i.e. for a specific pair) provided the best score
(i.e. closest to training data). This led to the conclusion that the trained weights, even
though useful for this specific application, may not be a good fit for a different do-
main or ontology. Nevertheless, according to [5], results from multiple dimensions
are more useful than any individual dimension used separately.

Another work [9], calculated the score as a weighted sum of 4 intermediate (di-
mensional) scores. The intermediate scores were not deemed to be individually rele-
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vant and were only considered as parts of the weighted sum. Unfortunately, although
the authors claim that the weights were “determined experimentally”, the specific
method of choosing weights was not described. The authors also cite problems with
choosing good fixed weights [82], some of which are reiterated below.

The advantage of weighted sum is that the final score includes (and combines) a
very broad range (possibly all) of available knowledge. Good set of weights offsets
the possibility of overlap of dimensions by adjusting overlapping scores. A disad-
vantage is that there is no indication that weights calculated for one ontology give
good results for a different one and recalculation of weights is expensive and re-
quires a good training set (which may not be easy to deliver). Using a predefined
metric or operator is less computationally intensive, but suffers from accuracy prob-
lems [23]. Overall, to the best of our knowledge, there is no weighing method that
would produce a “universal” set of weights. Universality of weights, in the context
of similarity scoring, means that one set of weights produces “good” (i.e. as com-
pared to benchmarks) results for any testing set. So far no good method (training or
otherwise) applicable to a wide range of ontologies and problems was found. This
leads to a conclusion that it is extremely likely that weights are problem-specific, or
ontology-specific.

In contrast, the dimensional similarity method proposed here produces a single
score for each dimension. Those scores may be presented in a structure of the di-
mensional similarity vector, in which each cell contains a score from one dimension.
While such vector can be then weighted and “reduced” to a single number, in the
proposed approach the vector itself, as a whole, is to be used as the result.

Even though presenting the dimensional similarity vector as the final score goes
against the established methods, it has clear advantages. First, we avoid the afore-
mentioned problems with finding a good set of weights, which is very significant
since the existing research suggests there might not be a good universal one. The
gain is the amount of information that is contained within each vector cell. As men-
tioned, in section 1.5, the interpretation of a similarity dimension is helpful when
designing dimensional algorithms, but it also provides useful information about the
final dimensional score. Understanding what each score stands for is helpful when
deciding what knowledge is relevant to our particular problem. In a sense, it is an
avoidance of the universal weights problem, because, assuming that weights repre-
sent importance, we don’t consider weighting a part of similarity scoring. Instead,
the implicit “weighting” is done after scoring in each dimension, when we apply
the results to solving a specific problem. From this perspective, we are free to use
(or disregard) data from any subset of cells from the full similarity vector. Guided
by the interpretation of similarity dimensions we can decide what dimensions of
similarity are useful in the context of the problem that is being addressed.

Good understanding of dimensions also helps with correct interpretation of over-
lap(s) between them. In case of a single final score it is impossible to, for example,
“subtract” the impact of a taxonomy, in cases where we are not interested in this di-
mension of similarity. Moreover, since usually the weights are hidden from the user,
it is not possible to know the impact brought about by new data introduced into an
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ontology, without either experimentation, or analysis of the code (i.e. reverse engi-
neering), or documentation of used algorithm.

For the weighted sum there is also a general question—what is the actual mean-
ing/interpretation of applied weights? If we assume the (intuitive) understanding
that weights represent importance of dimensions, we may conclude that in a survey
benchmark (like the Miller’s one [43]) dimensions had some given importance to
the participants. This approach, however, is problematic when it comes to automatic
methods, because there usually is more than one set of weights that can produce
the same weighted sum, for a single pair of entities. The hypothetical “importance”
weights might also change on a pair by pair basis. Since the weights might not be
unique, we cannot decidedly say that they represent importance, as viewed by the
survey participants. Using a subset selected from cells of a dimensional similar-
ity vector we essentially make a degenerated ad-hoc weighting. What we mean by
that, is that choosing that we want only taxonomic score is equivalent to setting the
weight of taxonomic score to 1, and rest to 0. For a subset of 3 dimensions, each
weight for the chosen ones would be 1

3 , zero for the rest, and so on.

Example revisited

To visualize the problem let us propose a few sets of weights for the example
from section 1.6. Table 1.3 describes an example with three hypothetical sets of
weights w1,w2,w3. The weights are used to obtain a single similarity score for
two cases—comparison of Shark with Dolphin (SimTotal(S,D)) and Shark with
Ray (SimTotal(S,R)). The weighted sum is made from three dimensional scores—
taxonomic, descriptive and physical (values calculated in section 1.6 are recalled in
the top part of the table).

The first set of weights w1 assigns approximately equal value to each dimension.
The resulting “total” scores are 0.41 and 0.29 for SimTotal(S,D) and SimTotal(S,R)
respectively. Second set of weights w2 indicates that the taxonomic dimension is
decidedly more important than the other two and results in the scores of 0.34 and
0.42. Lastly, w3 is a set of weights trained so that SimTotal(S,D) and SimTotal(S,R)
are close in value (the result is approximately 0.4 for both).

Table 1.3 Similarity dimension weights example

Shark
Taxonomic Descriptive Physical

Dolphin 0.105 0.2 0.932
Ray 0.799 0.0 0.067

SimTotal(S,D) SimTotal(S,R)
w1 0.33 0.33 0.33 0.41 0.29
w2 0.5 0.25 0.25 0.34 0.42
w3 0.47 0.20 0.33 0.40 0.40
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First, notice that for w1, because of the actual dimensional scores, the physical
dimension has the highest contribution (i.e. highest value) to similarity of Shark and
Dolphin, while the taxonomic dimension is the strongest in Shark and Ray compar-
ison. This is in no way apparent in any of the SimTotal scores.

More importantly, the final score SimTotal has a very vague interpretation for
any set of weights. All we can say about those numbers is that, depending on the
weights, similarity of Shark and Dolphin is either greater, smaller or equal to that of
Shark and Ray. The w3 case indicates that a Shark is just as similar to the Dolphin as
to a Ray, while the other two cases each produce an ordering of the two similarities.
Any of those results can be put into question, depending on the perspective. A lay-
man would classify Dolphin as much closer to Shark simply because the Ray looks
nothing like the other two creatures. An expert in biology would, however, see much
more differences and similarities in all creatures and would give a different score.
Finally, an expert working specifically in phylogenetics would say that (phylogenet-
ically) Shark and Ray have more in common than Shark and Dolphin. Traditionally,
in a survey, the results would be averaged and produce a number that none of the
participants exactly agrees on, but is representative of the average opinion. We con-
jecture that in similarity scoring, since the “average opinion” does not represent any
actual perspective, it has a diminished usability. None of the scores—for w1, w2,
w3, or average of those, agrees with any other and yet, since the methodology is for-
mally correct we cannot say that any of them are wrong, unless we adopt a specific
perspective, e.g. to solve a specific problem in biology. Moreover, even from a par-
ticular perspective it is not possible to learn from the final score what information
was most important (i.e. what were the weights for each dimension), if we only look
at SimTotal . Knowing that none of the total scores is indicative of every of the hy-
pothetical survey participants, led us to believe that modeling different perspectives
requires different weights, and none of the weight sets is, in general case, “more
correct” than the other.

The “total” weighted sum score is contrasted with the dimensional score. Here
the result is the dimensional similarity vector with 3 cells, one for each considered
dimension, e.g. SimDim(S,D) = [0.105,0.2,0.932] for a set of dimensions [taxo-
nomic, descriptive, physical]. Separately, each cell contains explicitly a single num-
ber, but also (implicitly) an explanation of the score in the form of interpretation
(or description) of the dimension. The information contained in the vector lets us
discern different kinds of similarity and learn that, for instance, Shark and Dolphin
have high physical likeness, but their genetic ancestry (taxonomic similarity) is low.
We can afterward decide whether this similarity dimension is relevant to solving our
specific problem, or, in other words, whether it fits our perspective. Notice that this
is useful both to an expert, and a layman. The first will learn much more from infor-
mation about similarity in genetic taxonomy, rather than overall similarity. The latter
will find more understanding in information about physical similarity of creatures,
rather than some vague “universal” similarity.

To summarize, our recommendation is that the single number score (SimTotal)
should be used whenever it is required by a methodology—e.g. as an input to another
method that accepts single number only, or to compare results with benchmark data
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(which usually gives only one number for any pair of entities). In other cases we
recommend the use of the full similarity vector (SimDim), or a selected subset of
dimensional scores, especially when the similarity score is presented to a user (as
opposed to an automated system) that has a specific problem to solve. Dimensional
score, simply put, gives the user more information without (possibly overwhelming
and gratuitous) technical details of implementation and algorithm structure.

1.8 Properties of dimensions

None of the relevant works [12, 22, 49, 5, 6, 26, 9] that present some form of divi-
sion of knowledge (collectively labeled as dimensions), in the context of similarity
scoring, gave any formal reasons to support their specific choice of dimensions. The
division of knowledge in each of the works was guided by authors intuitions and
was tailored to fit the needs of a particular implementation of a given similarity al-
gorithm. In this section we outline characteristics of dimensions that may support a
decision as to, which dimensions to use, as well as guidelines for creation of new
dimensions.

In our approach to semantic similarity dimensions, the meaning (semantics) of
the dimension is absolutely essential. Table 1.4 summarizes the informal meaning
(i.e. interpretation) of dimensions described in section 1.5.

Table 1.4 Interpretation of dimensions

Dimension Interpretation
Lexical Entities are lexically similar, when the words used to label them (i.e.

their names) are similar according to a dictionary.
Co-occurence Objects are co-occurrence similar, when they often appear together.
Taxonomic Objects are taxonomicaly similar, when they are of similar class,

kind or type.
Descriptive Objects are descriptively similar, when they have similar properties,

attributes or characteristics
Physical Objects are physically similar, when their physical characteristics

and appearance is similar
Compositional Objects are compositionaly similar, when they have similar set of

parts or ingredients
Membership Objects are membership similar, when they have similar sets of rep-

resentatives, instances or members

Ideally, the meaning (semantics) of each dimensions should be easily understand-
able even to a layman. Note that each dimensions from table 1.4 can be summarized
in a single sentence. Such concise summary on a high level of abstraction should
be accompanied by a more verbose explanation. For instance the meaning of “type”
in the taxonomic dimension summary is clear to an ontology engineer, but it might
be confusing to others. It is crucial that the semantics of every dimension is prop-
erly explained. This is because the explanation of the meaning is the main guideline
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when it comes to actual implementation of the similarity algorithm. As noted in the
explanation of the physical dimension, we can expect that the structure, roles and
even semantics of different ontologies will vary greatly. Despite this, the same simi-
larity dimensions should be applicable to many ontologies. Even implementations of
taxonomic similarity might differ considerably, especially when we extend our prob-
lem space to systems that place, or relax, specific restrictions on taxonomies (e.g.
multiple inheritance, no common root, etc). The idea behind each dimension must
be independent of any particular structure and should not make any unnecessary
assumptions. It should have meaning outside of computer science and encompass
many possible implementations within it.

A common, agreed upon, interpretation of a similarity dimension allows for di-
rect comparisons of similarity scores from different methods. It also allows to distin-
guish that scores from different dimensions (e.g. physical and compositional) refer
to a different kind of similarity and we can expect that they will not be related to
each other, even for the same pair of objects. A “total” similarity score has only a
very vague meaning of a “degree of similarity” and even though there is no basis
for this, we expect such scores to be close to some idealized target similarity, and,
therefore, close to each other. As is apparent from table 1.2 the scores (for the same
ontology) vary depending on selected algorithm and data fed to it. This shows that
there does not exist one universal and ideal similarity, outside of artificially con-
structed references (sometimes based on averages from a survey).

Even though the general understanding of what a given similarity dimension rep-
resents is always the same, its informativeness is improved when we put it in a
context of a specific ontology. For instance, in case of example from section 1.6 the
taxonomic score has an interpretation of phylogenetic similarity (in general terms,
evolutionary ancestry) on top of the general one (given in table 1.4). In the exam-
ple ontology the taxonomy contains exclusively classes of living organisms and the
position of an entity in this taxonomy is representative of its position in evolution-
ary tree (phylogeny). Understanding of what phylogeny is and how it is constructed
improves the understanding of this dimension even more. Note that there may be
many phylogenetic ontologies, each with (slightly) different taxonomy. The gen-
eral interpretation of the taxonomic dimension is the same for any ontology. The
phylogenetic interpretation of this dimension is the same for any phylogenetic on-
tology. The details of a very specific interpretation of the dimensions may differ in
different phylogenetic ontologies, but the general interpretation stays the same. A
well-defined semantic similarity dimension should be interpretable on many levels.
In other words, it should have the granularity that is most useful.

Granularity

Let us now consider the fact that the granularity of a dimension is directly related
to how detailed and specific is the explanation of its interpretation. In other words
granularity is the amount of information carried in a description of a dimension.
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The least granular (or informative) notion is simply what we referred throughout
this text as “universal similarity”. The “universal similarity” is mostly understood
as an intuitive concept and its meaning may be studied in the field of philosophy,
not computer science. “Semantic similarity” is almost as vague of a term, describing
the similarity of meaning. There is no formally strict definition of it and, although
some define it as a metric. However, mathematical properties of semantic similarity
are not set in stone, as mentioned in section 1.3.

To visualize the granularity of dimensions let us use a simple example in the
context of the MusicBrainz database [99]. MusicBrainz contains data about world-
wide music industry i.e. artists, albums, music companies, music genres etc. It is
available in many forms, one of which is LinkedBrainz—a linked data version of
the database. Usefulness of LinkedBrainz can be enhanced by exploiting the linked
data and connecting it to dbPedia, which contains information that is directly re-
lated.

Music albums in MusicBrainz are “releases” (mb:release) of type “album”
(mb:album). A descriptive similarity dimension for MusicBrainz is more informa-
tive than just “semantic similarity” and it is applicable to any concept within Mu-
sicBrainz in the same way as in any other knowledge base. For a mb:release, it de-
notes similarity of all its properties such as mb:artist, mb:title, mb:label, mb:format
and others. In particular the mb:type is not included here. In simplistic terms the
gain of information stems from restricting the fields that we include in the similarity
scoring to a smaller set. This is also true if we design a similarity dimension for any
specific ontology. Doing that, however, we loose the ability to directly apply our new
dimension to any other ontology. An increase of specificity (information) means a
decreased range of possible applications. This is particularly apparent when the de-
scription of a dimension specifically mentions a property. For instance, in order to
group albums by musical era we need to know the similarity of their release date.
Such “album-time-of-release” dimension is very specific, because it can only be ap-
plied to an ontology that describes music albums and stores release time data. It is
also very informative—we know exactly what data is used and, since time data is
numerical, we can directly relate it to a syntactic similarity, or closeness of numbers.
The possible data and algorithms used in this dimension are very restricted. Sepa-
rating the data in such dimension does not bring any immediately apparent benefit
and is, frankly, not necessary or advised. This is in stark contrast to low granular-
ity dimensions, e.g. descriptive similarity. Dimensions of moderate similarity are an
attempt to strike a balance. For instance, the compositional dimension is only appli-
cable to ontologies with appropriate roles (e.g. hasPart), but since many ontologies
do in fact have such roles, this requirement is not very restrictive. The granularities
of this example are summarized in table 1.5.

In summary, a good design of similarity dimensions exhibits a balance between
informativeness and applicability. From the point of view of granularity, similarity
dimensions can be put on a spectrum between very specific syntactic similarity and
very vague (semantic) similarity. Low informativeness gives a wide range of pos-
sibilities when it comes to implementation. High granularity leaves no doubt when
it comes to the meaning of such highly granular, dimensional similarity score. The
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Table 1.5 Information in similarity

Relative
Informati-
veness

Similarity description Similarity interpretation

0 Similarity Likeness, closeness
1 Semantic similarity Similarity of meaning of entities
2 Descriptive semantic similarity Similarity of meaning of descrip-

tions of entities (attributes and
characteristics)

3 Descriptive semantic similarity
of music albums

Similarity of meaning of descrip-
tions of music albums

4 Descriptive semantic similarity
of music albums in a music on-
tology (MusicBrainz)

Similarity of meaning of descrip-
tion of MusicBrainz:album(s) i.e.
similarity of artist, title, label etc.

5 Semantic similarity of release
year of albums from a music on-
tology

Similarity of meaning of numbers
representing years (e.g. numeri-
cal similarity)

6 Semantic similarity of release
year of albums from MusicBrainz
ontology

Similarity of meaning of Mu-
sicBrainz:Release_event:date

choice of granularity should be made to best help solve a given problem, but very
high granularities are not advised.

Implementation

Implementation of dimensions may vary greatly. For instance the lexical dimension
may be implemented as a string edit distance like in the ASMOV [9] (that uses
the Levenshtein distance), or as an external thesaurus lookup, like in ASCO [102]
(which actually uses both the edit distance and WordNet similarity). As explained
before, low granularity leaves a lot of room for different implementations.

In case of ontology matching taxonomic and descriptive dimensions are of-
ten combined into one, called structural. There are many different approaches to
structural similarity. For instance, CIDER [100] uses a feature vector model that
combines taxonomy and roles into one set of features. In Anchor-Flood [101], on
the other hand, the structural similarity is constructed purely from taxonomy. AS-
MOV [9] has an even more disparate definition of structural dimension that involves
a weighted sum of the domain and range similarities of roles. This difference of ap-
proaches demonstrates the importance of a good description of semantic similarity
dimensions. Since structural similarity (dimension) lacks a good description, it al-
lows for very different implementations. One possible definition, i.e. a dimension
that combines taxonomic and descriptive similarities would endow it with a very
low granularity that places it very close to a vague “universal” semantic similarity.
In other words the meaning of structural similarity is too vague (it is very different
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in each of the presented examples) and, therefore, it does not provide much infor-
mation.

Let us reiterate that similarity dimensions are defined primarily by their interpre-
tation and not by implementation, or even type of method used.

1.9 Applications of dimensional semantic similarity

In this paper, we have focused on presenting the idea of similarity dimensions on
the examples concerning pairwise comparison of ontological entities. The idea it-
self can be applied to comparison of other objects, such as full ontologies, entities
in semantic graphs, documents, etc. Throughout the text we have already suggested
potential applications outside of ontological entities. Let us now reiterate and sum-
marize these considerations.

Analysis of multiple articles and surveys on ontology matching [14, 13, 16] re-
veals that modern methods usually use multiple kinds of semantic similarity akin
to similarity dimensions. In particular there is a strong distinction between lexical
methods (also called linguistic) and others. A popular approach, exemplified in Fal-
conAO [104] is to use lexical similarity first, as an input for further parts of the
matching algorithm that use some kind of structural data (a graph matching algo-
rithm in case of FalconAO). Some methods, such as AgreementMaker [105] and
COMA [106] use multiple so-called matchers, some of which use taxonomy, rela-
tionship graph or lexical data. Matchers that work in the same dimension use differ-
ent algorithms (e.g. some lexical matchers use edit distance, some thesaurus lookup
or others). It seems that researchers in the field of ontology matching realized that
construction of a good matching requires one to look at similarity of ontologies from
many different perspectives. We have formalized this idea in the form of semantic
similarity dimensions.

In the field of document analysis, semantic similarity means the similarity of
meaning (in natural language) of the content of the documents i.e. text similar-
ity [17]. Within this field, similarity of other features of documents, such as au-
thor, type of document (e.g. scientific article, a poem, news article, short story, etc.),
publishing events and others is usually not considered. Those features are a good
candidate for implementation of similarity dimensions (e.g. type of document de-
scribes the taxonomic dimension), but require external ontology (e.g. a taxonomy of
document types), so, in some way, similarity of documents is understood as lexical
similarity of content of documents.

The lexical dimension, in the context of document similarity, has many features
that may be used to construct subdimensions. Features considered in practice [19]
include statistical analysis (e.g. bag of words approach), sentence length, punctu-
ation count, specific names count, synonyms, hypernyms, hyponyms and others.
Those may be divided into corpus-level (e.g. TF-IDF), document-level (e.g. bag of
words), sentence-level (e.g. extraction of subjects and objects, number of capitalized
words) and word-level (e.g. synonyms, edit distance). Phrase-level features are also
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sometimes considered, although they are used in machine translation [18] rather
than in similarity scoring. Even though many researchers have proposed multiple
features [19], so far there was no attempt to group those features into classes that
would resemble the low granularity dimensional approach described in this paper.
Although those are not applied to similarity scoring, there are many dimension-
like properties relevant to text and speech analysis. Those include affect [20] (also
applied to WordNet [21]), salience, writing style (formal or informal) and others.
Theoretically, we might score text with respect to, for instance, affect similarity (di-
mension), but as said before, such high level properties are not included in current
document similarity scoring methods.

Presence of similarity dimensions in semantic graphs is most pronounced in
methods that use WordNet. This semantic graph offers many different kinds of edges
and sets of features. Different methods use different subsets of available information
(e.g. some methods use synsets, others bots synsets and homonyms). This dimen-
sionality is, however, not made explicit and, so far, those methods have not been
categorized with respect to dimensions.

1.10 Concluding remarks

The notion of (semantic) similarity is, by its nature, vague and ambiguous. Many
semantic similarity measuring methods have been proposed and work well for
ontology-specific or domain-specific applications. Their approaches, however, do
not easily generalize across domains (or ontologies). The proposal of similarity di-
mensions address this problem and attempts at rectify the ambiguity of similarity
scores.

A single, universal, score suggests how similar two entities are, but does not an-
swer the question: in what way are the entities actually similar? A similarity vector
provides such answers by treating each similarity dimension separately. Thus, it is
possible to capture the fact that being descriptively similar is different from taxo-
nomicaly similar, or lexically similar, etc. In short, similarity dimensions add extra
meaning to similarity. Dimensional scores specify not only how similar entities are,
but also why.

Generally speaking, there are two ways of dealing with semantic similarity. First,
the overall approach, based on application of similarity dimensions, with separate
scores in each, to understand how similar entities are, and in what way. Second,
development of domain/ontology specific methods that focus on the nature of the
problem at hand. The latter approaches (e.g. [63]) work well when solving a specific
problems, but do not transfer well to other application areas. Canonically, similarity
calculating methods produce a single score that combines all aspects of semantic
similarity. It is a useful simplification that enables direct comparison of results from
different methods. However, different methods approach similarity from a “different
perspective,” use different data and capture different aspect of semantic similarity.



36 P. Szmeja, et.al.

Moreover, since any well-defined method is formally correct, no individual score
can be said to be formally wrong.

Note also that, comparison of single number results form different methods is, by
nature, flawed. Even methods that utilize multiple intermediate similarity scores, in
the end provide a single weighted sum, which “flattens” the meaning of similarity.
Furthermore, making explicit the considered aspect of semantic similarity can be
also useful. For instance, Resnik’s method is purely taxonomic. Hence, by explic-
itly labeling it as such, one gains valuable information. For instance, someone not
familiar with details of Resnik’s method would not know why similarity does not
change, even if one adds a number of roles into the KB. Labeling the method as
taxonomic informs that it is insensitive to roles.

On the other hand, the proposed dimensional similarity vector presents a more
detailed (expanded) view of similarity, and allows for a more meaningful compar-
ison of results between methods. Another advantage of similarity dimensions is
that each one of them has a universal interpretation, that may be refined depend-
ing on context and is independent of the data format. As long as this interpretation
is preserved, multiple different algorithms may be used to represent each dimen-
sion. Furthermore, proper usage and interpretation of a specific dimension is reliant
on intuitive understanding of general description of that dimension. In this way, the
similarity vector reflects the subjective nature of similarity.

Let us recall that there are many different and correct ways to model any given
domain or problem. The multiplicity of modeling paradigms is a well-known and
studied subject [59, 60]. It suggests that, for any domain, there is no single, ex-
clusively correct, modeling solution. We believe that the same is true for semantic
similarity, i.e. the correct “absolute” / “ultimate” similarity measure does not ex-
ist. Instead, the similarity changes with the perspective, from which we calculate
it. Here, it should be stressed that the proposed approach recognizes this fact by
its inherent flexibility. Specifically, it allows: (i) existence of domain/ontology spe-
cific methods to combine separate scores into a single one (as in [6]), (ii) restricting
similarity dimensions that are actually considered in a given domain (e.g. only tax-
onomic and compositional dimensions are to be used), based on the “nature of the
application.” Moreover, if one is interested in similarity in a taxonomy, one needs to
use only a taxonomic method. Alternatively, if one already obtained a dimensional
vector, (s)he can utilize any part of it that is of interest in a given context. Here,
again, available dimensionality provides information useful both before and after
similarity scoring.

In this way, the dimensional similarity vector provides, in a sense, a disentangle-
ment of similarity. A dimensional answer to a question of similarity is more infor-
mative not just because one receives more values, but also because each value (i.e.
each dimension) has an interpretation. This interpretation adds knowledge about the
way, in which entities are similar, on top of a numerical value representing similar-
ity. A single score is much more concise, but it lacks this additional information,
i.e. this information is obfuscated, when only one score is available, without any
explanation as to how it was arrived at.
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In summary, similarity dimensions are a way of introducing semantics the into
semantic similarity itself. The low-granularity dimensions (presented in section 1.5)
provide a basic understanding of similarity even to a layman. For instance physi-
cal similarity is immediately understood by everyone. High-granularity dimensions
may be created to serve very particular needs of experts in a given field. It is thus
our opinion that, in calculating semantic similarity, the most important part is the
reason why we calculate it. In conclusion, recognizing similarity dimensions adds
meaning to semantic similarity. Dimensional score tells us not only how entities are
similar, but also indicates why.
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