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Abstract. Numerical homogenization is used for up-scaling of a linear
elasticity tensor of strongly heterogeneous micro-structures. Utilized ap-
proach assumes presence of a periodic micro-structure and thus periodic
boundary conditions. Rotated trilinear Rannacher-Turek finite elements
are used for the discretization, while a parallel PCG method is used to
solve arising large-scale systems with sparse, symmetric, positive semidef-
inite matrices. Applied preconditioner is based on modified incomplete
Cholesky factorization MIC(0).
The test problem represents a trabecular bone tissue, and takes into
account only the elastic response of the solid phase. The voxel micro-
structure of the bone is extracted from a high resolution computer tomog-
raphy image. Numerical tests performed on parallel computers demon-
strate the efficiency of the developed algorithm.

Keywords: micro finite element simulation, modeling of human bone
tissue, parallel algorithms, PCG method, preconditioner, MIC(0) factor-
ization, parallel performance

1 Introduction

Many, seemingly different materials, such as human bone tissue, geocompos-
ites, filtering media in industrial applications have very complex hierarchical
organization spanning multiple length scales and involve complex multi-physical
processes at some of these scales. However, their overall mechanical response and
ability to conduct fluids can be described using multilevel techniques that are
built upon basic conservation principles at the micro or nano levels.

In our work, we consider modeling of human bone tissue which is based on the
recently developed morphology of bones. In general, model used here has a mul-
tilevel structure according to the specific material dimensions (and as such gen-
eralizes to other problems mentioned above). At a length scale of about several
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hundred nanometers, oriented, highly organized collagen molecules, the minor-
ity of the hydroxy-apatite crystals (present in bone tissues) and water, build up
(mineralized) fibrils. At the same length scale, but in the extra-fibrillar space,
the majority of (largely disordered) hydroxy-apatite crystals build up a min-
eral foam (polycrystalline), with water filling the inter-crystalline (nano)space.
At a length scale of several micrometers, the fibrils and the extra-fibrillar space
builds up solid bone matrix or ultrastructure. Finally, at a length scale of several
millimeters, macroscopic bone material (cortical or trabecular bone) comprises
solid bone matrix and the micro-porous space. This four-level model has been
validated by statistically and physically independent experiments, see e.g. [11,
13, 15]. Having in mind that the aforementioned dosages (concentrations, vol-
ume fractions) are dependent on complex biochemical control cycles (defining
the metabolism of the organism), the purely mechanical theory can be linked to
biology, biochemistry, and, on the applied side, to clinical practice.

Many problems in bone modeling result in need to solve large- and very
large-scale linear systems. This, in turn, requires application of parallel comput-
ers. Furthermore, even though recent advances in direct solvers for large-scale
sparse linear systems has to be acknowledged (see, [7, 17], for an interesting
comparison), the method of choice for the problem at hand has to be iterative.

In this context, this study concerns development and tuning of solution meth-
ods, algorithms, and software tools for micro finite element (µFE) simulation
of human bones (e.g. [1, 2]). Furthermore, the isotropic linear elasticity model
considered here is a brick in the development of a generalized toolkit for µFE
simulation of the bone micro-structure.

A boundary value problem can be discretized in various ways. Among the
most popular are: the finite volume method, the Galerkin finite element method
(FEM), and the mixed FEM. Many engineering problems need very accurate
velocity (flux) determinations in the presence of heterogeneities and large jumps
in the coefficient. This can be achieved through the mixed FEM. However, this
technique usually leads to an algebraic saddle point problem that is more diffi-
cult and more expensive to solve. An important discovery of Arnold and Brezzi
[4] is that the Schur system for the Lagrange multipliers can be obtained also
as a discretization by a Galerkin method using nonconforming elements. The
application of rotated trilinear hexahedral FEs is studied in this paper.

The resulting linear system is large, with a sparse, symmetric and positive
definite matrix. This implies use of preconditioned conjugate gradient (PCG)
solvers [5], while choice of preconditioning is crucial for the PCG performance.
It is also known that the PCG method converges for semidefinite matrices in the
orthogonal to the kernel subspace.

The elasticity stiffness matrix has a coupled block structure corresponding to
separable displacement ordering of the unknowns. Until now, the displacement
decomposition (see, [6, 10]) remains one of the most robust approaches for pre-
conditioning of such matrices. Here, one of the most popular and the most suc-
cessful class of preconditioners is the class of incomplete LU (ILU) factorizations
(see, e.g. [5, 12]). However, one potential problem with the ILU preconditioners
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is that they exhibit a limited degree of parallelism. To alleviate this problem we
have developed a preconditioning algorithm based on a parallel MIC(0) (Mod-
ified Incomplete Cholesky) elasticity solver [20]. Suitable modification of the
MIC(0) algorithm allows efficient parallelization of the preconditioning.

2 Homogenization Technique

Let Ω be a hexagonal domain representing our reference volume element (RVE)
and u = (u1, u2, u3) be the displacements vector in Ω. Here, components of the
small strain tensor are:

εij (u (x)) =
1

2

(

∂ui(x)

∂xj
+

∂uj(x)

∂xi

)

(1)

We assume that Hooke’s law holds:
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Here, tensor c is called the stiffness tensor, while σ is the stress tensor.
The symmetric 6× 6 matrix C is called the stiffness matrix. For an isotropic

material C has only two independent degrees of freedom. For materials contain-
ing three orthogonal planes of symmetry, matrix C has nine independent degrees
of freedom: three Young’s moduli E1, E2, E3, three Poisson’s ratios ν12, ν23, ν31

and three shear moduli µ12, µ23, µ31.

C = δ
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where
δ = 1 − ν12ν21 − ν13ν31 − ν23ν32 − 2ν12ν23ν31,

ν12

E1
=

ν21

E2
,

ν23

E2
=

ν32

E3
,

ν31

E3
=

ν13

E1
.

Our goal was to obtain homogenized material properties of the trabecular
bone tissue. In other words, to find the stiffness tensor of a homogeneous mate-
rial, with the same macro-level properties as our RVE. In the proposed approach,
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we follow the numerical up-scaling method from [14] (see also [9]). The homog-
enization scheme requires finding functions ξkl = (ξkl

1 , ξkl
2 , ξkl

3 ), k, l = 1, 2, 3,
satisfying the following problem in a week formulation:

∫

Ω

(

cijpq(x)
∂ξkl

p

∂xq

)

∂φi

∂xj
dΩ =

∫

Ω

cijkl(x)
∂φi

∂xj
dΩ, (4)

for an arbitrary Ω-periodic variational function φ ∈ H1(Ω). After computing
the characteristic displacements ξ

kl, from (4) we can compute the homogenized
elasticity tensor cH using the following formula:

cH
ijkl =

1

|Ω|

∫

Ω

(

cijkl(x) − cijpq(x)
∂ξkl

p

∂xq

)

dΩ. (5)

Due to symmetry of the stiffness tensor c, we have the relation ξkl = ξlk and it is
enough to solve only six problems (4) to obtain the homogenized stiffness tensor.

Rotated trilinear (Rannacher-Turek) finite elements [18] are used for the nu-
merical solution of (4). This choice is motivated by the additional stability of the
nonconforming finite element discretization in the case of strongly heterogeneous
materials [4]. Construction of a robust non-conforming finite element method is
generally based on application of mixed formulation leading to a saddle-point
system. By the choice of non continuous finite elements for the dual (pressure)
variable, it can be eliminated at the (macro)element level. As a result we obtain
a symmetric positive (semi-)definite finite element system in primal (displace-
ments) variables. We utilize this approach, which is referred as the reduced and

selective integration (RSI).

3 Parallel Displacement Decomposition MIC(0)
Preconditioning

A preconditioning algorithm was developed using a parallel MIC(0) elasticity
solver [20], based on a parallel MIC(0) solver for the scalar elliptic problem [3].
The preconditioner uses the isotropic variant of the displacement decomposition
(DD) [6, 10]. We write the DD auxiliary matrix in the form

MDD =





A
A

A



 (6)

where A is the stiffness matrix corresponding to the bilinear form

a(uh, vh) =

∫

Ω

E(x)

(

3
∑

i=1

∂u

∂xi

∂v

∂xi

)

dx, (7)

and u and v are Ω-periodic functions. Such approach is motivated by the second
Korn’s inequality, which holds for the RSI finite element discretization under
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consideration. This means that the estimate for the relative condition number
of the preconditioned system

κ
(

M−1
DDK

)

= O
(

(1 − 2ν)−1
)

holds uniformly with respect to the mesh size parameter, while K is the stiffness
matrix. Our preconditioner is obtained by the MIC(0) factorization of blocks in
(6).

Remark 1. To satisfy conditions for the stable MIC(0) factorization in the case
of a semi-definite matrix, we are using the perturbed version of the MIC(0)
algorithm, where the incomplete factorization is applied to the matrix Ã = A+D̃.
The diagonal perturbation D̃ = D̃(ξ) = diag(d̃1, . . . d̃N ) is defined as follows:

d̃i =

{

ξaii if aii ≥ 2wi

ξ1/2aii if aii < 2wi

where 0 < ξ < 1 is a properly chosen parameter, and wi =
∑

j>i −aij .

The idea of the proposed parallel algorithm is to apply the MIC(0) factor-
ization on an auxiliary matrix B, which approximates A. This matrix B has a
special block structure, which facilitates implementation of a scalable parallel
solver. Following the standard FEM assembling procedure we write A in the
form A =

∑

e∈ωh
RT

e AeRe, where Ae is the element stiffness matrix, while Re

stands for the restriction mapping of the global vector of unknowns to the lo-
cal one corresponding to the current element e. Let us consider the following
approximation Be of Ae:
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Local numbering applied here follows the pairs of the opposite nodes of the
reference element. Here, diagonal entries of Be are modified to hold the row-sum
criteria (for more details see [3]). Assembling the locally defined matrices Be we
obtain the global matrix B =

∑

e∈ωh
RT

e BeRe. The condition number estimate

κ(B−1A) ≤ 3 holds uniformly with respect to the mesh parameter and to possible
coefficient jumps (for the related analysis see discussion presented in [3]). After
this modification we obtain matrix B with its diagonal blocks (corresponding to
horizontal cross sections) being diagonal matrices. The solution of linear systems
with the preconditioner can be performed in parallel. It is important to note that
the use of periodic boundary conditions does not change diagonal blocks of the
stiffness matrix A, and thus the same parallel algorithm can be applied also here.
The obtained preconditioner has the form.

MDDMIC(0) =





MMIC(0)(B)
MMIC(0)(B)

MMIC(0)(B)



 .
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(a) (b) (c)

Fig. 1. Structure of the solid phase: (a) 32 × 32 × 32 voxels, (b) 64 × 64 × 64 voxels,
(c) 128 × 128 × 128 voxels.

4 Experimental Results

Our test specimen is part of a trabecular bone tissue obtained from a high reso-
lution computer tomography [8]. The trabecular bone tissue has a strongly het-
erogeneous micro-structure composed of solid and fluid phases and thus matches
very well with the proposed approach. To obtain a periodic RVE the bone tissue
specimen is mirrored three times, see Fig. 1. The voxel size is 37 µm.

In this paper we focus on the parallel performance of the proposed numerical
up-scaling technique. Experiments to study the homogenized properties of the
RVE with dimensions n × n × n voxels were performed, where n = 32, 64, 128.
The Young moduli Es = 14.7 GPa for the solid phase, and Ef = 1.323 GPa for
the fluid phase were used. The same Poisson ratio νs = νf = 0.325 was used for
both phases. The iteration stopping criterion was ||rj ||M−1/||r0||M−1 < 10−3,
where r

j stands for the residual at the j-th iteration step of the preconditioned
conjugate gradient method.

To solve the above described problems, a portable parallel FEM code was
designed and implemented in C++, while the parallelization has been facilitated
using the MPI library [19, 21]. The parallel code has been tested on cluster
computer system located in the Oklahoma Supercomputing Center (OSCER)
and the IBM Blue Gene/P machine at the Bulgarian Supercomputing Center.
In our experiments, times have been collected using the MPI provided timer and
we report the best results from multiple runs. We report the elapsed time Tp

in seconds on p processors, the parallel speed-up Sp = T1/Tp, and the parallel
efficiency Ep = Sp/p. The obtained up-scaled properties can be found in [16].

Table 1 summarizes results collected on Sooner. It is a Dell Pentium4 Xeon
E5405 (“Harpertown”) quad core Linux cluster located in the Oklahoma Su-
percomputing Center (see http://www.oscer.ou.edu/resources.php). It has 486
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Table 1. Experimental results on Sooner.

n Problem size p Time Speed-up Efficiency

32 2 359 296 1 631.05
2 355.73 1.77 0.887
4 243.61 2.59 0.648
8 217.92 2.90 0.362

16 133.24 4.74 0.296
32 87.86 7.18 0.224

64 18 874 368 1 6317.35
2 3362.10 1.88 0.939
4 2270.16 2.78 0.696
8 1921.95 3.29 0.411

16 1154.40 5.47 0.342
32 774.10 8.16 0.255
64 588.81 10.73 0.168

128 150 994 944 1 82468.90
2 44902.69 1.84 0.918
4 28065.57 2.94 0.735
8 23621.77 3.49 0.436

16 12146.39 6.79 0.424
32 7212.52 11.43 0.357
64 4881.75 16.89 0.264

128 3761.78 21.92 0.171

Dell PowerEdge 1950 III nodes and two quad core processors per node. Each
processor runs at 2 GHz. Processors within each node share 16 GB of memory,
while nodes are interconnected with a high-speed InfiniBand network. We have
used Intel C++ compiler and compiled the code with the following options: “-O3
-march=core2 -mtune=core2”.

As expected, the parallel efficiency improves with the size of the discrete
problems. The efficiency on 16 processors increases from 30% for the smallest
problems to 42% for the largest problems in this set of experiments. Also, the
execution times decrease with increasing number of processors which shows that
the communications in our parallel algorithm are mainly local.

Table 2 shows execution times on IBM Blue Gene/P machine at the Bulgar-
ian Supercomputing Center (see http://www.scc.acad.bg/). It consists of 2048
compute nodes with quad core PowerPC 450 processors (running at 850 MHz).
Each node has 2 GB of RAM. For the point-to-point communications a 3.4 Gb
3D mesh network is used. Reduction operations are performed on a 6.8 Gb tree
network. We have used IBM XL C++ compiler and compiled the code with the
following options: “-O5 -qstrict -qarch=450d -qtune=450”.

The memory available on a single node of Blue Gene/P is not sufficient to run
experiments for the largest problem and we report execution times starting from
eight processors located within different nodes. Therefore, for the largest prob-
lem, we report parallel efficiency related to results collected on eight processors.
Execution times on Blue Gene/P are substantially larger than that on Sooner,
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Table 2. Experimental results on IBM Blue Gene/P.

n Problem size p Time Speed-up Efficiency

32 2 359 296 1 3442.29
2 1782.88 1.93 0.965
4 954.90 3.61 0.901
8 532.29 6.47 0.808

16 322.62 10.67 0.667
32 205.40 16.76 0.524

64 18 874 368 1 34166.01
2 17358.17 1.97 0.984
4 8975.65 3.81 0.952
8 4763.87 7.17 0.896

16 2633.40 12.97 0.811
32 1589.88 21.49 0.672
64 1003.19 34.06 0.532

128 150 994 944 8 55413.21
16 29132.86 0.951
32 15967.65 0.868
64 9773.76 0.709

128 6131.38 0.565

but parallel efficiency obtained on the supercomputer is better. For instance,
the execution on 64 processors on Sooner is only twice faster than on the Blue
Gene/P, in comparison with five times faster performance on single processor.

To summarize, in Fig. 2 computing times on both parallel systems are shown.
The somehow slower performance on Sooner using 8 processors is clearly visible.
It can be stipulated that this effect is a result of limitations of memory sub-
systems and their hierarchical organization. One of them might be the limited
bandwidth of the main memory bus. This causes processors to “starve” for data,
thus, decreasing the overall performance. Note that L2 cache memory is shared
among each pair of cores within the processors of Sooner. This boosts perfor-
mance of programs utilizing only a single core within such pair. Conversely, this
leads to somewhat decreased performance when all cores are used.

5 Conclusions and Future Work

We have studied the parallel performance of the recently developed numerical
homogenization technique utilizing parallel MIC(0) factorization [16]. The per-
formance was evaluated on two different parallel architectures. Satisfying parallel
efficiency is obtained on the IBM Blue Gene/P. The efficiency on Sooner quickly
deteriorates with the increase of the number of the processors. Despite of the
worse efficiency, the faster CPUs on Sooner lead to shorter runtime, on the same
number of processors. The network latency is crucial for the parallel performance
of the algorithm. To hide some of the network latency, the computations were
overlapped with the communications wherever possible. We plan to investigate
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Fig. 2. Execution times for the test problems

the possibility to hide further the latency, solving simultaneously more than one
of the six independent problems (4).
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