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Abstract—Performance characteristics of dense and structured blocked linear system solvers are
studied when Strassen’s matrix multiplication is used in the update atep. Results of experiments on
a multiprocessor Cray Y-MP are presented and discussed.
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1. INTRODUCTION

In 1969, Strassen published a paper in which a new recursive method of multiplying matrices
was introduced [1]. This idea was quickly dismissed as the new algorithm has been consid-
cred unstable. Only nowadays when a large number of algorithms have been redesigned in a
blacked form rich in matrix multiplication [2,3] & renewed interest in Strassen’s Algorithm can
be observed [4,5]. The aim of this paper is to discuss the performance characteristics of linear
algebraic solvers when the Strassen’s algorithm is applied in their block update step. In Section 2,
Strassesn’s algorithm is introduced, its stability discussed and its performance compared to that
of standard matrix multiplication. Section 3 contains examples of applying Strassen’s algorithm

to dense linear solvers. Section 4 presents the results of applying Strassen’s algorithm to the
solution of Almost Block Disgonal systems.

2. STRASSEN’S ALGORITHM

The following description is based on the original paper by Strassen [1]. Assume that 4, B, C &
R"*" and, for simplicity, assume that n = 2*. Consider the following division of A, B and C
into square blocks:

A A !Bu 312] [011 Cm]
A= . B= . AB = :
Llle Azz] Bg)  Bagp Cy O

and calculate:
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I = (A1 + A2){ By + Baa),
II = (A + A22) B,
III = Ay (B2 — B},
IV = Age(—By + B2y},
V = (A + A12)Bag,
VI=(—An + A2} Bn + Biz2),
VII = (412 — A22)}{B2) + Baz).

‘To obtain the final answer, compute

Chy=1+1V — V + VII, Cip =111 + V,
Cqy =1 + 1V, Cop =14 111 — II + VI

This process is repeated recursively. The arithmetical complexity of this algarithin (for any )
is bounded by 4.70#7 arithmetical operations (multiplications, additions aled subtractions). As
log 7 == 2.8, for large n, the new algorithm shoukl be considerably faster than the standard one.

The stability of Strassen’s algorithm has been extensively studied by ligham 6. He showed
that for square matrices (where n = 2%), if ¢ is the computed approximation to C(C = AB+AC),
then

|AC| < e(n,n, )| Al || B] + O{u?),

where 1 is the unit roundoff, and

(1, n,m) = (;—l)hmi ' ((2‘“)2 4. 5 * 2“) - DL
(For nonsquare matrices the function defining ¢ becownes substantially more complicated, but
the overall result remains the same.) Observe that nu|| Al] || B]| + O(z*) is the upper bound for
the standard matrix multiplication. Thus, even though Strassen’s matrix multiplication 1s less
stable, the instability predicted by the error analysis should not (in most cases} be catastrophic.

To study the possible gains from Strassen’s algorithm, we have performed a series of expert-
ments on an 8-processor Cray Y-MP. Cray Research [nc., as a part of its scientitic library, provides
an optimized implementation of Strassen’s algorithm (routine SGEMMS). It is implemented us-
ing calls to level 3 BLAS routines and requires 2 3412 element workspace. One-processor timings
were performed using the perfirace utility. In a multiprocessoer environment, where perfirace
does not work correctly, the system’s timef function was used on an empty machine. Each result
presented in this paper is an average of multiple runs.

We have compared the performance of the Strassen’s algorithms with the best standard matrix
multiplication subroutine (SGEMM) from the Cray’s Scientific Libraty. It has been found that
in the uniprocessor mode Strassen’s algorithm outperforms the standard one for matrices of size
larger than n = 150. For n = 1500 the time gain was already 30% (see [7] for more detalls).
The situation changes slightly for the multiprocessor case. It was found that as the number of
processors increases the matrix size for which any gain can be reported also increases. For the
8-processor system for n == 1900, Strassen’s algorithm was about 12% faster (8].

3. DENSE GAUSSIAN ELIMINATION

Since the introduction of the BLAS standard, most of the linear algebraic algorithms have
been expressed in a blocked form [2,3]. Such representations are rich in matrix multiplications,
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and at the same time as the matrix size increases, the percent of time spent in hlock updates
increases [9]. We have experimented with three {SAXPY, DOT and GAXPY) column-oriented
versions of Gausslan elimination.

The SAXPY version is a standard Gaussian elimination represented in a blocked form (and its
uame originates [rom a frequent use of axpy operations: @ = z+ay). The DOT version is a variant
of Crout’s method (and its name originates from a frequent calculation of dot-products). Finally,
the GAXPY version is based on a generalized axpy operation (e.g., matrix-vector multiplication),
For mwore detailed descriptions of these variants see [3]. The results of selected experiments on a
One-processor system arc summarized in Table 1.

Table 1. Donse Gaussian elimination; performance comparison; time in scoonds:
{3) indicates the code uging Strassen-based update,

1. SAXPY CGAXDPY 13T SAXIPY(S) CGAXDPY(S) DOYI{S)
A0 AL —2 6.OTH 2 T.07R-2 TGS 2 T ORI -2 7.0 2
HLIE | 2815410 125K 40 1. 271540 121K +0 1.23154-0 [L22E {1}
1.:404) ARG -0 A4 HA--1) A.8005 -0 AATE-D 4061541 437 A0
I K040) L.ALE 1] i DES L2815+ | LOKE 4O .09154-0 INTLDRRY!

Figure 1 sutnmarizes the results for the full &-processor system for n - 600, ..., 2600 {the
optimal performance blocksize 256 was used). The performance is represeuted using sealing
similar to one used by |[4] {(where the munber of arithmetical operations of a standard Ganssian

elimination was divided by the axecution tine).

2600
Rt “
2400 - - (IS KPY r i
—6— 10T ; —4a
2200 AT SAXPY(S) ‘""‘"-..»
1 —8— GAXPY(S) A A=
=8 Y /
——DOlE) e N '
2000 + 5 .
—
Ja00 4 ‘.’-
i i -
I-H-/ a
1600 i
1400 {.:;:"'H
1200 S S— : ) — : 'r \ : : : | : ; TR — 1
=z X
§ g 5 88 28 § £ 8 8 8 B B B 8 8 8 8 8 § 8

Figure 1. Performance comparison; 8.pracesgor system; results in sealed MElops.

The gain from using Strassen’s algorithm on a one-processor systom is observable from approx-
imately n = 400 onward; for n = 1800 it reaches ahout 12%. The standard GAXPY and DOT
versions outperform the SAXPY version; among the codes utilizing Strassen-bascd npdate the
SAXPY version is the fastest since larger matrices are multiplied in its update step (see {5] for
more details). For the multiprocessor system, as the number of processors increases the size of
the matrix for which any gain occurs increases (this is similar to what was reported for matrix
multiplication). For the 8-processor systemn that minimal matrix size is n = 1000. For matrices
of size n = 2500 the gain is approximately 14%. The DOT and SAXPY versions outperform
the GAXPY wversion for both standard and Strassen-based codes. It should be added that the
8-processor performance decrease for n = 800, 1600 and 2400 has been also observed for the
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one-processor svstem and can be attributed to the memory scction conflicts (this is a well-known
problem with Cray's hardware, see also [5,7,8] for more details).

4., ALMOST BLOCK DIAGONAL SYSTEMS

The final set of experimments was devoted to the application of Strassen’s matrix multiplication
in structured lincar systems solvers. We have selected Almost Block Diagonal (ABD) systems
arising from the discretization of boundary value ordinary differential equations and spectral
decomposition applied to the fluid Aow in a re-cntrant tube. One of the most efficient ABD
solvers is a level 3 BLAS based extension of the work of Diaz et al. [10] proposed in [11]. We will
describe the algorithm very briefly since a more detailed description can be found in [11-13]. For
our purposes we will reprosent the ABD system as

(Al,l Are Ag \
Aoy Agge Azs
Azy Aszs Asg Ass
Arz Aas Asg A

\ An— l,7e—13 A”__ | ,ri—242 Au— 1,7--1 ATL— I,m
AH,TL—H A?L,ﬂ“ﬂ An,u—l Aﬂ,n )

where A; ; are square aud A; ; are rectangular blocks of varying sizes. The 0 step of the algorithm
consists of two phases. In Phase I, the rectangular block

(/’l;::-x---l,m | )
Ay

i decomposed using Gaussian elimination with partial pivoting and row interchauges into

I.r'-j,w -
P( il I)Uz-i—l,;h—h

Logi g

where P is the permutation matrix. After Lhis factorization, block

(Fim— Vo Az 1 2idd )
A o Agi i

(L:a-;—i,-z-s—l U)
Logosy 1)

(Agio;  Azigitr)

is decomposed using Gaussian climination with partial pivoting and column interchanges, and up-
dated as in Phase I. The decomposition will be performed in a blocked fashion using LAPACK (2]
routine SCETRF {which uses appropriate level 1 and 2 BLAS kernels) or its column interchange
based version. The update steps consist of calls to the level 3 BLAS routines STRSM (triangular
system solver for multiple right-hand sides) and SGEMM. The general performance characteris-
tics of this algorithm have been discussed in [12,13]. It has been shown that it outperforms other
versions of alternate row and column elimination,

First, let us consider applying this algorithm to a fairly regular ABD system arising from a finite
difference discretization of a system of ordinary differential equations. Table 2 summarizes the
results for the ABD systems representing systems of 200 and 400 first order differential equations
with separated boundary conditions discretized on a mesh of 50 points. [TBC represents the

will be updated by the wverse of

In Phase 11, block
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'Table 2. Performance comparison; regular ABD system; time in seconds; DGE—
non-strassen version; 51T R Strassen version,

ITBC 200 equations 400 equations
DGIE ST R DGE S TR

| 2.67 2.68 19.6 19.6

Di) 2.80 2.81 20.1 20.1
100 2.85 2.8 208 20.4
150 21.3 207
200 21.7 2004

number of left boundary conditions. The performance optimal blocksize of 2566 was used in the
hlocked decomposition step.

Quly for relatively large blocks can any gain be observed. When I'TBC is increasing, the size of
the blocks in the overlap is also increasing, which leads to additional gains from using Strassen’s
algorithm (which replaces all calls to the matrix multiplication regardless of the matrix size).

Let us now consider Chebyshev spectral collocation method applied to the flow of an incom-
pressible Hind through a re-entrant tube. Only a short description of the problem and the method
is presented here (for more details, see [14,15]). The flow is assumed to be steady and laminar.
It 18 governed by the Navier-Stokes equations which, in the stream function formulation, become

Atip — Re % i(ﬂ'ﬂm) - @ f—j(aﬂm) =0,
hy e dx dy
where Re is the Heynolds number, The problemn is linearized using a Newton-type method and
the How region is divided into four clements. To find the solution of the problem a linear system
resulting from the discretization necds to be solved in each step. This linear system is of the form
presented in Fignre 2,

6E4

718 68
437

513 84 129

388 48
408

432

Figure 2, BExainple of an alimost bBlock diagonal systom (o be solved in each step of
the algorithm.

Table 3. Solution of the linear systemn; time in seconds; DGE—nnon-Strassen version;
S TR—BStrassen version.

Decomposition
Problem
size DGE STIR
1547 {1.644 0.634
1642 {.771 0.7H8
1813 1.66 1.14
1851 1.28 1.24
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Depending on the problem parameters the size of the first block changes (from 380 x 414,
475 x 509, 646 x 680 to 684 x 718) leading to linear systems of sizes from n = 1547 to n = 1851.
The hrst series of experiments was performed with the solution of a linear system with a given
size. Table 3 summarizes the results (time in seconds).

Second, we have experimented with a one processor solution of the whole problem. Table 4
presents the results for the largest system {n = 1851) for various values of Re (increase in Re

forces the use of a continuation-type method to obtain the solution and incrcases the number of
linear systems solved).

Table 4. Solation of the whole problem; one processar: results in seconds, DGLlE-—
nan-Strassen version; 5'TH—SUrassen version,

Re # of iterations DG S
1030} R 14.74 14,72
200 12 1845 1891
S0 17 26 80 26 K2
400 22 3474 3461

In the case of the linear system itself, any real gain can be reported only for the largest
systot, [t translates into a minimal gain in the solution of the whole system. These facts can
be explained hrst by a very small overlap between the blocks, which hinders the performance of
Strassen’s algorithm. Second, when the whole problem is solved, additional factors related to
Cray’s architecture scem to influence the performance (for similar resnlts, cf. |16]).

Finally, ohserve that there are two places in which Strassen’s algorithm can be used in the
ABD solver: in the update step or inside the blocked Gaussian eliminafion. When Strassen’s
npcate was used in both places {(for the above problem) the iterations did not converge., This
seetns 1o suggest that although Strassen’s algorithnt can be nsunlly applied, there is a limit on
its applicability due to its stability propertios.

5. CONCLUSION

We Lave presented a mnnber ol examples where Cray’s implementation of Strassen’s wnatrix
meltiplication was applied to the solution of dense and structared linear systems, This algorithm
definitely leads to performance improvements in a onc-processor environment, as well as for large
dense linear systerns. The gains for structured linear systenis are nuich less spectacular. In a
multiprocessor envirommnent, Cray’s implementation is not very successful. It can be hoped that
new research into the parallelization of Strassen’s algorithm [17,18} will lead to more promising
resulfs for the other matrix-inultiplication oriented algorithms,
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