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Abstract

In this paper the performance of four solvers for systems of nonlinear algebraic
equations applied to a number of test problems with up to 250 equations is dis-
cussed. These problems have been collected from research papers and from the
Internet and are often recognized as “standard” tests. Solver quality is assessed
by studying their convergence and sensitivity to simple starting vectors. Ex-
perimental data is also used to categorize the test problems themselves. Future
research directions are summarized.

0.1 INTRODUCTION

Increasing power of desktop computers helps engineer’s attempt at finding an-
swers to problems that were not solvable in the past e.g. large systems of
nonlinear algebraic equations [8, 17]. This increased interest resulted in a num-
ber of new algorithms being implemented and made available on the Internet
[15]. However, while each of the solvers has been tested on its own, little is
known how their performance compares when they are applied to the same
problem. This may be contrasted with the solution of systems of linear equa-
tions, where a substantial literature comparing the performance of the state of
the art solvers is readily available (e.g. compare reports of the LAPACK project
summarized in [2] with the second edition of the only comprehensive book de-
voted to solution of systems of nonlinear equations [17] and references cited
there). Situation is similarly fuzzy when test problems are considered. Even
though some problems are relatively popular, still different researchers use dif-
ferent problems to test their algorithms. In addition, typical test problems are
mostly for systems of 2-4 equations and only very few reach 10 equations. In our
literature and Internet search we have not located tests corresponding to the
real-life engineering problems of 100+ equations (similar to the avionics prob-
lem studied in [9, 10]. Separately, in engineering computing (e.g. in electrical



engineering) problems arise which involve non-smooth functions (e.g. functions
with the absolute value). These problems are also not represented in the test
sets we encountered (however, since interest is directed primarily toward solv-
ing large systems of equations, the non-smooth cases will be omitted from our
considerations).

In our earlier work [5, 6, 7] we have reported on our early attempts at com-
paring the performance of the nonlinear system solvers applied to the popular
test problems. We have found that the simple algorithms (which work well in
the case of a single nonlinear equation) like bisection or Newton’s method and
its modifications perform poorly when applied to systems of equations. Sec-
ond, we have established that the in-house developed simple implementations
of known algorithms are only slightly less efficient than state of the art library
codes. Finally, we were able to determine that out of 22 popular test problems,
five are easily solvable by all solvers and thus their usability as test cases (estab-
lishing and differentiating quality of algorithms and/or their implementations)
is minimal.

The aim of this paper is to summarize the results of our experimental studies
comparing the performance of four “advanced” solvers for systems of nonlinear
algebraic equations. These solvers were applied to the test problems in a way
that is to resemble an engineer approaching a solution to a real-life problem.
It is thus assumed that the potential user is not a highly trained numerical
analyst and/or programmer who is able and willing to invest time into studying
intricacies of methods and their implementations (e.g. working toward finding
a proper homotopy map). Rather, we envision the user as someone who will
be applying the codes as more or less black-box solvers, likely to follow the
default settings and aiming at finding a verifiable solution to the problem. While
the focus of the presentation is on the tests as they are stated in their simple
“default” formulation, we also report our initial findings for the case when the
size of the problem is increased (up to 250 equations).

The remaining parts of the paper are organized as follows. Section 2 briefly
describes selected algorithms used to solve systems of nonlinear algebraic equa-
tions (only algorithms pertinent to the solvers used in our experiments are men-
tioned). In section 3 we present the solvers (summarizing important details of
experimental set-up) and the test problems. Section 4 summarizes the results
of numerical experiments. Description of future research directions concludes
the paper.

0.2 ALGORITHMS FOR THE SOLUTION OF
SYSTEMS OF NONLINEAR ALGEBRAIC
EQUATIONS

This section contains a brief summary of algorithms behind nonlinear solvers
used in our experiments (in all cases the references cited and [17] should be
consulted for the details). We assume that a system of n nonlinear algebraic



equations f(z) = 0 is to be solved where z is n-dimensional vector and 0 is the
zero vector.

0.2.1 Newton’s method

The Newton's method for a system of nonlinear algebraic equations is a natural
extension of the Newton's method for a single equation [8, 20]. It is the basis
for many variant methods that will be discussed below. Let us assume that the
function G is defined by

G(z) =z — J(z)7" f(z) (1)

and the functional iteration procedure is: select starting vector xo and generate
a series of vectors

=G 1) =281 — J(xp1) " f(2h1) (2)

where J(z) is the Jacobian matrix. The convergence rate for this method is
fast, but the success of the method depends on a good starting vector xg.

0.2.2 Trust-region Method

The trust —region method is a version of the Newton'smethod that reduces the
full step size when it moves too far for the quadratic approximation to be valid.
Given the function f and a step size of s, we can say that this method takes the
view that the linear model f(xy) + f (xx)s of f(xy + ) is valid only when s is
not too large (and thus a restriction on the size of the step is introduced). In
the trust — region method, we replace the Jacobian matrix that is used by the
Newton's method with an approximation [17]. Then the step [14] is obtained
as an approximate solution of the sub-problem

min||f(zr) + Bs|| - || Ds|la<Ax (3)

where By, is either the exact Jacobian or a close approximation, Dy, is a scaling
matrix, s is the step size and Ay, is the trust region radius. Stopping criteria is
met if the ratio the ratio

pr = |[f (@)l = | f @ + s)ll/I|1f(@k|| = [|f(zx + Brskl| (4)

of the actual-to-predicted decrease in ||f(z)|| is greater than some constant og
(typically 0.0001). Otherwise, the radius of the trust region is decreased and
the ratio re-computed. The radius may also be updated between iterations
depending on how close the ratio is to the ideal value of 1. The convergence
rate of this method is slow, but it can use an arbitrary starting solution vector
and still converge.



0.2.3 Continuation Method

The continuation method is designed to target more complicated problems and
is the subject of current research efforts [1, 20, 14]. The method defines an
easy problem for which the solution is known along with a path between the
easy problem and the hard problem that is to be solved. The solution of the
easy problem is gradually transformed to the solution of the hard problem by
tracing this path. The path may be defined by introducing an addition scalar
parameter A into the problem and defining a function

Wz, X) = f(x) = (1 = A)f (o), (5)

where z is a given point in R". The problem h(z,\) = 0 is then solved for
values of A between 0 and 1. When A = 0, the solution is clearly z = zy.
When A =1, we have h(z,1) = f(z), and the solution of h(z, \) coincides with
the solution of the original problem f(z) = 0. The convergence rate of the
continuation methods varies, but the method does not require a good choice of
the initial vector.

0.2.4 Homotopy Method

The homotopy [4] and continuation methods are closely related. In the homotopy
method, a given problem f(z) = 0 is embedded in a one-parameter family of
problems using a parameter A assuming values in [0,1]. Like the continuation
method, the solution of an easy problem is gradually transformed to the solu-
tion of the hard problem by tracing a path. There are three basic path-tracking
algorithms for this method: ordinary differential equation based, normal flow,
and quasi Newton augmented Jacobian matrix. The original problem corre-
sponds to A = 1 and a problem with a known solution corresponds to A = 0.
For example, the set of problems

Gz, A) = f(z) + (1 = A f(xo) = 0,0<A<1, (6)

for fixed zo€R" forms a homotopy. When A = 0, the solution is z(A = 0) = .
The solution to the original problem corresponds to (A = 1). Similarly to
the continuation method, the convergence rate of the homotopy method varies.
The homotopy method does not require a good choice of the initial vector but
proper implementation of this method involves defining the homotopy h(z,t)
and finding a numerical method for tracking the paths defined by h(z,t) = 0.

0.2.5 Tensor Method

The tensor method [19] goes a step beyond Newton's method by including
second-order derivative information from f into its model function [14]. This
method converges more rapidly than Newton's method, particularly when f'(x)
is singular at the solution z9. The tensor method [3] assumes that we have a
system of nonlinear equations of the form



f:R,—R,,,m>n, (7)

where f is assumed to be at least once differentiable. When m is equal n, the
algorithm solves the nonlinear equation problem, f(z) = 0. If m is greater
than n, it will solve the nonlinear least-squares problem. The tensor method
approximates f(z) by a quadratic model. This method bases each iteration on
a quadratic model of the nonlinear function

M(ze+d) = (o) + f'(wed + %Tcdd) (8)

where z. is the current iterate, d is the direction, and T, is a three-dimensional
object referred to as a tensor and the second-order term is chosen so that the
model is hardly more expensive to form, store, or solve than the standard linear
model.

0.2.6 Line-search Method

The line — search method [14], similarly to the trust — region method, when
implemented with the Newton's method attempts to overcome its disadvantages
by using basic strategies to improve global convergence behavior. Sometimes
taking the full Newton step p = Az may cause us to move far for the quadratic
approximation to be valid, so the goal is to move to a new point x,.,, along the
direction for the Newton step p, but not necessarily all the way were T,e, =
Zora + dp,0 < d<1. The aim is to find d so the f(z,q + dp) has decreased
sufficiently. The line — search method uses a linear model to achieve this.
Given an approximation to the Jacobian matrix or the exact Jacobian, By, the
line — search method obtains a search direction, dj, by solving a system of
linear equations

Brdy, = —f(xx)- 9)

The next iterate is then defined as

T = T + ardy (10)

where the line-search parameter a; > 0 is chosen by the line-search procedure
so that

F @r || < [1f (] (11)

When the "approximate" Jacobian is "exact", as in Newton’s method, dj, is a
downhill direction 2-norm, so there is certain to be an a; > 0 such that

If (@il < |[f(zkl]2 (12)

This descent property does not necessarily hold for other choices of the approx-
imate Jacobian, so line — search method is used only when Bj, is either the
exact Jacobian or a close approximation to it.



0.3 EXPERIMENTAL SETUP

In our numerical experiments we have used four solvers [15]:

e HYBRD1 - combination of trust—region and Powell's (modified Newton's)
method

e CONTIN - continuation method
e HOMPACK - homotopy method

e TENSOLVE - tensor method combined with the trust—region and line —
search methods.

The algorithms described in section 2 are the basis of these four solvers. We
have earlier experimented with a number of variants of Newton's method and
with the bisection algorithm (library based and in-house developed implemen-
tations) and found their performance rather unsatisfactory [5, 6, 7]. The results
of these experiments will thus be omitted. Second, we have experimented with
an in-house hybrid method based on [16]. Even though its performance was
only slightly weaker than that of HYBRD1, to keep the presentation focused,
these results will be left out as well.

0.3.1 HYBRDI1

HYBRDL1 is part of the MINPACK-1 suite of codes [13]. HYBRD1’s design is
based on a combination of the trust region and steepest descent concepts. It
finds a zero of a system of n nonlinear functions in m variables by a modification
of the Powell — hybrid method (a modified Newton's method)[16]. The code
requires the user to provide subroutines to compute the function f(z) while the
Jacobian is computed internally by a forward-difference approximation. Termi-
nation occurs when the estimated relative error less than or equal the tolerance
that is defined by the user. We used the same tolerance as is given as a default
for other codes: square root of machine precision.

0.3.2 CONTIN

CONTIN [14], also know as PITCON [18], implements a continuation algorithm
with an adaptive choice of a local coordinate. The continuation method is
designed to be able to target more complicated problems and is the subject of
various research efforts [1, 20, 14]. This method is expected to be slower than
line — search and the trust — region methods, but it is to be useful on difficult
problems for which a good starting point is difficult to establish.

This solver requires a user subroutine for the evaluation of the function
f(z) and either internally computes a finite-difference approximation of the
Jacobian or utilizes a user-provided subroutine for its direct computation. In
our experiments we have used the Jacobian approximation provided by the
program (which is consistent across all solvers).



The user must also provide the initial starting vector and may provide target
points. The code includes features for computation of target points and turning
points. We followed an example provided with the code and choose as out target
points the ng, value of a known solution set. CONTIN provides a function to
perform acceptance test, which checks if the solution is drifting away from the
solution curve. The test uses a tolerance provided by the user (we followed
the examples again and used 0.0001). The check is performed at the end of
each iteration. If the relative error test is satisfied, the solution is accepted. If
an acceptable solution is not found the code will terminate after exceeding the
iteration limit.

0.3.3 HOMPACK

HOMPACK [23] is a suite of subroutines for solving nonlinear systems of equa-
tions by homotopy methods. The homotopy method is carried out via three qual-
itatively different algorithms: ODE-based (code FIXPDF), normal flow (code
FIXPNF), and augmented Jacobian (code FIXPQF). The code is modular and
arranged hierarchically to allow the user to easily supply information. For bet-
ter results, users familiar with the code can call the tracking routines directly
with complete control. The code is available in both Fortran 77 and Fortran 90
[22]. The Fortran 77 version was used in our test.

To properly solve a problem with this software, it is recommended that some
knowledge about the solution is available so that the user can define the homo-
topy map for the continuation process. According to one the authors of the
code [21] only when a proper homotopy map is constructed the full strength
of this method is utilized and thus using the default homotopy map is not rec-
ommended. Since our assumption is that the user may not be able or willing
to spend time constructing the correct homotopy map we have decided to use
the default setup and observe the program behavior. Even though this may put
the otherwise powerful solution method (for examples of successful application
of homotopy method see for instance [22, 23] in a substantial disadvantage, we
believe that this is a fair comparison since we used the same general method-
ology with regards to all solvers. We implemented and executed all of the test
problems with each of the three algorithms. FIXPQF has a higher convergence
rate and requires less iterations than PIXPDF and FIXPNF. We will report
only the results of FIXPQF in our findings.

For the fixed point and zero finding problems, the user must supply a sub-
routine, f(z,v), which evaluates f(z) at « and returns the vector f(x) in v, and
a subroutine fjac(z,v, k) which v the kth column of the Jacobian matrix of f(x)
evaluated at z. For the curve tracking problem, the user must supply a sub-
routine, rhoa(v, A, x, par, ipar), which given (A, z) returns a parameter vector a
in v such that rho(a, A\, z) = 0, and a subroutine, rhojac(a, A, z, v, k, par, ipar),
which returns in v the kth column of the Jacobian matrix. We provided the
functions f and fjac.

HOMPACK provides a routine that tracks the zero curve of the homotopy
map. The user can provide a tolerance for relative error testing during the



tracking process or can use the system default (square root of machine precision,
which we used). When the curve tracking reaches its target, the code terminates
with convergence, otherwise execute until it exceeds the iteration limit.

0.3.4 TENSOLVE

TENSOLVE [3] is a modular software package for solving systems of nonlin-
ear equations and nonlinear least-square problems using the tensor method. It
is intended for small to medium-sized problems (up to 100 equations and un-
knowns) in cases where it is reasonable to calculate the Jacobian matrix or its
approximations.

This solver provides two different strategies for global convergence; a line
search approach (default) and a two-dimensional trust region approach. Re-
quired input to the package includes (1) the dimensions m and n of the prob-
lem, where m is the number of nonlinear equations, and n is the number of
unknowns; (2) a subroutine to evaluate the function f(z); and (3) an estimate
zoof the solution z*. For our test, we used all default options, provided the
dimension m = n, supplied functions for f(z) and z, and used the internally
calculated approximation of the Jacobian (consistently across all experiments).
The default strategy for global convergence, line search, was also selected. The
stopping criteria is meet when the relative size of zj41 — 2 < €'/? where € is
the machine precision or if ||f(z11)||eo is less than €*/3, or the relative size
of J(xps1)T f(xps1) is less thane?/3 and unsuccessfully if the iteration limit is
exceeded.

0.3.5 Experimental Set-up and Environment

All codes are implemented in Fortran and were run in double precision on a
PC with a Pentium Pro 200 MHz processor. For the initial numerical tests we
have used 22 problems found in [11, 12, 24]. These tests come from the three
collections of test problems for the solution of systems of nonlinear algebraic
equations. While some of the problems come from the real life applications,
others are artificially generated with properties not typical for real life applica-
tions.

In our earlier experiments we have established that test problems: Rosen-
brock function, Discrete Boundary Value function, Broyden Tridiagonal func-
tion, Broyden Banded function and Freudenstein-Roth function (all from [12]
are easily solvable by all methods, including the simple variants of Newton and
bisection. We have concluded that these problems do not introduce any inter-
esting information about the quality of the algorithm and/or its implementation
and should be removed from further considerations. We will thus skip the results
obtained while solving them (interested reader may consult our earlier work for
the details). Table 1 contains a list of the problems used in current experiments.
Detailed descriptions can be found in the Appendix of [7]. Problems: 5, 6, 7,
8, 14 and 15 allow for varying the number of equations, n. In sections 4.2 and
4.3 we report the results collected when problems are solved for the minimal



default number of equations (the way that they are defined in the test sets and
used by other researchers). In section 4.3 we report on experiments where the
number of equations has been increased for three test problems.

Table 1. Test problems.

1. Powell singular function [12] 10. Semiconductor Boundary
Condition [24]

2. Powell badly scaled function [12] 11. Brown Badly Scaled[12]

3. Wood function [12] 12. Powell singular Extended[11]

4. Helical valley function|[12] 13. Rosenbrock Extended [12

5. Watson function[12] 14. Matrix Square Root Problem
1]

6. Chebyquad function[12] 15. Dennis, Gay, Vu Problem [11]

7. Brown almost-linear function[12] 16. Trigonometric function [12]

8. Discrete integral equation function | 17. Exponential/Sine function [24]

12

9. Variably dimensioned function[12]




0.4 EXPERIMENTAL RESULTS

In our experiments we have used various sets of initial values (which correspond
to what an engineer could try to use in cases where the solution is unknown).
First, for each of the test problems (as they were described in the literature)
a starting vector was provided and we have utilized this data (results denoted
DEFAULT). We have used starting vectors of zero (denoted ZERO) and one
(denoted ONE) and, finally, vector of random numbers (denoted RANDOM).
In the test results, lack of convergence is denoted as nc. For TENSOLVE
the code nc indicates that the execution was terminated before convergence due
to exceeding maximum number of iterations. For HYBRD1 and HOMPACK
nc indicates that the execution terminated before convergence due to iterations
not making good progress as measured by the improvement from the last five
Jacobian evaluations. The codes indicating abnormal termination for CONTIN
are nc, and ne. Here nc means that the code did not reach a point of interest
(convergence criteria not met before iteration limit met) and ne specifies the
problem terminated because numerically singular matrix was encountered.

0.4.1 Medium difficult problems

In our experiments we have found that three problems (2, 5 and 16 from Table
1) have been solved easily by all four methods. Solved easily means that starting
at least from one of the four starting vectors solver converged to the solution.
Considering that five problems have already been deemed easy, these three test
cases will be named medium difficult. The results are summarized in Table 2.
Number of function evaluations is reported.

Table 2. Results of medium difficult problems using DEFAULT, ZEROS,
ONES and RANDOM initial value sets.

Initial Value
# | Solver N | DEFAULT Zeros Ones random
2 | CONTIN 2 | 43 nc nc nc
HYBRDI1 2 | 181 4 4 4
TENSOLVE 2 | 259 6 6 6
HOMPACK 218 nc nc nc
5 | CONTIN 6 | 259 nc nc nc
HYBRD1 6 | 96 8 8 8
TENSOLVE 6 | 208 14 14 14
HOMPACK 6 | 23 60 60 60
16 | CONTIN 10 | Nc 588 nc nc
HYBRD1 10 | 84 84 84 108
TENSOLVE 10 | 113 11 503 347
HOMPACK 10 | nc 4 4 4

10




It can be observed that the set of values associated as defaults for the test
problems are not always the best for finding the solution. Out of the codes
the continuation and homotopy methods converge less often than the hybrid
and the tensor method solvers. The lack of success of the homotopy method
can be associated with the fact that the default homotopy map was used. It
seems that problem 16 is the most interesting out of the group leading to the
largest variation of the number of function evaluations. In all cases the number
of function evaluations is so small that, on the PC used, the solution required
almost no time to be completed.

0.4.2 Difficult problems

Tables 3 and 4 summarize the results of test cases for which one or more codes
were unable to meet the convergence criteria. Again, in case of convergence, the
number of function evaluations is reported.

Table 3. Results of difficult problems 1,3,6,7,8 using DEFAULT, ZEROS,
ONES and RANDOM initial value sets.

Initial Value Type
N | DEFAULT Zeros Ones Random
1 | CONTIN 4 | 446 nc nc nc
HYBRDI1 4 | nc nc nc nc
TENSOLVE 4 | 20 15 15 15
HOMPACK 4 | nc nc nc nc
3 | CONTIN 4 | 189 36 nc nc
HYBRDI1 4 | 94 6 6 6
TENSOLVE 4 | 50 10 10 10
HOMPACK 4 | nc nc nc nc
4 | CONTIN 3| 68 400 15 102
HYBRD1 3| 27 5 5 5
TENSOLVE 3| 42 8 8 8
HOMPACK 3 | nc nc nc nc
6 | CONTIN 5 | ne ne ne ne
HYBRD1 5| 17 7 7 7
TENSOLVE 5| 31 12 12 12
HOMPACK 5] 10 6 6 6
7 | CONTIN 10 | 50 nc nc nc
HYBRDI1 10 | 31 12 12 12
TENSOLVE 10 | 93 22 22 22
HOMPACK 10 | nc nc nc nc
8 | CONTIN 10 | nc nc nc nc
HYBRDI1 10 | 16 12 12 12
TENSOLVE 10 | 33 22 22 22
HOMPACK 10 | 4 nc nc nc

11




Table 4. Results of difficult problems 9, 10, 11, 12, 13, 14, 15, 17 DEFAULT,
ZEROS, ONES and RANDOM initial value sets.

Initial Value Type
# | Solver n | DEFAULT Zeros Ones Random
9 | CONTIN 10 | 254 nc nc nc
HYBRD1 10 | 60 12 12 12
TENSOLVE 10 | 165 22 22 22
HOMPACK 10 | nc 43 43 43
10 | CONTIN 6 | nc nc nc nc
HYBRD1 6|9 11 13 nc
TENSOLVE 6 | 49 49 49 nc
HOMPACK 6 | nc nc nc nc
11 | CONTIN 2 | 82 nc nc nc
HYBRD1 2 | 18 18 nc nc
TENSOLVE 213 3 3 3
HOMPACK 2 | nc nc nc nc
12 | CONTIN 12 | nc nc nc nc
HYBRD1 12 | nc nc nc nc
TENSOLVE 12 | 52 39 39 39
HOMPACK 12 | nc nc nc nc
13 | CONTIN 10 | 99 nc nc nc
HYBRD1 10 | 47 12 12 12
TENSOLVE 10 | 98 22 22 22
HOMPACK 10 | nc nc nc nc
14 | CONTIN 9 | ne ne ne ne
HYBRDI1 9 | nc nc nc nc
TENSOLVE 9| 10 10 10 10
HOMPACK 9 | nc nc nc nc
15 | CONTIN 6 | nc nc nc nc
HYBRD1 6 | 125 8 8 8
TENSOLVE 6 | 542 14 14 14
HOMPACK 6 | nc nc nc nc
17 | CONTIN 8 | 679 ne 110 87
HYBRDI1 8 | 11 nc nc 15
TENSOLVE 8 | nc 3 33 23
HOMPACK 8 | nc nc nc nc

The results in Tables 3 and 4 illustrate that, for the reasons specified above,
the homotopy method is significantly less efficient than the remaining three
methods. Overall, out of 14 tests, CONTIN was able to solve 8 problems,
HYBRD1 11 problems, TENSOLVE 14 problems and HOMPACK 3 problems.
Our results indicate that problems 12 and 14 are particularly hard as only
TENSOLVE is capable of solving them for the four starting vectors used, while
the remaining solvers have not converged in a single case.

12



In most cases the number of function evaluations remains small — which
is related to the fact that the size of the system is small as well. When the
convergence occurs no pattern can be observed that would allow us to predict
which solver will use the smallest number of function evaluations.

0.4.3 Large problems

In an effort to compare the methods for larger values of n, this section explores
the test problems for n greater than 50. The solvers that we are using are
designed for small to medium size problems (up to 100 equations) but we have
been able to execute problems with up to n = 250 equations. We tested all
of the problems that allowed variable sizes for n with values 50 and greater (2
problems from the group designated as easy along with problems 5, 6, 7, 8, 14
and 15 from our test set). From this group of problems, for the Broyden banded
function, Broyden tridiagonal function (both from the easy problems) and the
Brown almost linear function (problem 7 in our test set) we were able to obtain
convergence for n>50. Table 5 contains the results of these test problems (with
n equal to 50, 100,150, 200, and 250) using the DEFAULT set of initial values.
The Default set defined in Section 4.0 can be used for any value of n due to
the fact that they are generated automatically (for details see Appendix in [7]).
As previously, in case of convergence, the number of function evaluations is
reported.

Table 5. Selection Problem for Larger Values of n

Problem Solver n= 50 | n= 100 n=150 n=200 n=250
Brown CONTIN 210 | 410 610 810 1010
almost-linear

HYBRDI1 nc | nc nc nc ne

TENSOLVE 153 | 202 302 402 502

HOMPACK 2 | nc nc nc nc
Broyden CONTIN 626 | 1226 1826 2426 3026
tridiagonal

HYBRD1 61 | 111 161 211 ne

TENSOLVE 204 | 404 604 804 14

HOMPACK 207 | 583 nc nc nc
Broyden CONTIN 886 | 1736 2586 3436 4286
banded

HYBRDI1 69 | 119 169 219 ne

TENSOLVE 255 | 505 755 1005 1255

HOMPACK 209 | 590 nc nc nc

TENSOLVE and CONTIN were easily modified (increase in the array sizes)
to handle larger numbers of equations. The same modifications were made
to HYBRD1 and HOMPACK. We expect that additional code modifications,

13




such as more array size increases and modification of constants, are required
to HYBRD1 to allow it to handle n greater than 200 and to HOMPACK for n
greater than 100. We plan to investigate this in the near future.

As expected, as the number of equations is increasing, the number of function
evaluations increases as well. However, there does not seem to be a substantial
increase of computational effort. For instance, for the Broyden Banded problem,
the number of function evaluations remains approximately 5 per equation for
TENSOLVE and 17 for CONTIN.

It can be noticed, that while the HYBRD1 solver seems to be running into
convergence problems, when it converges it uses the smaller number of function
evaluations. Surprisingly, while for the other problems the CONTIN solver was
relatively inefficient, here is converges in all these cases that the TENSOLVE
does. However, it uses a much larger number of function evaluations.

0.5 CONCLUSIONS AND FUTURE WORK

In this paper we have reported on our experiments comparing performance of
solvers for systems of nonlinear algebraic equations on a number of test prob-
lems. We have found that

e solvability of the test examples depend on the algorithm and the initial
point which we apply to

e without special effort devoted to finding the proper homotopy map the
homotopy method is relatively inefficient

e problems, which are not solvable using one method when are treated by
another method can be solvable

e currently popular test problems can be divided into three groups:

— “easy problems” — where even the least powerful methods were capa-
ble of converging and which should be discarded from further con-
siderations

— “medium difficult problems” — where only the more advanced solvers
can be expected to solve them

— “hard problems” — where convergence is difficult to obtain and which
are the most interesting for testing of new methods

e even though the existing solvers can cope with large systems of equations,
to be able to achieve this their implementations have to be modified

e test problems’ number of equations are too small to add a timing compo-
nent into the evaluation method

14



Out of the methods tested, the tensor method appeared to be most robust
and capable of solving largest number of problems. When examining the solution
sets we noticed a slight difference in the reported results. We have thus, we have
compared the second norm of the differences between the solution vectors for a
few problems. Table 6 contains the results.

Table 6. Comparisons of Standard Deviations from Easy Problems.

Standard Deviation
Rosenbrock | Discrete Broyden Broyden Freudenstein-
Bond Tri-diagonal Banded Roth

TENSOLVE 6.65357E- | 1.068147639 0.004502123 0.000768171 | 0.002175014
vs HYBRD1 07
TENSOLVE 6.65357E- | 1.068147656 0.004502051 0 0.002175014
vs CONTIN 07
TENSOLVE 6.65357E- | 1.068147586 0.004502172 0.000768172 | 0.002175014
vs HOMPACK 07
HYBRD1 vs 0 | 5.88955E-08 9.25758E-08 3.75472E-08 | 2.1142164E-07
CONTIN
HYBRDI1 vs 0 | 9.02943E-08 1.5143E-07 7.67779E-09 | O
HOMPACK
CONTIN vs 0 | 1.2169E-07 1.9892E-07 3.81884E-08 | 2.1142164E-07
HOMPACK

These results indicate that the results reported by the TENSOLVE relatively
different that these reported by the remaining solvers. Taking into account
that in all cases the square root of machine epsilon was used as the required
tolerance and that codes were running in double precision we can conclude that
the results reported by HYBRD1, HOMPACK and CONTIN are numerically
“identical.” These observations agree with the documentation of TENSOLVE,
which indicates that the results obtained by it are the best approximations to
the solution [3]. This may also suggest that TENSOLVE should be used as a
“predictor” and followed by a different code (a “corrector”) to obtain the final
solution.

It should be stressed that even though the tests used cover a wide spectrum
of functions they clearly do not exhaust the possibilities arising in practical
engineering applications. First, such applications can result in systems of 100’s
of nonlinear algebraic equations and none of the test cases used in the current
research seems to belong to this category. In addition, none of the examples
belongs to the class of non-smooth functions (e.g. functions with an absolute
value).

In the near future we plan to proceed as follows. We will adjust the test set
by removing the easy problems and adding real-life problems with large number
of equations (our literature and Internet searches have located additional po-
tential test cases). We will use these new tests to compare the performance of
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the existing solvers. We plan to complete our investigations in two directions.
First, to build a complete picture describing the sensitivity of the test problems
and solution methods to the selection of the starting vector. Second, we will
investigate solution of systems with large number of equations. We will search
for codes that handle larger numbers of equations and/or modify the existing
codes. We expect that with really large nonlinear systems we will be able to
introduce the wall-clock time as an additional performance measure. Finally,
an attempt at solving large, engineering based systems will be made.
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