
NUMERICAL SOFTWARE FOR SOLVING

DENSE LINEAR ALGEBRA PROBLEMS

ON HIGH PERFORMANCE COMPUTERS

STPICZY�NSKI Przemys�law� �PL�� PAPRZYCKI Marcin� �USA� PL�

Abstract� In the paper� fundamentals of numerical software for solving dense linear
algebra problems on modern parallel computers are presented� It is intended for readers
who are familiar with the general aspects of computing but are new to high performance
and parallel computing as it provides a general overview of the �eld�

� Introduction

Over the past twenty years� parallel computing has entered the mainstream of computations�
While multi�processor machines were once a marvel of technology� today most personal com�
puters arrive with multiple processing units such as the main processor� video processor etc��
each with computational power and memory substantially larger than those of the top of the
line workstations of just some years ago� More importantly� the increased availability of inex�
pensive components has made �desktop� systems with two and four processors available for
the price ranging from ������ to �������� Furthermore� recent announcements by both AMD
and Intel showed clearly� that the �speed race� consisting of increasing clock speed of indi�
vidual processors is practically over� Instead� both computer vendors are to o	er slower but
more powerful dual�core designs and systematically introduce
��bit processors� This means
that� starting in ���� a typical desktop computer will arrive as a dual�processor �parallel com�
puter� and soon all computers available on the market will be able to run quadruple precision
arithmetic� Some claim that this latter development will be necessary to solve really large
problems ���� Finally� we observe continuing progress in development of blade servers� that
allow easy and storage e�cient assembly of multi�processor systems�

The question thus arrives� why the push towards parallel computing � The answer is sim�
ple� because of a need to solve large problems from many areas of science� Some examples

���

include Earth environment prediction� nuclear weapons testing� quantum chemistry� compu�
tational biology� data mining for large and very large datasets� astronomy and cosmology�
cryptography� approximate algorithms for NP�complete problems� These problems cannot be
solved on single processor machines either due to the limitation of available processor power
or insu�ciency of available memory�

� Parallel computers and parallel programming

There exist a number of parallel computer architectures� An old� but still useful� general
computer taxonomy was introduced by Flynn in �

 ���� By considering the fact that
information processing� which takes place inside of a computer� can be conceptualized in terms
of interactions between data streams and instructions streams� Flynn classi�ed all existing
computer architectures into four types�

� SISD � single instruction stream�single data stream� which includes most of standard
von Neumann type computers�

� MISD � multiple instruction streams�single data stream� which describes various special
computers but no particular class of machines�

� SIMD � single instruction stream�multiple data streams� the architecture of parallel
processor �arrays�� and

� MIMD � multiple instruction streams�multiple data streams� which includes most mod�
ern parallel computers�

The last two architectures� SIMD and MIMD� are at the center of our interest since most
parallel systems that ever existed fell into one of these categories� SIMD�based computers
were characterized by a relatively large number of relatively weak processors� each associated
with a relatively small memory� These processors were combined into a matrix�like topology�
hence the popular name of this category� �processor arrays�� This computational matrix
was connected to a controller unit �usually a top�of�the�line workstation�� where program
compilation and array processing management took place� While popular in the early days
of parallel computing� they turned out to be much too in�exible to handle general�purpose
parallel algorithms� Currently� the concept has migrated �inside� the existing processors�
For instance� the MMX extension of the command set of an x�
 processor included array
processing type instructions�

It can be therefore said� that all existing general purpose parallel computers belong to the
MIMD category� They can be divided into two sub�categories� shared memory and distributed
memory systems� This division is based on the way that the memory and the processors
are interconnected� Shared memory computers consist of a number of processors that are
connected to the main �global� memory� The memory connection is facilitated by a bus or a
variety of switches �e�g� omega� butter�y� etc�� Distributed memory computers are composed
of computational nodes consisting of a processor and a large local memory �there is no global
memory� and are interconnected through a structured network� Typical topologies for inter�
processor connectivity are meshes� toruses and hypercubes� While code for distributed memory
computers is relatively more di�cult to write and debug� this architecture can be scaled to a
large number of processors� Thus� all of the most powerful computers are currently designed
in this way ���� however� their low�level blocks are often shared memory� For instance� the

���

Earth Simulator� currently the most powerful computer in the world� is build out of shared
memory nodes consisting of � processors each�

While the largest computers are custom built for the highest performance� they cost tens
of millions of dollars as well� Clusters made high performance parallel computing available
to those with much smaller budgets� The idea is to combine commodity�o	�the�shelf �COTS�
components to create a parallel computer� The Beowulf project was the forerunner in this
approach ���

Currently� shared memory computers are usually programmed using OpenMP� which uses
the fork�join model of parallel execution� A program starts execution as a single process� called
the master thread of execution� and executes sequentially until the �rst parallel construct
is encountered� Then the master thread spawns a speci�ed number of �slave� threads and
becomes a �master� of the team� All statements enclosed by the parallel construct are executed
in parallel by each member of the team� Several directives accept clauses that allow a user to
control the scope attributes of variables for the duration of the construct �e�g� shared� private�
reduction� etc���

Parallel Virtual Machine �PVM� has been developed in �� by a group of researchers
at the University of Tennessee� It is a distributed�memory tool �
� designed to implement
parallel applications on distributed memory parallel computers� as well as networks of hetero�
geneous computers �treated as a single computational resource�� Message Passing Interface
�MPI� has been developed in ��� ��
� by researchers from Argonne National Laboratory� Over
time� it has become a de�facto standard for message passing parallel computing �superseding
PVM� which is slowly becoming extinct�� MPI provides an extensive set of communication
subroutines including point�to�point communication� broadcasting and collective communica�
tion� It has been implemented on a variety of parallel computers including massively parallel
computers� clusters and networks of workstations� Due to its popularity� a number of open
source and commercial tools and environments have been developed to support MPI based
parallel computing �����

� Models for parallel processing

The processing speed of computers involved in scienti�c calculations is usually expressed in
terms of a number of �oating point operations completed per second� a measure used also to
describe the computational power of the world�s largest supercomputers ���� For a long time�
the basic measure was M�ops ��� operations� expressed as�

r �
N

t
M�ops� ��

where N represents a number of �oating point operations executed in t microseconds� Obvi�
ously� when N �oating point operations are executed with an average speed of r M�ops� the
execution time of a given algorithm can be expressed as�

t �
N

r
� ���

Due to the increase in computational power of computers G�ops ���� and T�ops ���� �oating
point operations per second� replaced M�ops�

One of the most important methods of analyzing the potential for parallelization of any
algorithm is to observe how the algorithm can be divided into parts that can be executed in
parallel and into those that have to be executed sequentially� More generally� di	erent parts

���

of any algorithm are executed with di	erent speeds and use di	erent resources of a computer
to a di	erent extent� Therefore� it would be naive to predict the algorithm�s performance
by dividing the total number of operations by the average speed of the computer� To �nd
a quality performance estimate� one should separate all parts of the algorithm that utilize
the underlying computer hardware to a di	erent extent� Signi�cant initial work in this area
was done by Amdahl ��� ��� He established how slower parts of an algorithm in�uence its
overall performance� Assuming that a given program consists of N �oating point operations�
out of which a fraction f is executed with a speed of V M�ops� while the remaining part of
the algorithm is executed with a speed of S M�ops� and assuming further that the speed V
is close to the peak performance while the speed S is substantially slower �V � S�� then the
total execution time can be expressed using the following formula�

t � f
N

V
� �� f�

N

S
� N�

f

V
�

� f

S
� ���

which can be used to establish the total execution speed of the algorithm as

r �
N

t
�

f

V
� ���f�

S

M�ops� ���

From formula ���� follows that t � ���f�N
S

� If the whole program is executed at the slower
speed S� its execution time can be expressed as ts �

N
S
� If the execution speed of the part f

of the program can be increased to V then the performance gain can be represented as

ts
tv

�
N

S
�

S

N�� f�
�

� f
� ���

In the case of parallel processing� let us assume that fraction f of an algorithm can be
divided into p parts and ideally parallelized �executed at exactly the same time t��p on p
processors�� the remaining � f of operations cannot be parallelized and thus have to be
executed on a single processor� The total execution time of this algorithm on p processors can
be expressed as�

tp � f
t�
p
� �� f�t� �

t��f � �� f�p�

p
�

Therefore the speedup sp is equal to

sp �
p

f � �� f�p
� �
�

Obviously� f � � and therefore the following inequality is true

sp �

� f
� ���

It should be noted that there exist other interesting models such as the Hockney�Jesshope
model of vector processing ���� �� and Gustafson�s model ��� of parallel computing� To
predict the behavior of distributed algorithms� one may consider the Bulk Synchronous Parallel
Architecture �BSP for short ������ In this model� a parallel program consists of a number
of supersteps� Each superstep comprises local computations� global data exchange and the
barrier synchronization� The BSP model is characterized by the following parameters� p�
the number of available processors� g� the time �in �op time units� it takes to communicate

��

�send or receive� a data element and l� the time �in �op time units� it takes all processors to
synchronize� The complexity of a superstep is de�ned as

wmax � ghmax � l ���

where wmax is the maximum number of �ops performed� and hmax is the number of messages
sent or received by any one processor during this superstep� An interesting application of this
model can be found in ����� where we improved our earlier algorithm ���� ��� for solving linear
recurrence systems with constant coe�cients of the following form

xk �

��
�

� for k � �

fk �
mP
j��

ajxk�j for � k � n� ���

which is the central part of many numerical algorithms for instance evaluation of orthogonal
polynomials ���� The algorithm is an example of the distributed divide and conquer approach
for solving linear algebra problems in parallel and using the matrix�vector and matrix�matrix
multiplication and its performance is much better than the performance of the simple scalar
algorithm based on ���� Moreover� its complexity can be expressed in terms of the BSP
parameters and the �internal� parameters of the method� namely the block sizes� In ���� we
show that the optimal choices do not depend on the BSP parameters� thus the algorithm
is �machine independent� and the choices are valid for all BSP architectures regardless the
speci�c values of the BSP parameters�

� Shared memory parallel computing	 BLAS and LAPACK

Let us now consider the focal point of this paper� writing e�cient software to solve linear
algebraic problems on parallel computers� Over last �� years a standard has evolved for doing
exactly this� More precisely� there exists a collection of interdependent software libraries that
became the standard tool for high performance dense and banded linear software implemen�
tation�

The �rst step in the general direction took place in ���� when the BLAS �Basic Linear
Algebra Subroutines� standard was proposed ����� Researchers realized that linear algebra
software �primarily for dense matrices� consists of a number of basic operations �e�g� vector
scaling� vector addition� dot product� etc�� that appear in most algorithms� These fundamental
operations have been de�ned as a collection of Fortran �� subroutines� The next two steps
took place in ��� and ���� respectively� when collections of matrix�vector and matrix�matrix
operations have been de�ned ��� �� �also as libraries of Fortran �� kernels�� These two
developments can be traced to the hardware changes occurring at this time� The introduction
of hierarchical memory resulted in need of algorithms that would support data locality �i�e�
move a block of data once� perform all the necessary operations on it and move it back to
the main memory and only then proceed with the next block of data�� It was established
that to achieve this goal one should rewrite linear algebra codes in terms of block operations
and such operations can be naturally represented in terms of matrix�vector and matrix�matrix
operations�

BLAS routines were used in development of linear algebra libraries that solved a number of
standard problems� Level BLAS �vector oriented operations� was used in development of the
LINPACK �� and EISPACK ��� libraries dedicated to the solution of linear algebraic systems
and eigenproblems� The main advantages of these libraries were� clarity and readability of

�

the code� its portability as well as the possibility of hardware oriented optimization of BLAS
kernels�

The next step was the development of the LAPACK library ���� which �combined� the
functionalities available in the LINPACK and EISPACK libraries� LAPACK utilized level
� BLAS kernels� while the BLAS � and routines were used only when necessary� It was
primarily oriented toward single processor high performance computers with vector processors
�e�g� Cray� Convex� Fujitsu� NEC� or with hierarchical memory �e�g� SGI Origin� HP Ex�
emplar� DEC Alpha workstations etc��� LAPACK was also designed to work well on shared
memory parallel computers� providing parallelization inside the level � BLAS routines ����
Unfortunately� while this performance was very good for the solution of dense symmetric and
non�symmetric linear systems �this was also the data used at many conferences to illustrate
the success of the approach�� the performance of eigenproblem solvers �for both single pro�
cessor and parallel machines� was highly dependent on the quality of the underlying BLAS
implementation and very unsatisfactory in many cases ��� ���

The BLAS operations have the following form �detailed description of BLAS routines can
be found in ��� ����
Level � vector�vector operations�

� y � �x � y� x � �x� y � x� y � x� dot � xTy� nrm� � kxk�� asum � kre�x�k� �
kim�x�k��

Level �� matrix�vector operations�

� matrix�vector products� y � �Ax � �y� y� �ATx� �y

� rank� update of a general matrix� A� �xyT � A

� rank� and rank�� update of a symmetric matrix� A� �xxT �A� A� �xyT��yxT�A�

� multiplication by a triangular matrix� x� Tx� x� T Tx�

� solving a triangular system of equations� x� T��x� x� T�Tx�

Level �� matrix�matrix operations�

� matrix�matrix products� C � �AB � �C� C � �ATB � �C� C � �ABT � �C�
C � �ATBT � �C

� rank�k and rank��k update of a symmetric matrix� C � �AAT ��C� C � �ATA��C�
C � �ATB � �BTA� �C� C � �ABT � �BAT � �C�

� multiplication by a triangular matrix� B � �TB� B � �T TB� B � �BT � B � �BT T �

� solving a triangular system of equations� B � �T��B� B � �T�TB� B � �BT���
B � �BT�T �

Now� to illustrate the way that BLAS can be applied in implementation of linear algebraic
algorithms� let us consider the matrix�matrix multiplication using various levels of BLAS� It is
clear that it can be implemented using a single call to the appropriate routine from the Level
� BLAS� namely

C � �AB � �C� ���

��

BLAS loads and stores �ops ratio
y � y � �x �n �n � � �
y � �Ax � �y mn � n� �m �m � �mn � �
C � �AB � �C �mn �mk � kn �mkn � �mn � � n

Table � BLAS� memory references and arithmetic operations ���

M�ops sec�
BLAS
���� ���
BLAS � ����� ���
BLAS � �
����� ���

Table �� Matrix multiplication on the Pentium IV �GHz

The above operation can be also expressed in terms of matrix�vector multiplications

y � �Ax � �y ��

from the Level � BLAS� namely

C
�k � �AB

�k � �C
�k� for k � � ���� n ���

Finally� observe that the operation �� can be conceptualized in terms of a sequence of dot�
products �routine DOT�� vector scalings � SCAL� or vector updates � AXPY� from Level
BLAS�

zk � Ak�x� for k � � ���� m � DOT�
y � �y � SCAL�
y � y � �z � AXPY�

���

It should be noted that replacing level BLAS operations by level � BLAS� the application
of ��� instead of ���� while introducing no changes to the total number of arithmetical
operations performed� reduces the total amount of processor�memory communication� More
precisely� to illustrate the advantages of the application of higher level BLAS� consider the total
number of arithmetical operations and the amount of data exchanged between the processor
and memory� Table ��� depicts the ratio of the number of processor�memory communications
to the number of arithmetical operations for m � n � k�

The higher the level of BLAS� the more favorable the ratio becomes� �The number of
operations performed on data increases relative to the total amount of data movement�� This
has a particularly positive e	ect in the case of hierarchical memory computers� To illustrate
that this course of action plays an important role not only for �supercomputers� but also for
more �ordinary� architectures� Table � presents processing speed �in M�ops� achieved during
the completion of the task C � �AB��C using BLAS � � and � kernels �utilizing approaches
���� ��� and ���� for m � n � k � ��� on a single�processor PC with Intel Pentium IV
�GHz processor and �GB of RAM�

There are two ways of using BLAS routines in parallel computing� First� very often� BLAS
routines are parallelized by the computer hardware vendors� For instance� a call to the level
� BLAS routine GEMM may result in parallel execution of matrix�matrix multiplication�
and subsequently� any code that utilizes GEMM would automatically perform this operation
in parallel� Vendor provided parallelization can be extremely e�cient� For instance on the

��

Cray� selected BLAS kernels have been written in the Cray Assembly Language and resulted
in e�ciency of over ��� on an ��processor machine� It should be stressed� however� that only
some of BLAS kernels are parallelized �one of the typical and very important exceptions are
routines for symmetric matrices stored in a compact form� and they are typically parallelized
for shared memory environments only� In short� parallel performance of BLAS routines cannot
be taken for granted �especially since historically they have been primarily optimized for single
processor performance in the hierarchical memory environment�� Taking this into account�
BLAS kernels should be rather used to implement parallel algorithms in such a way that
instances of BLAS routines run on separate processors� To illustrate the main idea behind
such an approach� consider matrix update procedure ���� based on the formula

C � �AB � �C�

which can be rewritten as��
C�� C��

C�� C��

�
� �

�
A�� A��

A�� A��

��
B�� B��

B�� B��

�
� �

�
C�� C��

C�� C��

�
���

Applying the de�nition of matrix multiplication� the following block algorithm to calculate
matrix C is obtained�

C�� � �A��B�� � �C�� ��
C�� � �A��B�� � C�� ���
C�� � �A��B�� � �C�� ���
C�� � �A��B�� � C�� ���
C�� � �A��B�� � �C�� ���
C�� � �A��B�� � C�� �
�
C�� � �A��B�� � �C�� ���
C�� � �A��B�� � C�� ���

���

Observe that this algorithm allows for parallel execution of operations ��� ���� ���� ��� and
in the next phase of operations ���� ���� �
�� ���� Obviously� it is desirable to divide large
matrices into a larger number of blocks �e�g� to match the number of available processors��
The order of operations may also need to be adjusted to reduce the memory access con�icts�
An application of this approach can be illustrated by the block�Cholesky method for solving
systems of linear equations for symmetric positive de�nite matrices� It is well known that
there exists a unique decomposition for such matrices

A � LLT � �
�

where L is a lower triangular matrix� There exists also a simple algorithm for determining the
matrix L with an arithmetical complexity of O�n��� Its analysis allows one to see immediately
that it can be expressed in terms of calls to the level BLAS� However� it can be also translated
into block operations expressed in terms of level � BLAS� Formula �
� can be rewritten in
the following way��

� A�� A�� A��

A�� A�� A��

A�� A�� A��

�
A �

�
� L��

L�� L��

L�� L�� L��

�
A
�
� LT

�� LT
�� LT

��

LT
�� LT

��

LT
��

�
A ���

Thus

A �

�
� L��L

T
�� L��L

T
�� L��L

T
��

L��L
T
�� L��L

T
�� � L��L

T
�� L��L

T
�� � L��L

T
��

L��L
T
�� L��L

T
�� � L��L

T
�� L��L

T
�� � L��L

T
�� � L��L

T
��

�
A

��

After the decomposition A�� � L��L
T
��� which is the same decomposition as the original one

but of smaller size� appropriate BLAS � kernels can be applied in parallel to calculate matrices
L�� and L�� by applying in parallel equalities A�� � L��L

T
�� and A�� � L��L

T
��� In the next

step� equation
A�� � L��L

T
�� � L��L

T
���

can be used� Thus the decomposition L��L
T
�� for the matrix A�� � L��L

T
�� is used to calculate

the matrix L��� Finally� L�� can be found from

L�� � �A�� � L��L
T
����L

T
���

���

In a similar way� subsequent block columns of the decomposition can be calculated� Finally�
it should be noted that the parallelization of the matrix multiplication presented here as well
as the Cholesky decomposition are examples of the divide�and�conquer method� which is one
of the popular approaches to algorithm parallelization ����

 Distributed memory scalable computing	 BLACS� PBLAS and ScaLAPACK

At the time when the LAPACK project was completed� it became clear that similar software to
solve linear algebraic problems on distributed memory architectures should also be developed�
Obviously� this could have been done �by hand� using level � BLAS kernels and an inter�
processor communication library like PVM or MPI� However� this would have made such an
approach dependent on their continuous existence and strict backward compatibility� Since
PVM is already slowly disappearing� while imposing strict backward compatibility on MPI
may be holding it to too high a standard� the decision not to follow this path seems to be
very good indeed� It has led in the �rst place to the development of the BLACS �Basic
Linear Algebra Communication Subroutines�� a package that de�nes portable and machine
independent collection of communication subroutines for distributed memory linear algebra
operations ��� ���� The essential goals of BLACS are�

� simplifying message passing in order to reduce programming errors�

� providing data structures to simplify at the level of matrices and their subblocks�

� portability across a wide range of parallel computers� including all distributed memory
parallel machines and heterogenous clusters�

In BLACS� each process is treated as if it were a processor � it must exists for the life�
time of BLACS run and its execution can a	ect other processes only through use of message
passing� Processes involved in BLACS execution are organized in two�dimensional grids and
each process is identi�ed by its coordinates in the grid� For example� if a group of consists Np

processes then the grid will have P rows and Q columns� where P �Q � Ng � Np� A process
can be referenced by its coordinates �p� q�� where � � p � P and � � q � Q�

BLACS provide structured communication in the process�grid� Processes can communicate
using point�to�point paradigm or it is possible to organize communication �broadcasts� within
a �scope� which can be a row or a column of a grid� or even the whole grid� Moreover� the
performance of communication can be improved by indicating underlying hardware topology
����

The PBLAS �Parallel Basic Linear Algebra Communication Subprograms� ��� is a set
of distributed vector�vector� matrix�vector and matrix�matrix operations �analogous to the

��

sequential BLAS� with the aim of simplifying the parallelization of linear algebra programs�
The basic idea of PBLAS is to distribute matrices among distributed processors �i�e� BLACS
processes� and utilize BLACS as the communication infrastructure� The general class of such
distributions can be obtained by matrix partitioning like

A �

�
B�

A�� � � � A�m
���

���
Am� � � � Amm

�
CA �

where each subblock Aij is nb� nb� These blocks are mapped to processes by assigning Aij to
the process whose coordinates in a grid are

��i� �modP� �j � �modQ��

Finally� ScaLAPACK is a library of high�performance linear algebra routines for distributed�
memory message�passing MIMD computers and networks of heterogeneous computers �
�� It
provides the same functionality as LAPACK for workstations� vector supercomputers� and
shared�memory parallel computers� As LAPACK was developed by utilizing calls to the
BLAS routines� ScaLAPACK is based on calls to the BLACS and PBLAS kernels� It should
be pointed out that there exists a BSP version of ScaLAPACK based on BSP communication
routines instead of BLACS� which is faster than the original ScaLAPACK �����

It is worth mentioning that as of writing of this paper �October� ������ new releases of
LAPACK and ScaLAPACK are planned ��� and expected to contain substantial re�working
of the computational kernels to improve their numerical properties as well as parallel perfor�
mance� This illustrates that the area of development of e�cient linear algebraic algorithms
for high performance parallel computers remains an important research area and should stay
this way for years to come�

References

�� The Beowulf Project� http���www�beowulf�org�
��� E� ANDERSON� Z� BAI� C� BISCHOF� J� DEMMEL� J� DONGARRA� J� DU CROZ�

A� GREENBAUM� S� HAMMARLING� A� MCKENNEY� S� OSTRUCHOV� AND
D� SORENSEN� LAPACK User�s Guide� SIAM� Philadelphia� ����

��� I� BAR�ON AND M� PAPRZYCKI� A fast solver for the complex symmetric eigenprob�
lem� Computer Assisted Mechanics and Engineering Sciences� �������� ����

��� I� BAR�ON AND M� PAPRZYCKI� High performance solution of complex symmetric
eigenproblem� Numerical Algorithms� ��������� ����

��� R� BARIO� B� MELENDO� and S� SERRANO� On the numerical evaluation of linear
recurrences� J� Comput� Appl� Math�� ������
� �����

�
� L� BLACKFORD et al� ScaLAPACK User�s Guide� SIAM� Philadelphia� ����

��� J� CHOI� J� DONGARRA� S� OSTROUCHOV� A� PETITET� D� WALKER� and
R� WHALEY� LAPACK working note ��� A proposal for a set of parallel basic lin�
ear algebra subprograms� http���www�netlib�org�lapack�lawns� May ����

��� J� DEMMEL AND J� DONGARRA� St�hec� Reliable and scalable software for linear
algebra computations on high end computers� http���www�cs�berkeley�edu� demmel�Sca�
LAPACK�Proposal�pdf�

��� J� DONGARRA� Performance of various computer using standard linear algebra software�
http���www�netlib�org�benchmark�performance�ps�

�

��� J� DONGARRA� personal communication�

�� J� DONGARRA� J� BUNSCH� C� MOLER� AND G� STEWARD� LINPACK User�s
Guide� SIAM� Philadelphia� ����

��� J� DONGARRA� J� DUCROZ� I� DUFF� AND S� HAMMARLING� A set of level � basic
linear algebra subprograms� ACM Trans� Math� Soft��
���� ����

��� J� DONGARRA� J� DUCROZ� S� HAMMARLING� AND R� HANSON� An extended set
of fortran basic linear algebra subprograms� ACM Trans� Math� Soft�� ����� ����

��� J� DONGARRA� I� DUFF� D� SORENSEN� AND H� VAN DER VORST� Solving Linear
Systems on Vector and Shared Memory Computers� SIAM� Philadelphia� ���

��� J� DONGARRA� I� DUFF� D� SORENSEN� AND H� VAN DER VORST� Numerical
Linear Algebra for High Performance Computers� SIAM� Philadelphia� ����

�
� J� DONGARRA et al� PVM� A User�s Guide and Tutorial for Networked Parallel Com�
puting� MIT Press� Cambridge� ����

��� J� J� DONGARRA and R� C� WHALEY� LAPACK working note ��� A user�s guide to
the BLACS v�� http���www�netlib�org�blacs� May ����

��� M� FLYNN� Some computer organizations and their e	ectiveness� IEEE Trans� Comput��
C������ ����

��� B� GARBOW� J� BOYLE� J� DONGARRA� and C� MOLER� Matrix Eiigensystems
Routines � EISPACK Guide Extension� Lecture Notes in Computer Science� Springer�
Verlag� New York� ����

���� W� GROPP and E� LUSK� A User�s Guide for mpich� a Portable Implementation of MPI
version ������

��� J� GUSTAFSON� G� MONTRY� and R� BENNER� Development of parallel methods for
a ����processor hypercube� SIAM J� Sci� Stat� Comput�� ��
���
��� ����

���� J� HILL� S� DONALDSON� and D� SKILLICORN� Portability of Performance with
the BSPlib Communications Library� In Programming Models for Massively Parallel
Computers� 	MPPM�
��� London� Nov� ���� IEEE Computer Society Press�

���� R� HOCKNEY and C� JESSHOPE� Parallel Computers� Architecture� Programming and
Algorithms� Adam Hilger Ltd�� Bristol� ���

���� G� HORVITZ and R� H� BISSELING� Designing a BSP version of ScaLAPACK� In
B� Hendrickson et al�� editors� Proceedings Ninth SIAM Conference on Parallel Processing
for Scientic Computing� Philadelphia� ���� SIAM�

���� C� LAWSON� R� HANSON� D� KINCAID� and F� KROGH� Basic linear algebra subpro�
grams for fortran usage� ACM Trans� Math� Soft�� ���������� ����

��
� P� PACHECO� Parallel Programming with MPI� Morgan Kaufmann� San Frncisco� ��
�

���� M� PAPRZYCKI and P� STPICZY NSKI� A brief introduction to parallel computing� In
E� Kontoghiorghes� editor� Parallel Computing and Statistics� Marcel Dekker� ����� �to
appear��

���� P� STPICZY NSKI� Numerical evaluation of linear recurrences on high performance com�
puters and clusters of workstations� In Proceedings of PARELEC ����� International
Conference on Parallel Computing in Electrical Engineering� pages �������� IEEE Com�
puter Society Press� �����

���� P� STPICZY NSKI� Numerical evaluation of linear recurrences on various parallel com�
puters� In M� Kovacova� editor� Proceedings of Aplimat ����� �rd International Con�
ference� Bratislava� Slovakia� February ���� ����� pages �������� Technical Univerity of
Bratislava� �����

��

���� P� STPICZY NSKI� Solving linear recurrence systems using level � and � BLAS routines�
Lecture Notes in Computer Science� ���������

� �����

��� P� STPICZY NSKI and M� PAPRZYCKI� Fully vectorized solver for linear recurrence
systems with constant coe�cients� In Proceedings of VECPAR ���� � �th International
Meeting on Vector and Parallel Processing� Porto� June ����� pages ������ Facultade
de Engerharia do Universidade do Porto� �����

���� R� C� WHALEY� LAPACK working note ��� Basic linear communication alge�
bra subprograms� Analysis and implementation across multiple parallel architectures�
http���www�netlib�org�blacs� June ����

Current address

Marcin Paprzycki� Computer Science Department� Oklahoma State University� Tulsa� OK
���
� USA and Computer Science Faculty� SWPS� ul� Chodakowska ���� �����Warszawa�
Poland� e�mail� marcin�cs�okstate�edu

Przemys!law Stpiczy nski� Department of Computer Science� Maria Curie�Sk!lodowska Univer�
sity� Pl� M� Curie�Sk!lodowskiej � ����� Lublin� Poland�
e�mail� przem�hektor�umcs�lublin�pl

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

