Ada in Distributed Systems:
An Overview

Marcin Paprzycki & Janusz Zalewski *
Dept. of Science & Mathematics
University of Texas—PermianBasin
Odessa, TX 79762-0001
(915)552-2258
paprzycki_m@Qutpb.edu, zalewski_jQutpb.edu

Abstract. This paper reviews the available literature on the use of Ada in dis-
tributed systems. The following issues are discussed in more detail: units of distribu-
tion, program partitioning, building configurations, interprogram communication, type
checking, and Ada '95 partitions model. Several systems and a few applications are
also covered briefly. |

Keywords: Ada, distributed systems, program partitioning

1 Introduction

Issues of distributing Ada programs over a network of multiple processors have been the subject of intensive
studies by practitioners and researchers since the Ada language definition was established, and have resulted
in several publications. Work started from the very beginning, as early as in the year Ada became an ofhicial
standard [25, 26, 60]. Following the preliminary study (90], the major further steps were the continuation of
a Furopean project [6] and the symposium at Southampton [18 . Finally, the Distributed Systems Annex to
Ada 95 has becn produced and is now an international standard [1;.

The driving force behind using Ada in distributed systems is the ability 1o create Ada programs that can
be spread and executed across multiple processors, in one or more sites. Since Ada was originally not well
defined for distributed systems, this requirement became an 1ssue.

One of the primary problems in distributed programming, in general, and programming in Ada, in particular,
is whether an application should be designed as a single program or as multiple programs. Both approaches
have been advocated in the Ada world, single program by APPL [25], Aspect [52, 54], and DARTS (23, 104],
and multiple programs by Diadem [6] and Dark [11, 12, 92, 93]. This is in contrast to an approach based
on operating system calls, where the language layer and compiler do not know abcut interactions amongst
participating software components.

Among the questions asked to investigate and establish the technology of distributed programming in Ada
were the following [99]:

e In terms of the language, what program units may be distributed?

“Current address; Dept. of Computer Science, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114,
zalewski@db. erau.edu

ACM Ada Letters, Mar/Apr 1997 Page 67 Volume X VI, Number 2



« How is the distribution of units specified (partitioning problem)?

o How are the distributed units conceptually assigned to physical units {configuration, mapping)?
« How are the distributed units actually loaded onto target nodes?

» When is the distribution decided upen, ai the compilation, linking, loading time?

e How do the distributed units communicaie, via what mechanism?

+ How is type consistency preserved across the nctwork?

e Are distributed units dynamically replaceable? 11 so. how?

2 Major Issues

T the following sections, issues related to most of the above mentioned guestions will be reviewed as investi-
wated in the literature, In particular, problems of selecting units of distribuiion, partitiomng, configuration
and mapping, communication, and type consistency are outhined.

2.1 Units of Distribution

Farly works on distributing Ada programs suggest adopting packages or tasks, or both, as distnbution irnmils.
For example, Arévalo and Alvarez [31 discuss packages and lasks as distribution units. Among advantages
of wsing packages in this role, they list:

o rouse Of packages as library units
e high degree of parallelism due to the concepl of package intertace

e the concept of a package as a logical unit of decompisition is consistent with the distribution unit
coneept.,

Advantages of tasks as distribution units are the following:

o insks are active as opposed to passive packages
o tasks atready have a communication mechanism (rendervous)

o task typing scheme permits dynamic replication.

After additional considerations, they chose tasks as the basic unit of distribution in their model.

Violz and coworkers [71, 95] considered packages as a unit of distribution, in addition to tasks and data iterns.
Carlson Goethe et al. [23, 104, 105] use tasks, task objectls, packages, variables, procedures and functions
as distribution units. Nishida ct al. [84] also selected tasks as a distribution unil and mapped them onto C

programs. McFarland ct al. [78] also use tasks as distribution units. Even pin newer approaches, a task 15 a
primary distribution unit [16.

It has been noticed rather early that a distribution unit which combines properties of packages and tasks
would be needed [5]. Hutcheon and Wellings [52], following the work of Tedd ct al. [90], advocated writing
distributed Ada programs as collections of virtual nodes. They chose a package as a basis for virtual node,

since packages are library units that encapsulate information and provide a well defined interface to it.
Distributed programs are composed of virtual nodes linked together.

ACM Ada {etters, Mar/Apr 1397 Page 68 Volume XVIHI, Number 2



In [87], scparate programs, virtual nodes, and tasks are considered as units of distribution. Tasks are
suggested as the most natural unit of distribution, since they are the primary Ada construct for concurrent
programming.

From virtual nodes evolved a concept of partition as a unit of program distribution. Technically, a partition
comprises hibrary units in the same logical address space.

Gargaro et al. [44, 4] suggest the use of the concept of a virtual node and distribute an Ada program among
pattitions, making partition a keyword. The requirements on a virtual node are the following:

» to encapsulate state, message passing communication {via procedure or entry calls) and no direct data
sharing

» al least one thread of control per node to provide for concurrent execution
» transparency regarding intranade and internode communication
¢ a node should be a type in a language

¢ indirect node naming should be used to permit dynamic reconfiguration,

These and other issues of choosing a distribution unit, in Ada are reviewed more completely by Volz [94..

2.2 Distribution Activities

Historically, several approaches to distribution of Ada programs have been proposed [26]. The primary issue
is whether the program should be built as a single entity to be divided into smaller pieces distributed across
the network and communicating via built-in language constructs or should be composed of a number of
loosely coupled units cooperating via operating system calls.

Most authors {52] clearly indicate that of the two models of distributing Ada programs theyv choose to
distribute single prograrms spread in pieces over the network, because this approach preserves Ada’s strong
typing ability, in contrast to a collection of communicating progranis which loses this abilitv. Independently

compiled programs can communicate without problems bul do not allow for type and consistency checking
in the underlying language.

Similarly, the Diadem project [5] chose the language-oriented approach, where the sofiware is designed as a
single program but is subsequently split into separate components for distribution over the network. This
15 despite the advantages of the operating-system based approach, which favors efficiency at the cost of
portability and generality.

Another imporiant issue is when, during program development, the partitioning of an Ada program into
smaller distributable units should be done, cither before the actual code is written, which is known as
prepartitioning, or afterwords, which 15 called postpartitioning.

Postpartitioning means that the program is developed without taking into account any possible program
division and task-to-processor mapping, and the whole job of partitioning and allocation is done by svs-
tem software. This approach has a tremendous advantage that releases a programmer from even thinking
about distribution and the whole job is done by an automatic teol, Such a tool or tools, doing program
transformation into smaller distributable units and aliocating these units to physical processors, can be
roughly compared to a loader performing address resolution and allocating a program in a uniprocessor’s
single address space (a difficulty in a distributed system is multiple address spaces). Another advantage
of postpartitioning, as a direct consequence of the former one is a greatly simplified portabilitv. The most
obvious disadvantage of postpartitioning is the significantly increased complexity of a run-time system.

Prepartitioning is an alternative approach that relies on including program distribution decisions into the
design and implementation process. Hutcheon and Wellings [52! argue that adopting a prepartitioning ap-
proach (splitting a program before it is written) is more natural, because potential program distribution

ACM Ada Letters, Mar/Apr 1837 Page 69 Volume XV, Number 2



should be clearly visible 1o the programmer as it may affect the interfaces to be provided and makes cormmu-
~ication overheads explicit. In another article [54], the same authors support the view that prepartitioning
s preferred to postpartitioning, because the programmer needs to be aware of distribution. On the other
hand, as already mentioned, postpartitioning would be difficult to implement for a language as sophisticated
as Ada and requires a costly run-time system for arbitrary distribution.

Tt was discovered rather early [5, 52 that partitioning, no matter how done, should be performed as a
logical step in isolation from any decisions regarding hardware configurations. "This 1s known as separating
the partitioning step from the logical-io-physical mapping, referred to as configuration. In other words, the
activity of designing the virtual nodes or partitions should be done without referring to the exact configuration
of the underlying computer network. Bishop [17] goes even further in separating devclopment activities, by
saving that an additional adaptation phase 1s necessary 10 allow for modifications of a partitioned program

to ensure that partitioned units can still communicate as required on a given hardware configuration.

\'arious authors use the idea of partitioning and present their own views on this phase of developing dis-
iributed Ada programs. Nielsen [32) borrows from the concept of virtual nodes and develops a complete
method for designing distributed Ada programs. A pre-{ranslator developed by Volz et al. [95] was intended
1 translate a single Ada program into a sei of communicaling Ada units, one for each node of the network.
Dobbing [31, 32 discusses AdaMap, a pariitioning ol developed by Alsys. It is based on an 1/0) pack-
age rather than remote procedure calls. Luckham et al. developed a language for specifying a disiributed
Ada program, based on task sequenang (73, but. the article actually says nothing about the distribution.
STRAda (16 aiso assumes transformations.

2.3 Configuration

After the partitioning activity has been completed, the next step is 10 describe the target configuration and
allocate program components to individual nodes.

Atkinson [3] gives the major reason for splitting apart the parlitioning phase and the configuration phase.
While the language-oriented approach o distribution can Iye strictly enforced during partitioning, allowing
the program to be defined in terms of virtual nodes 1o preserve strong 1yping and consistency checking capa-
bilities of the Ada language, the configuration phase allows exploitaition of the operating-system approach to
cain officiency. Moreover, dilferent physical system con figurations can be constructed {rom the same software
and even their dynamic changes are possible.

Gargaro et al. [42] introduce the concept of a node as a new iype of library unit, whose purpose 1s to collect
together instances of partitions for execution on a single physical resource in the target architecture. Only

a single node is allowed on a single processor. A node concept has been later abandoned on the way to Ada

Nielsen [82 described a stmilar approach to configuration ol Ada programs, hased on choosing a sct of
processors 1o support virtual nodes and mapping virtual nodes to ihe chosen hardware configuration. The
crucial eriteria of the hardware selection part of the latter phase are rolated to the following ten issues:

a dovice drivers

o special functions

e time-critical fiinctions

« performance requirements

e pProcessor homogeneity

fault tolerance

ACM Ada Letters, Mar/Apr 1837 Page 70 Volume X VI, Number 2



o expandability
e interfacing capabilities
» processor/memory compatibility

s location and size constraints.

The actual mapping of virtual nodes to physical processors is done via pragmas and separate compilation
techniques that follow those used by Jha et al. [62].

An alternative distribution scheme using a separate language has been investigated and adopted by Cornhill
et al. [25, 27, 36, 37, 61]. Basically, they defined the partitioning language APPL, whose job is to provide a
tool for the programmer to partition the program onto available hardware after it has been written.

Gargaro et al. [43] suggest that separate load modules for cach node type be created. The program starts
up from the distinguished node which elaborates its own partition and creates other nodes, Mapping of
distribution units to physical network nodes has been also considered by Volz ct al. [71, 85] using a pragma
SITE. Other authors [3] do not consider the definition of configuration [acilities or even configuration schemes.

2.4 Communication

In Ada 83 there was no facihity defined for interprogram commmunicalion, in general, or intertask com-
munication for tasks residing on different processors. That’s the reason ol major concern for choosing the
distributed communication method. In general, the following facilities for the interprocessor communication
armongst Ada programs have been investigated:

o remote rendevvous
o romote procodure calls
o message passing [28, 29,

o sockets [81].

The principal requirement and idea about disiributed comnignication in Ada is communicalion lransparency
5, 41] which means that remote (interprocessor) comunication should use the same protocols as local {(in-
traprocessor} communication, This seems to be especially difficult to achicve when Ada programs run on a
network of helerogencous processors connected by arbitrary communication links.

The Diadent project chose a remote rendezvous for two reasons |5

o o rendezvous takes place between active tasks, while an RPC call 1s executed in the caller’s thread

e cntry calls enable using types of virtual nodes.

Consequently, the Diadern project [7] used remote rendezvous as a communication vehicle, although without
excluding remote procedure calls.

Volz et al. [95] determined that conditional entry calls fail when the call is to a remote machine, because a
response cannot be "immediate”, as required by Ada 84. Timed entry calls over a network may also cause
problems, for example, when the caller’s waiting time expired and 1t withdraws from a call, but the callee
has already responded although the response has not yet arrived due to a delay in communication,

Lundberg [74) presented a tasking protocol for distributed systems to significantly reduce global communi-
cation overheads. Tt relies on a system process, calied the agent, and special structures called ghost tasks.

ACM Ada Letters, Mar/Apr 1957 Page 71 Volume XVil, Number 2



In particular, when a caller task A issues an entry call to a task B located on another processor, a three-
parameter message is sent with the following parameters: calling task’s name, called entry’s name, caller’s
priority. Task A then waits until the rendezvous is completed. For timed entry calls, the duration of a
timeout is rmeasured on the accepting task’s processor, not the caller.

Several authors preferred the use of remote rendezvous as the most natural means of extending Ada towards
distribution, despite the difficulties with interpreting semaniics of remote entry calls. For example, Arévalo
and Alvarez [3] chose remote entry calls with a timer placed in the calling node. Nakama and Nakao [81] use
rendezvous as an interprocess communication mechanism for distributed programs. Wengelin et al. [105]
discuss the issue of a task calling a procedure on another node. The calling task is suspended during the
call. Bayassi et al. {15] developed a generalized rendezvous mechanism to deal with applications distributed
armong several processors.

Hutcheon and Wellings [520 chose remote procedure calls (RPC), as a means of communication, for the
following reasons:

e« RPCys are cormmon to many othier languages as a mechanism for transferring control
o RPC allows casy communication between virtual nodes writien in diffcrent languages

o« techniques for reliable RPCs are better understood than those for remote rendezvous which 1s fairly
new,

Gargaro [40] gives one important reason why remote rendezvous should not be supported by the distributed
Ada: to svnchronize control over a distributed system, although possible in principle, tremendously increases
complexity and introduces semantic difticulties.

Intermediate or combined approaches are possible, such as in [77], where the preprocessor automatically
changes the rendezvous between tasks in different virtual nodes into the appropriate remote procedure calls.
Also, Niclsen et al. [82, 83] considered both remote rendezvous and remole procedure calls. They propese a
layercd approach to implement communication. One approach, with TCP/TP protocol on the lowest layer,
incorporated into a message passing layer called directly (rom an application layer has been criticized as
having too many disadvantages. Instead, a remote procedure call has been investigated with XDR protocols
for communication between tasks on difleront processors. Tasks actually use a remote entry rendezvous
mechanism, similar to that reported in [6], which is implemented using remote procedure calls and TCP/IP
protocols.

Sometimes a message passing mechanism is assumed as a typical communication vehicle [16]. However,
nessage passing usually suffers from tha lack of type safely in the message data and lack of unit consistency in
shared program units. In the most positive practical example, Cross et al. [281 make their solution resemble
file /0 in Ada to allow communication between Ada programs running on heterogeneous processors. A
channel 1s made a logical communication medium. Channels are typed as are files in Ada. Before a message
is transmitted via a channel, it is sent from a program to a port attached to the channcl. Many ports
can be connected to the same channel. A complete package named Distributed Communication has been
developed, consisting of two parts: the machine independent and machine dependent part. The machine
independent part consists of a generic package Channel Manager and several utilities. Tt hides the details of
various physical communication media and their device drivers.

Gentleman et al. [45] provide a summary of discussions on using Ada rendezvous for multiprocessors and
compare the issues raised to those involved with another language and another operating system.

2.5 Type Consistency

Preserving strong typing capabilities of Ada across the network is the major concern of program developers.
Without this capability, Ada would be nothing else but another programming language like dozens of those

ACM Ada Letters, Mar/Apr 1897 Fage 72 Volume XVH, Number 2



used to program distributed applications. To make this to happen is not easy, however, and a 1ot of efforts

have been put into considerations of choosing the right, approach and not compromising too much regarding
efficiency.

Strong iyping usually means static type checking, which is not necessarily the most appropriate for distributed
programs. Gargaroet al. [41] suggesi that for a network execution a collection of separate, executable binaries
needs to be developed, but the elaboration of these exccutable modules may occur concurrently in separate
network units, following the invocation of each executable.

McFarland et al. [78] opt for a distribution of single Ada programs, Lo support strong t¥ping and interface
consistency checking. The thread of progran execulion is tied to the place of static data ilems. Tasks and
subprograms which access static data execuie only in the single process where the data exist. Calls to these
program units result in remols entry or subprogram calls,

A major concern in several papers [97, 98, 100] is that an additional language construct 15 necessary to allow
types to be shared across the network. This is in dircet contradiciion with the concept of a package, since 1t
includes state and respective objects need to be replicated. A staleless, replicable unit would be necessary.

Gargaro el al. [42] proposed an intermediate concept of public lihrary units, on the way to Ada 95, They
were equivalents of invariant-stale packages, identifiable by a publie keyword. Interface to a public unn
contlel contain: types {(not access Lypes, though), task types, constant, subprograms, packages, etc., but, not
shared variables.

3 Ada 95 Partitions Model

Soon after the standardization of Ada 83, it becamne clear that the lainguage does not have sufficient power
Lo enable programming distnbuled systems, while preserving s strengilhs targeting unlprocessor systemms.
Tn fact, Ada 83 was designed for single processor machines, despite it multitasking capabilities and elaims
in the Reference Manual stating otherwise, The multitude of diverse approaches to cure this problem finally
led to a solution based on certain Turelamental assumpiions. Dobbins [33° suggested thal the solution be
based on three fundamenial princples:

o Thaore should be minimal disturbanee 1o the exizsting Ada language definition
s The salety aspects of the language are not compromised

o The requircnients of the implemeaetors of disrributed systerns be ned.

The actuad model was evolving slowly and waos being relined thronghout the years of work ';-I'l'L 41, 421 The
restilted standard, called Ada 85 {1 contaius Distrbuted Systems Anner. Tirst of all, Ada 95 does nov provide
anv linguistic construct to represent a unit of distnibution. Rather than thai, the standard defines a unit
of distribution 1o be a partition: a set of library unils that may run in a separate address space. A set of
partitions forms a program. Several partitions may reside in the siame address space, bui, a single partition
cannot be split into multiple address spaces. Active partitions have thireads of control, passive partitions do
s,

Furthermore, tasks were reluctantly but consequently abandoned as a unit of distribution due to their
impossibility of becoming compilation units. Similarly, remole rendezvous did have less and less supporters
due 10 an unspecified semantics of a timed entry call [102°. In particular, the new standard says that all calis
to remote partitions must be made through a remote subprogram call, via a special remote call interface
(RCT) package. Asynchronons remote procedure calls are also possible to allow both the caller and the server
proceed independently, but those can only be made with in parameters and not for functions.

An important fact about reniote subprogram calls is that they can be bound not only statically, prior to
partition elaboration, but also dynamically during elaboration. Two ways of dynamic binding defined in

ACM Ada Letters, Mar/Apr 1957 Page 73 Volume XVH Number 2



Ada can be used for remote subprogram calls:

e dereferencing a remote access-lo-subprogram type object

e dispalching a class-wide type controlling operand of a primitive gperation.

Interprogram communication has been certainly compromised in Ada 95 by an unwillingness to increase in

size the run-time support software, a situation that has been experienced by projects which have implemented
such features as remore rendezvous.

A vital need 1o control interfaces between distributed program units and an important issue of preserving
types across the network have been also addressed in Ada 95, These are the primary features distinguishing
a multi-partition Ada program from a collection of programs communicating over a network. Such require-
ment, however, canses a lot of problems to avoid neonsistencies. This is done in four ways, determined by
categorization pragmas which distinguish library umts:

e purc
o providing remaote (ypes
o remote call interface (RCT)

o shared passive,

The programming interface (o handle all remote comunication is called the Partition Communication Sub-
svstem (PCS) and is defined in the standard package System.RPC [1]. First implementations of PCS, such as
the one deseribed in [67) (of a generic software component designed 1o accomodate various network protocols

and comnrmunication systems) or in [70] (in a form of Ada bindings for Distributed Computing Environment
NCE}, are underway.

Ada 93 does not provide any means for configuration, that is, mapping partitions to physical targets, neither it
deals with the physical allocation. Both these issues are considered implementation-dependent and there¢fore
bavond the scope of the language standard.

4 Complete Systems and Applications

Relow we roview briefly commercial systems reported in the literature and a handful of important appiications
of distributed Ada.

4.1 Research Projects vs. Commercial Systems

In the last decade, several authors reported on their work progressing towards programming distributed
applications in Ada. The most widely known are such project names as Aspect [52, 54], Dark [11, 12],
DARTS [23, 104, Diadem [5, 7}, Dragoon (8, 8], Honeywell’s APPI. (25, 37, 62, 63, 64], Lund [2], and
Michigan [71, 95, 97, 98]. All those were strictly research projects, with substantial impact on the new
standard but with little or no impact on commercial developments or applications.

On the other hand, a number of developments targeted at complete systems were reported in the literature.
Fisher and Weatherly [38] presented probably the first commercial system for distributing Ada programs,
DARP (Distributed Ada Run-Time Package).

A design of a network operating system is reported to support the use of Ada on a distributed military
application {83]. The underlying architecture consists of 1750A microcomputer modules interconnected via a
PLBus. Communication is based on an intermodule messaging scheme. Tartan 17504 target Ada compiler

ACM Adaz Letters, Mar/Apr 1397 Page 74 Vaolume XV, Number 2



was used with the run-time package ARTClient to support commmunication. Implemented almost entirely
in Ada, it supports run-time reconfiguration of Ada programs. Reconfiguration 18 defined as changing
the existing mapping of existing application software onto the available hardware. 'Ihe messaging scheme
supports logical task-to-task communication.

A complete toolset for distributing Ada programs is reported in (78)]. Tt is based on & single-program concept.
Several tools are applied to produce a distributed Ada program. First, the complete concurrent Ada program
is automatically analyzed for potential distribution. Suggested distribution is determined from the use of
tasks, resulting control low and data access patterns. Then interfaces among distributed units are generated
wherever necessary. Next mapping onto hardware is done by the distributed system builder.

The most recently announced [91] system, named DVM, provides a number of low-level and distributed
services, such as:

« subprogram pointer Service
o marshalling of Ada types
e time management

o automatic reconfiguration m response to system failures, and more,

to assist in developing distributed Ada programs.

Barncs [13], Bishop and Thomas [21], and Dobbing [31, 32] discuss the most complete environment for
distributing Ada programs, Lased on the transputer architecture. While Barnes only outlines the Ada 1/0
system, Bishop and Thomas present the program development, Tules and examples, and Dobbins discusses

the details of the partitions muodel.

4.2 Applications

Until recently, very lew applications of Jistributed Ada have been reported. One such article (72 describes
e use of Adain CTWS (Close In Weapon Systeni) riun on heterogeneous machines. Vore recent studies
present the need and opportunities for the usc of Ada 95 in distribuled simulation (511, and the actial
application of distributed simulation in Ada (86)].

The latter. claimed 1o be the first embodded distributed Ada U5 application, actually exceoutes on saveril
68030 niicroprocessors housed in VM Ehus orades, terconnected via a high-speed communications network.
Two SparcStations 20 provide the necessary User nterface to the sunulation tosthod. The original Ada
implementation neluded remnote procedure calls and remote rendezvous, which has been retained despite
ite divergence from Ada 95 Distributed Systems Annex. The svstem i$ entirely consistent with Ada 95,
including the partitions concept, hut has soveral extensions resuhing from the early implementation when
the full Ada 95 standard was not yet completed.

The actual system 15 a nodification of the existing. commmercially available, iight simulator designed for flight
training in combat sitnations. The new distributed version takes advantage of distributed Ada technology 1o
provide several snhancements of the uniprocessor version. The distributed version of the program COnsists
of three active partitions and one passive partition. The first partition execules the code pertaining to the
pilot’s own sircraft. The second partition wandles all the foe aircralt maneuvers, and the third partition
does all the computations related to missiles once they are in fight. The passive partition contains the
chared state. The execution is run in a cyclic fashion involving periodic calls, every 30 Hz, of the various
subsystems.

ACM Ada Letters, Mar/Apr 1897 Page 75 Volume XVH, Number 2



5 Summary

This paper deals mostly with research issues related to distributing Ada programs across the network of
multiple processors. Such problems as unit of distribution, program partitioning, configuration, Interprogram
communication, and type consistency have been covercd. A brief overview of Ada 95 Distributed Systems
Annex was given. Also, reviewed were several com plete systems and a few applications.

TIn adition to the work covered, several other research studies has been conducted for distributed Ada, for
example, in such areas as program specification and design [73], deadlocks 1in distributed Ada programs [88],
ote. Initialization and terrnination of muliiprocessor progranis was also an important research 1ssue studied
in 22, 398 Particularly important 1s ihe area of Tault toleranee in distributed Ada programs [3, 24, 41,
13. 16, 697, but this was out. of scope of this overview and needs a separate treatment. Another important
aren of research and praciical applications, which reguires maore attention is the ohject-oriented approach o
dizrribution of Ada programe [&, 48,

Acknowledgements

This work was supported in part by a grant from the Defense Information Systems Agency, under the
Udergraduate Curriculum and Course Development Program: Softwire FEngineering and the Use of Ada.
Contract T29601-94-K-00486.

References

17 Ada Reference Manual. Tanguage and Siandard Tibraries. International Standard ISO/TEC 8652:1995,
_ B
January 19590

2] Ardd AL, L. Lundberg, The Mumps Multiprocessor Ada Project, pp. 235-2568, .. Bishop (Fd.), Dis-
tributed Ada: Development, and Experiences, Cambndge University Press, 1990

(3] Arévalo 5., A Alvares, Fault Tolerant Distributed Ada, Ada Teiuders, Vol 8, No. 7, pp. 118-122, Fall

1988, & Vol. 9, No. 5, pp. 54-59, July/Aupgust 10983

—_

[0 Armitage J., 1. Chelini, Ada Software on Distributed Targets: A Survey of Approaches, Ada Letters,
Vol. 1, No. 4, pp. 32-37, 1985

(5] Atkinson €, Programming Distributed Systems in Ada: The Diadem Avpproach, pp. 45-53, 1. Zalewski,
W Flirenberger (Fds.), Proc. IFIP/IFAC Conf. Hardware and Software for Real-Time Process Control,
North-Holland, Amsterdm, 1989

6] Atkinson C., T. Moreton, A. Natah, Ada for Distribuled Systems, Cambridge University Press, Cam-
hridge, UK, 1988

7] Atkinson C., 5..). Goldsack, Conimunicaiion between Ada Programs in Diadermn, Ada Letters, Vol. 8,
No. 7, pp. 8&6-96, Tall 1988

'8] Atkinson C., A. D1 Maio, R. Bayan, Dragoon: An Object-Oriented Notation Supporting the Reuse
and Distribution of Ada Software, Ada Letters, Vol. 10, No. 9, pp. 50-59, Fall 1990

[9] Atkinson C., A. Di Maio, Irem Diadem to Dragoon, pp. 103-136, ). Bishop (Ed.), Distributed Ada:
Developrment and Experiences, Cambridge University Press, 1890

ACM Ada Letters, Mar/Apr 1337 Page 76 Volume XV, Number 2



|16}

11,

[12]

[13]

[14,

[17]

[18]

[19)]

[20]

[27]

Atkinson C., §.]. Goldsack, Ada for Distributed Systems: A Compiler Independent Approach, Proc.
7th TFAC Workshop on Distributed Computer Control Systems, K.-D. Miiller (Ed.), Pergamon Press,
(xford, 1986

Bamberger J. et al., Kernel Facilities Definition: Distributed Ada Real-Time Kernel Project, Technical
Report CMU/SFEI-88-TR-18, Softwarc Engincering Institute, Pittsburgh, PA, July 1988

Bamberger J., Distribuied Ada Real-Time Kernel, Technical Report CMU/SEI-88-TR-17, Software
Engineering Tnstitute, Pittsburgh, A, July 1988

Barnes J.G.P., Ada on Transputer Arrays, pp. 1-9, Proc. 1si. Intern. Conf. Applications of Transputers,
108 Press, Amsterdam, 1990

Baumgarten U., Distributed Systems and Ada - Current Projects and Approaches. Comparative
Study’s Results, pp. 260-278, 1. Christodoulakis (Fd.}, Ada: The Choice for "92, Springer-Verlag,
Berlin, 1991

Bayasst M., A Practical Use of the Ada Rendezvous Paradigm in Disiributed Systems, pp. 312-324, 1.
van Katwijk (Ed.), Ada - Moving Towards 2000, Springer-Verlayg, Berlin, 1992

Bazalgette G. et al., STRAda - An Ada Translormation and Distributed Systeny, pp. 287-299, . van
Katwijk {Ed.}, Ada - Moving Towards 2000, Springer-Verlag, Berlin, 1992

Rishop J., Three Steps to Distribution: Partilioning, Configuration and Adapting, Ada Letters, Vol
8, No. 7, pp. 97-100, Tall 1988

Bishop ). (Fd.), Distributed Ada: Development and Fxperiences, Cambridge University Press, 1990

Bishop 1., M.J. Hasling, Distributed Ada: An Introduciion, pp. 1-14, I, Bishop (Ed.}, Distributed
Ada: Development and Experiences, Cambridge Umversity Press, 199()

Rishop J., 8.1}, Adams, D). Pritchard, Distributing Concurrent Ada Programs by Source Translation,
Software Practice and Fxperience, Vol. 17, No. 12, pp. 858-884, December 1987

Bishop J.M., K.8. Thomas, Experience with Multi-transputer Ada, Concurrency Practice and FExpert-
once, Volo 3, No. 2, pp. 133-151, Aprl 1993

" Burns A, Efficient Initialisation Routines for Muliiprocessor Systems Programomed in Ada, Ada Let-

ters, Vol. 1, pp. 35-6i), 1982

Carlsson Gathe W, D Wengelin, T Asplund, The Distribvied Ada Bun-time System DARTS, Software
Practice and Experience, Vol 21, No. 11, pp. 1249-1263, Novernber 1991

© Cleniatis 4L, V. Gilanuzzi, Software Fault, Tolerance in Concurrent Ada Programs, Microprocessing and

Microprogramnung, Vol 32, pp. 365-372, Aupust 1991

Cornhill ., A Survivable Distributed Computing Svstem for Embedded Application Programs Written
in Ada, Ada Letters, Vol. 3, No. 6, pp. 79-87, 1983

- Cornhill D., Four Approaches to Partitioning Ada Programs for Execution on Distributed Targets, pp.

153-162, Proc. 1st Tmern. TEEE Conf. Ada Applications and Environments, IEEE Computer Society
Press, Tos Alamitos, CA, 1984

Cornhill D, Partitioning Ada Programs for Execution on Distributed Systems, pp. 364-370, Proc.
Intern. Conf. on Data Engineering, [EEE Computer Society Press, Los Alamitos, CA, 1684

ACM Ada Letters, Mar/Apr 1997 Page 77 Volume X VI, Number 2



28]

20!
30]
31]

32)
331

[35:4)
[35]

136]

[40]
41]
[42)

43]

Cross J.K., M.J. Kamrad. 8.J. Fernandez, Communication among Distributed Ada Programs, pp. 627-

632, Vol. 2, Proc. NARCON '91 IEEE 1991 National Aerospace and Electronics Conf., IEEE, New
York, 1991

Cross J.K., M.J. Kamrad. S.J. Fernandez, Distributed Communications, Ada Letlers, Vol. 10, No. 9,
op. 85-93, Fall 1950

Dewar R. et al., Distributed Ada on Shared Memory Multiprocessors, pp. 222-234, J. Bishop (Ed.)},
Distributed Ada: Developrment and Experiences, Cambridge University Press, 1990

Dobbing B., Experiences with the Partitions Model, Ada Letters, Vol. 13, No. 2, pp. 65-77, March/April
1993

Dobbing B., Fxperiences with the Partitions Model, Ada User, Vol. 13, No. 2, pp. 76-84, June 1992

Dobbing B, Distributed Ada - A Suggested Solution for Ada 9X, Ada Letters, Vol. 10, No. 3, pp.
64-102, Fall 1990

Dobbing B, 1. Caldwell, A Pragmatic Approach 1o Distributed Ada for Transputers, pp. 200-211, ).
Bishop (Ed.), Distributed Ada: Development and Experiences, Cambridge University Press, 1890

Doubleday ¢t al., Building Distributed Ada Applications from Specifications and Functional Compo-
nents, pp. 143154, Proc. TRI-Ada '91 Conf., ACM, New York, 1991

Fisenhauer G., B. Jha, ). M. Kamrad, Targeting a Traditional Compiler 10 a Distributed Environment,
Ada Letters, Vol 9, No. 2, pp. 45-31, March/Apnl 1984

" Fisenhauer (., It. Jha, Honeywell Distributed Ada -- Implementation, pp. 158-176, .I. Bishop {Ed.),

Diswributed Ada: Development and Fxperiences, Cambridge University Press, 1990

Fisher T.A., .M. Weatherly, Tssues in (be Design of a Distributed Operating System for Ada, ITEEE
Computer, Vol. 19, No. 5, pp. 38-47, May 1986

Flynn 5., E. Schonberg, E. Schonberg, The Efficient Termination of Ada Tasks in a Multiprocessor
Environment, Ada Letters, Vol. 7, Na. 7, pp. 55-76, November/December 1987

Glargaro A, Towards Distributed Objects in Ada 9X, pp. 20-31, L. Collingbourne (Ed.), Ada - Towards
Maturity, TOS Press, Amsterdam, 1993

Gargaro AR, et al., Adapting Ada for Distribution and Fault Tolerance, Ada Letiers, Vol. 10, No. 9,
pp. 111-117, Fall 1980

Gargaro AR et al., Towards Supporting Distributed Systems in Ada 9X, pp. 310-323, B. Lynch (Ed.),
Ada - Experience and Prospects, Cambridge University Press, Cambridge, UK, 1990

Gargaro A.B. et al., Supporting Distribution and Dynamic Reconfiguration in AdaPT, Distributed
Systems Engineering, Vol. 1, No. 3, pp. 145-161, March 1994

Gargaro A.B. et al., Supporting Reliable Distributed Systems in Ada 9X, pp. 301-330, J. Bishop (Ed.),
Distributed Ada: Development and Experiences, Cambridge University Press, 1990

| Gentleman W.M., T. Shepard, D.V.P. Thoreson, Administrators and Multiprocessor Rendezvous Mech-

anisms, Software Practice and Experience, Vol. 22, No. 1, pp. 1-39, January 1942

Goldsack S.J., Session Summary: Recovery and Reconfiguration in Distributed Systems, Ada Letters,
Vol. 8, No. 7, pp. 108-112, Fall 1988

ACM Ada Letters, Mar/Apr 1997 Fage 78 Volume X VI, Number 2



[58]

[59]
[60)]

Goldsack 8.1. et al., Ada for Distributed Systems — A Library of Virtual Nodes, pp. 253-263, Proc.
Ada-Europe Intern. Conf., Cambridge University Press, Cambridge, UK, 1987

Goldsack 5.J., C. Atkinson, An Object-Oriented Approach to Virtual Nodes: Are Package Types an
Answer? Ada Letters, Vol 10, No. 4, pp. 78-84, Spring 1990

Goldsack 5.]. et al., Teanslating an AdaPT Partition Model to Ada 9X, Ada Letters, Vol. 13, No. 2,
pp. 7890, March/April 1993

Goldsack 5.1 et al., AdaPT and Ada 9X, Ada Letters, Vol. 14, No. 2, pp. 80-92, March/April 1954

Hamilton, J.A, DA Cook, U W. Pooch, Distribuied Simulation in Ada 95, pp. 105-113, Proc. TRI-Ada
95 Conf., ACM, New York, 1995

Hutcheon A.B. A.J. Wellings, Distributed Embedded Computer Systems in Ada: An Approach and

Fxperience, pp. 55-64, 1. Zalewski, W. Fhrenherger (Eds.), Proe. IFIP /TFAC Conf. Hardware and
Software for Real-Time Process Control, North-Holland, Amsterdam, 1689

Hutcheon AN, A1 Wellings, Ada for Distributed Systems, Computer Standards and Interfaces, Vol.
6, No. 1, pp. 71-82, 1987

4, Huicheonn A D, AL Wellings, Supporting Ada in a Distributed Fnvironmment, Ada Letters, Vol. 8, No.

7, pp. 113-117, FFall 1988

3 Hutcheon AN, AL Wellings, The Virtual Node Approach to Designing Distributed Ada Programs,

Ada User, Vol. 9, Supplement, pp. 35-42, Deceruber 1988

i Hutcheon AD., AL Wellings, The York Distributed Ada Project, pp. 67-104, 1. Bishop (FEd.), Dis-

tributed Ada: Development, and Experiences, Cambridge University Press, 1990

Hutcheon AT ALY Wellings, Flaboration and Termination of Distributed Ada Programs, pp. 195-204,
AL Alvarez (Fd.), Ada - The Design Choice, Cambridge University Press, cambridge, Uk, 1989

Inverardi T2, F. Mazzanti, . Monlanegro, The Use ol Adain the Design of Distributed Systems, 1.G.
Barnes, G.A. Fisher Jr. (Eds.), Ada in Use, Cambridge University Press, Carubridge, UK, 1983

Jansohn H.-5., Ada for Distributed Systems, Ada Letters, Vol 8, No. 7, pp. 101-103, Fall 1988

Jessop HW., Ada Packages and Distributed Systems, SIGPLAN Notices, Vol. 17, No. 2. pp.. 28-36,
Fehriary 1982

Tha R. et al,, An Tmplementation Supporting Distributed Exeeution of Partitioned Ada Programs,
Ada Letters, Vol. G, No. 1, pp. 117-160, January 1089

;Jha R, LM Kamrad. . Cornhill, Ada Program Partilioning [.anguage: A Notation for Distributing

Ada Programs, [EEE Trans. Software Engineering, Vol. 15, No. 3, pp. 271-280, March 1989

Jha B, G. Eisenhauer, Honeywell Distributed Ada — Approach, pp. 137-157, 1. Bishop (Ed.), Dis-
tributed Ada: Development and Experiences, Cambridge University Press, 1990

Jha 1., G. Eisenhauer, Distributed Ada - Approach and Irnplementation. pp. 439-149, Proc. TRI-Ada
‘89 Conl., ACM, New York, 1989

Keefe D). ¢t al., Pulse: An Ada-Based Distributed Operating Systems, Academic Press, London, 1885

Kermarree Y., L. Pautet, Ada Communication Components for Distributed and Real-Time Applica-
tions, pp. 530-536, Proc. TRI-Ada '92 Conf., ACM, New York, 1992

ACM Ada Letters, Mar/Apr 1587 Page 79 Volume XVIi, Number 2



67)
68

[69]

80
[81]

[82]

18]

Kermarree Y., L. Pautet, S. Tardieu, GARLIC: Generic Ada Reusable Library for Interpartition Com-
munication, pp. 263-299, Proc. TRI-Ada '95 Conf., ACM, New York, 1995

Knight 1.C., J1.A. Urquhart, On the Tmplementation and Use of Ada on Faul-Tolerant Distributed
Systems, IEEE Trans. Software Engineering, Vol. 13, No. 3, pp. 853-063, May 1987

Knight J.C., M.E. Rouleau, A New Approach {o Fault Tolerance in Distributed Ada Programs, Ada
Letters, Vol. 8 No. 7, pp. 123-126, Fall 1988

- Kram R. et al., Ada 83/95 Bindings to OSF’s Distribuied Computing Environment (DCE), pp. 38-48,

Proc. TRI-Ada 95 Conf., ACM, New York, 1045

i Wrishnan P, RAL Volz, R Theriault, Tmplementation of Task Types in Distributed Ada, Ada Letters,

Vol. 8. No. 7. pp. 104-107, Tall 1988

Looney M.1.. A O'Brien. Distributed Application designedd Using Mascot and Implemented in Ada,
op. 1-8, 1. van Katwijk {(Fe), Ada - Moving Towards 2000, Springer-Verlag, Berlin, 1992

 Luckham D.C. et al., Task Sequencing Language {or Sperifying Distributed Ada Systems: T5L-1, pp.

144-463. Vol. 2. 1.W. de Bakker, A.). Nijman, P.C.. Treleaven {(Fds.), PARLE - Parralel Architectures
and Langnages Europe, Springer-Verlag, Berling 1987

~ TLundberg L., A Protocol to Beduce Global Comnumication in Distributed Ada Tasking, J. of Parallel

and Distributed Computing, Vol. 10, pp. 261-261, November 18990

MacDonald T.R., Ada Distributed System Development, pp. 111-121, Proc. Jrd Annual NASA Ada
Users Symposium, NASA Johnson Space Center, Housion, TX, 1990

MacDonald J.R., J.T).Johanncs, K. Schwan, Ada Dynamic Toad Control Mechanisms for Distributed
Embedded Battle Management Systems, pp. 156-160, Proc. st IEEE Workshop on Real-Time Apph-
cations, TEFFE Computer Sociely Press, Los Alamitos, CA, 1993

Mangold K., AMPATS - A Multiprocessor Ada Toeol Set, pp. 330-311, J. van Katwijk (Ed.}, Ada --
Moving Towards 2000, Springer-Verlag, Berlin, 1942

McFarland G- et al., A Tool Set for Distribuied Ada Programing, pp. 71-79, Proc. 3rd Intern. IEEE
Conf. Ada Applications and Environments, IEEE, Computer Society Press, Los Alamitos, CA, 1988

79! Moreton T. et al. Tools for the Building of Distributed Ada Programs, Ada Components: Libraries

and Tols, Proc. Ada-Europe Conf., Cambridge University Press, Cambridge, UK, 1987

Morris D.S.. T. Wheeler, Distributed Program Design in Ada: An Example, Proc. 2nd Intern. TEEE
Conf. Ada Applications and Favironments, IEFRE Computer Society DPress, T.os Alamitos, CA, 1986

Nakama M. Z. Nakao, A Design and Implementation of an Ada TPC Interface, IEICE Trans. Infor-
mation and Systems, Vol 77-1), No. 5, pp. 574-578, May 1994

Nielsen K., Ada in Distribuled Systems, McGraw-Hill, New York, 1990

Nielsen K., H. Carlsson, Interprocessor Communication and Ada in Distributed Real-Time Systems,
Computer Communications, Vol. 13, No. 8, pp. 451159, October 1590

Nishida H., T. Itoh, R. Nakayama, Distribulion of Ada Tasks onto a Heterogeneous Environment, pp.
155-165, Proc. TRI-Ada *91 Conl, ACM, New York, 1991

Roark C., D. Paul, A Network Operating System (NOS) to Support Real-Time Distributed Ada

Applications, pp. 705-710, Vol. 2, Proc. NAECON 90 IEEE 1990 National Aerospace and Electronics
Conf., IEEE, New York, 1990

ACM Ada Letters, Mar/Apr 1987 Page 80 Volume XV, Number 2



[86]
[87]
[88]

89
190

[51]
(92)
[93]

4]

[96]
[97]
[98]
[99]
100
101,
[102]
[103]
(104]

[105]

Rogers P., M. Pitarys, The First Embedded Distributed Ada95 Aplication, pp. 270-279, Proc. TRI-Ada
95 Conf., ACM, New York, 1995

Seelye R.W., P.D. Pull, The Eftect of Multiprocessor Architectures on Ada Application Software De-
velopment, pp. 43-48, Proc. 10th IEEE/ATAA Digital Avionics Systems Conl., IEEF, New York, 1991

Shih C.-S., I.A. Stankovic, Deadlock Detection 1n Distributed Real-Time Systems and Its Application
to Ada Environments, Computer Science and Informatics (India}, Vol. 21, No. 1, pp. 1-28, July 1891

Taylor 13., Distributed Systems in Ada 9X. Ada User, Vol. 10, No. 3, pp. 127-131, July 1959

Tedd M., S. Crespi-Reghizzi, A. Natali, Ada for Mulii-microprocessors, Cambridge University Press,
Cambridge, UK, 1934

Thompson C.1., V. Celier, DVM: An (Ihject-Oriented Framework for Building Large Distributed Ada
Systems, pp. 179-191, Proc. TRI-Ada ‘95 Conf., ACM, New York, 1992

Van Scoy R., 1. Bammberger, R. Firth, An Overview of DARK, Ada TLetters, Vol. 9, No. 7, pp. 91-101,
November fDecember 1939

Van Scoy R., 1. Bamberger, R. Firth, A Detailed View of DARK, Ada Tetters, Vol 10, do. 6, pp.
68-83, July/August 1990

Volz R.A., Viriual Nordes and Units of Distribution for Distributed Ada, Ada TLelters, Vol 10, No. 4,
pp. 85-86, Spning 1990

Volz RLA. et al., Some Problems in Distributing Real-Time Ada Programs Across Machines, pp. 72-81,
1.G. Barnes, G.A. Fisher Jr. (Eds.}, Adain Use, Cambridege University Press, Cambridge, Uk, 1985

Volz RUA. et al, Transiation and Fxecution of Distribnted Ada Programs. Is Is Siill Ada? TEEE Trans.
Software Engineering, Vol. 15, No. 3, pp. 281-292, 1989

Volz R.A., P. Krishnan, R. Thenault, Distributed Ada A Case Swudy, pp. 15-57, J. Bishop {Ed.},
Distributed Ada: Development and Experiences, Cambridge University Press, 1990

Volz R.A., P Krishnan, R. Theriault, Distributed Ada Case Study, Information and Sofvware Tech-
nology, Vol 33, No. 4. pp. 202-300, May 1951

Volz R.A. T.N. Mudge, Timing Tssues in the Distribuied Fxecution of Ada Programs, TEEE Trans.
Computers, Vol. 36, No. -4, pp. 149459, April 1987

Volz LA ot al., Distributed and Parallel Ada and the Ada 9X Reconmmendations, Distributed Systems
Enginecring, Vol 1, No. -, pp. 224-241, 199

Wellings A, Tssues in Distributed Processing Session Surumary, Ada Tetlers, Vol 7, No. 6, pp. 57-60,
Ocrober 1987

Wellings A., Session Summary: Distributed Fxecution Units of Partitioning, Ada Letters. Vol. 8,
No. T, pp. 80-83, Fall 19388

Wellings A., Support for Distributed Systerns in Ada 9X, Ada Letters, Vol. 11, No. 6. pp. 61-63,
September/QOctober 1991

Wengelin D., T.. Asplund, Application of Ada on a Distributed Missile Control Systern, pp. 300-305,
Proc. TRI-Ada '90 Conf., ACM, New York, 1989

Wengelin D., M. Carlson Gothe, T.. Asplund, Untitled. (On a portable solution to the problem of

suspending a caller on one node during a call o a remote node.) Ada Letters, Vol. 10, No. 1, pp. 97-99,
January /Februaty 1990

ACM Ada Letters, Mar/Apr 1987 Page 87 Vofume XV Number 2



	siam copy.gif
	siam0001 copy.gif
	siam0002 copy.gif
	siam0003 copy.gif
	siam0004 copy.gif
	siam0005 copy.gif
	siam0006 copy.gif
	siam0007 copy.gif
	siam0008 copy.gif
	siam0009 copy.gif
	siam0010 copy.gif
	.gif
	siam0012 copy.gif
	siam0013 copy.gif
	siam0014 copy.gif

