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Abstract.

The aim of this chapter is to discuss practical issues encountered when a skele-
ton of the GliderAgent—a multi-agent system supporting glider pilots in various
navigation and pilotage scenarios—was implemented. The GliderAgent implemen-
tation integrates two agent environments discussed in other chapters of this book
(Jade and MAPS), as well as the XCsoar pilotage software, and the OpenStreetMaps
GIS system. In addition to presenting the basic design of the GliderAgent system,
the technical issues solved during its implementation are discussed. Finally, exam-
ples of implemented capabilities are illustrated.
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Introduction

Today, computer technology supports flight-related functions in commercial air planes,
within airline companies, and in air traffic control. However, in the case of gliding (fly-
ing sailplanes/gliders), use of computer systems (electronic devices, in general) is lim-
ited. There are multiple reasons for lack of acceptance of “electronics” in gliding. Some
of them are psychological, e.g. conservatism of pilots, manifesting itself in a belief that
gliding requires special skills that are contrary to technological advances. However, im-
portant is also the fact that in engineless planes there is limited amount of available elec-
tric power, which would not be sufficient for a large number of electronic devices. How-
ever, even in gliding, we start to find “smartphones” and PDAs, running programs like
the XCsoar [12] (or the WinPilot [11]), which resemble the vehicle GPS navigation sys-
tems and provide information like: (i) display of airspace areas, (ii) altitude required to
complete a task, (iii) thermal profile of the area where the glider is located, (iv) depiction
of a final glide through the terrain and around multiple waypoints, etc. Furthermore, in
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the context of achievement flying (see, below) the so-called loggers are used. Loggers
store and archive waypoints flown by. These devices have to be approved by the Federa-
tion Aeronautique Internationale (FAI; [1]) to allow pilots to claim sport achievements
(the FAI Record Claim). While some loggers use only the GPS positioning (simple Po-
sition Recorders), others have implemented more advanced technologies (e.g. the Inter-
national Gliding Commission Approved Flight Recorder, which includes also a pressure
altitude sensor, which allows to store not only waypoints, but also altitude data (for more
information, see [5]).

Before proceeding further, let us discuss two gliding accidents, which provide con-
text for our work. Additional accident reports have been discussed in [14], which also
provided some of the material used in the initial sections of this chapter.

Both accidents happened in Poland. The first one took place on July 13th, 2009,
during the starting procedure, using the so-called winch launching. Unfortunately, the
starting cable didn’t release properly, and remained attached to the glider. To warn the
crew about this dangerous situation, the ground team made the standard procedural sign,
as well as tried to radio the information in. Unfortunately, pilots haven’t noticed the sign,
while the cabin radio malfunctioned. The winch mechanic cut the cable off, to let the
glider fly without pulling it down. Next, the glider flying down-wind has touched the
electrical line with the hanging cable, making a short circuit. The cabin crew has not
noticed the problem until they reached the final glide. Fortunately, they were able to suc-
cessfully release the cable, and then landed safely. Of course, the primary problem was
that pilots did not observe requirements of the starting procedure, which oblige them to
observe ground for a while after the start; to check for signs informing them about prob-
lems. But we can imagine that if another communication channel was open, the ground
team could deliver message about the problem, and this message could be “blinking”
and/or “beeping,” to demand attention. Obviously, it is possible that both the “PDA” and
the radio malfunctioned simultaneously, but probability of such double-malfunction is
much lower than that of a single one.

The second incident happened during a competition: the Polish Gliding Champi-
onship, Standard Class, on June 10th, 2010. The pilot started normally and flew for more
than 3 hours. Unfortunately, after 6 PM the thermals subsided and he had to go back to
the airfield. The altitude of the glider was too low to be able to reach the destination.
During the landing preparation phase the pilot noticed that, on a closer field, there is a
landed glider. So he tried to land on the same field, conjecturing that if one glider has
landed there, it should be a good place for emergency landing. He didn’t know that the
glider on the field was broken because of landing on the terrain that was too “bumpy.”
Unfortunately, nobody could inform / warn him about this fact, and he has destroyed his
glider as well. In this case two forms of help can be envisioned. (1) Informing the contest
organizers in advance that there is a glider, which won’t be able to reach the original
airfield. As a result, organizers could contact the pilot and instruct him where he can find
an acceptable place to land. (2) The first glider, which crash-landed on the bumpy terrain,
could mark the field as not proper for landing, and send this information to other gliders
in its close proximity. This message could then be propagated to other gliders, reaching
them all (in a way similar to a query propagation in wireless sensor networks; see [14]).



0.1. Typology of glider flying

Discussion presented thus far indicates that there exist different types of glider flights
(e.g. recreation and competition). Let us enumerate them and their main features.

1. Training flights, which can be divided into:

a) Flights with an instructor—most of such flights are early-training flights
where a student pilot gains basic skills—how to start, to land, how to turn the
glider, etc.

b) Solo training flights—conducted by a student alone. During these flights an
instructor is located on the ground and should have a possibility to communi-
cate with the student-pilot to correct the pilotage technique, give the advices,
or warn about mistakes / dangers. Solo training flights are typically conducted
above an airfield, or in a close distance to it. Here, distance of 20 km (or less)
is usually treated as a safe one (e.g. for returning to an airfield). Nevertheless,
what is considered a “safe distance” depends also on multitude of conditions,
e.g. the flight height, and/or the weather.

2. Recreational flying—requires higher navigational skills, because of long dis-
tances flown away from the start airfield (more than 20 km). Recreational fly-
ing is very often conducted over areas not well known to the pilot. Here we can
distinguish the following sub-categories:

a) Cross-country flying—the easiest and safest form of recreational flying; typ-
ically flown over plains. Here, thermal soaring demands awareness of other
gliders (if not flying alone in a single lift) to avoid collisions.

b) Ridge flying—demands high skills, because of flying in close distances to
slopes of hills and/or mountains. Due to the terrain characteristics, there could
be a sudden variation of lifts and sinks encountered by a glider, and such condi-
tions could be very dangerous. If there are more gliders in the same area, their
pilots should be aware of positions of the others.

c) Lee-wave flying—a dynamic phenomenon that helps pilots to gain several
kilometers of height and make flights hundreds of kilometers long. Mostly ob-
served in mountains, and thus requiring at least as advanced skills as in the case
of ridge flying. However, further experience is required because of the nature of
the wave, which typically involves very violent conditions for start, getting to
the wave and landing. The main danger of the lee-wave flying is being caught
above a “solid cloud.” Clouds can develop so quickly that a pilot does not have
a chance to come back down without getting through the clouds.

3. Sport / competitive flying—focused on achieving sport results according to the
FAI or local rules. All sport flights must be conducted in accordance with speci-
fied rules and procedures (to be accepted as a sport achievement). Among sport
flying events we can distinguish:

a) Badges and diplomas—for example FATI’s silver, gold badges, diamonds and
diplomas achieved for completing soaring performances of: distance, duration
and height gained.

b) Localized competitions (Grand-Prix, Championship, etc.)—pilots meet and
fly tasks together starting from the same place.



¢) So-called on-line contests—pilots conduct flights alone, in their clubs, and
then send their flight documentation to the contest organizer to be validated
and scored.

d) Record flights—gaining national or world records, validated by a National
Authority and/or the FAL

0.2. Supporting glider pilots—preliminary observations

On the basis of the above described incidents, as well as identified types of glider flights,
let us now identify some of the most important needs arising in flying gliders.

Training flying. It would be important to provide more information to the student
pilot (flying a solo flight). Here we can distinguish the advice made available dur-
ing the flight, and post-flight analysis. During the flight, the instructor could give
some ready-to-use suggestions observing parameters transferred from the distant
glider (advising on the basis of observing the glider using binoculars is not suf-
ficient). In a post-flight session, if precise-enough data was collected, instructor
and student could go over the completed flight, analyzing each important decision
made by the trainee.

Cross-country flying. For this type of flying very useful would be finding thermals,
as well as informing the ground team in advance that the glider cannot reach any
airfield (primary or secondary); together with its precise location. The latter would
help to prepare a glider trailer for fast bringing the aircraft back from the landing
site. In case of an injury, it will greatly shorten the time of providing medical assis-
tance; thus increasing pilot safety. Furthermore, pilots could find useful obtaining
important meteo change reports, especially warnings about possible storms and
thunders, delivered directly to their “smartphones” (and confirming to the ground
that the message was received, without the need to use the radio by the pilot).

Ridge flying. This type of flying requires fast informing the ground station about
any abnormal behavior or danger. The mountainous area generally is not appro-
priate for landing outside of existing airfields. Besides the slopes, they are mostly
covered by forests and/or shrubs. Furthermore, note that in this case, the time be-
tween realizing the danger and the possible crash is much shorter than in cross-
country flying. Therefore, the proposed system should provide, among others, au-
tonomous communication from the glider to the ground station (to let the pilot
concentrate on the pilotage).

Lee-wave flying. The violent nature of the flights using the lee-wave phenomenon,
and the possibility of “shutting” the sky below the glider, require that the pilot
regularly checks the weather condition over the airfield(s). Even worse, the lee-
wave flying involves heights where the pressure is much lower and the oxygen
is diluted. Staying above the 4000 meters (above the sea level) could lead to the
altitude sickness [2], which is a direct danger for pilot’s health (unconscious pilot
cannot prevent the crash; see, description of the accident presented in [14]). These
features of lee-wave flying suggest the support to be provided by the system, e.g.
autonomous communication concerning the state of the glider and its pilot send to
the ground station, and various warnings delivered to the pilot.

Sport flying. Finally, in sport flying we could encounter all of the above mentioned
topics, as the competitions are conducted over the fields, and in the mountains.



Furthermore, the issue of making competitive flying interesting to spectators also
becomes important (see, the next Section).

Obviously, this list is not exhaustive, for more information, see Section 1.1.
0.3. Electronic communication equipment in gliding

At the beginning of this chapter, we have stated that on board of gliders one can find
devices capable of running “glider-GPS-software” and/or loggers. Obviously, there are
also radios, which are the main, and the oldest, electronics on board of gliders. Let us
now describe other electronic equipment that can be found in gliding.

There exist efforts to create a general anti-collision system, similar to the one used
in commercial aviation, i.e. the Traffic Collision Avoidance System (TCAS) [9]. Here,
for instance, the FLARM system [4] has been deployed; primarily in parts of Western
Europe (German speaking countries and Scandinavia), as well as in Australia, and New
Zealand. This system is based on communication between aircrafts equipped with de-
vices designed to warn about a risk of a collision. The limitations to this system are: (a)
very high specialization—not suitable for any use other than the collision avoidance, (b)
low bandwidth transmission channel—limiting the amount of information that can be
transmitted; thus reducing possibility of extending its functionality beyond crash avoid-
ance, (c) very short range—making it unsuitable for avoiding collisions in the case of
fast moving aircrafts. Here, note that sport gliders can fly even up to 300 km/h and it
remains to be seen if the FLARM system will be capable of effectively dealing with such
speeds.

Separately, in recent years, we observe an increasing interest in implementing ser-
vices usually called “on-line tracking”, which visualize in (almost) real-time positions
of gliders during various contests (see Section 0.1). The goal of such systems is to
make gliding (as a sport discipline) more audience-friendly—letting the audience “feel
the competition,” and deliver intermediate (temporary) scores (obviously, keeping those
away from the pilots participating in the competition). We can differentiate these systems
according to the transmission medium they utilize:

1. GSM/GPRS data transmission—e.g. LX GPS trackers [6] adopted from vehicles;

2. GSM/SMS data transmission—e.g. vPtracker [10] developed for the Club Class
World Gliding Championship held in Elverum, Norway in 2004 and later com-
mercialized;

3. satellite data transmission—i.e. the Yellowbrick [3] used last during the World
Grand Prix Gliding Final in Santiago, Chile, in 2009;

4. APRS—mostly utilized by the OpenTracker+ [7] and the TinyTrak3 [8] solutions—
based on the Amateur Radio technology.

Reviewing these approaches the following observations can be made. All GSM-
based solutions (1,2) have problem with sending data (even when flying on relatively low
altitudes). GSM/UMTS operators fix their BTS antennas to disperse the signal across
the serviced ground area and are not interested in sending / receiving their signal to /
from the airspace “above.” Thus, the GSM-based solutions are (i) highly dependent on
the GSM range height, (ii) have many breaks in transmission, and (iii) position data is
sent relatively rarely—only when receiver antennas can be reached—mostly in intervals
of several minutes, which limits usability of such data (the display is “jumpy” at best).



Main drawbacks of the satellite-based systems (3) are their cost and power consumption.
The Yellowbrick solution uses the Iridium satellites which are 780 km away and in-
flight devices can be rented only for a specified time-frame. The cost and battery life
are dependent on the frequency of data transmission [13]. The main drawbacks of the
APRS-based approaches (4) are: low or no infrastructure, low bandwidth, and being in
an early-deployment phase.

Note also, that all these approaches are designed to deliver only a single, on-line
tracking, service; rather than provide support for the glider pilot (see Section 0.2). Fur-
thermore, since they typically have a very low communication bandwidth (as this is all
that is needed for tracking), It would be extremely difficult to extend them to support
more general functionalities.

1. GliderAgent—a glider pilot decision support system—requirements analysis

The GliderAgent is conceptualized as an agent-based decision support system: (a) help-
ing a pilot in navigation and pilotage, (b) delivering additional flight information, (c) pro-
viding support in emergency situations, (d) facilitating communication, monitoring, log-
ging of events, etc. It is not envisioned as replacing the existing systems (e.g. the XCsoar,
or the WinPilot), but to integrate with them. However, it should be able to combine some
functionalities, which currently run in separate applications, to facilitate better support
for the pilot. Furthermore, the GliderAgent is to become a common platform for imple-
menting services, existing and not yet known. On the basis of the material presented thus
far, we can start by presenting an overview of a glider flying infrastructure, which can
be found in Figure 1. In this figure, one can see main actors that participate in glider
flying and are to be taken into account when creating the GliderAgent system (for a more
complete discussion of the content of this Figure, see [14]). Let us now use information
depicted in Figure 1 to introduce the requirements analysis (business and technical) for
the GliderAgent system.

1.1. Business analysis

The GliderAgent system is to support needs of the glider pilot (see Section 0.2). Let us
now state the basic system requirements.

Sharing information between gliders This is one of the key functionalities that the re-
maining ones depend on. The implemented system should allow for messages to
be passed between various entities (see, Figure 1), such as glider to glider mes-
sage exchange, communication with the ground station(s), and with proxy sta-
tions. Here, the proxy stations are understood as an infrastructure designed to
forward messages between other entities in the system. Proxy stations are to be
placed in specific locations established on the basis of analysis of flight patterns
around the airfield; in particular, they are to be used in the mountainous areas.

Pilot state monitoring The system has to be able to assess the state of the pilot. For this
purpose, it has to track her/his selected biological parameters during the flight,
and compare them to the health-norms. For instance, system should be able to
distinguish if the pilot is conscious, semi-conscious, or unconscious, and act ac-
cordingly. Measurements are to be performed by using appropriate bio-sensors,
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Figure 1. Overview of the GliderAgent system

in intervals that depend on the context (e.g. type of flight, current altitude, etc.)
In selected contexts (e.g. perceived danger) results of monitoring should be au-
tonomously communicated to the ground station.

Temperature and estimated life-time of battery One of the important factors influenc-
ing the ability of on-board electronics to function (and thus the GliderAgent sys-
tem to run) is the state of the battery. The system should estimate how much en-
ergy is left in the battery, and thus its remaining life-time. It should also warn the
pilot (and possibly the ground station) in the case when the battery is about to run
out. For this purpose, measurements of the temperature of the battery (performed
by appropriate sensors) can be used. The amount of available resources, and the
type of flight, provide context for the energy management decisions (e.g. to shut
down some functionalities, to retain the critical capabilities of the system, such
as collision detection, tracking, etc.)

Flight state monitoring An important feature of the system is an ability to track gliders
(from other gliders, as well as from the ground). To do this, the system has to
keep track of each glider’s flight state. This includes parameters such as position,
speed vector, acceleration change (or, more specifically, total energy change), etc.
This information should help avoid crashes, as well as to help supporting stu-
dent training (by feeding the on-the-ground instructor with detailed information).
Moreover, the current flight state should be clearly visible for the pilot to support
decision making. Note that, here, the proposed functionality should extend and
supplement capabilities of the existing glider-GPS-software, while using other
data specified in this section.



Vertical stream indication Another vital aspect of glider flights, are vertical streams.
Up-streams (lifts) help the glider to gain altitude, but down-streams (sinks) have
the opposite effect and should be avoided. While the existing software, like
the XCsoar, indicates such streams, the goal of the system would be to use
glider-glider communication to share the information. Furthermore, since vertical
streams often materialize in similar locations during similar weather conditions,
access to the database of possible stream configurations would be useful.

Collision detection The GliderAgent should contain the collision detection functional-
ity. It is expected to be based on exchanging proximity information between glid-
ers. In the case of detected potential collision (i.e. two, or more, gliders are within
a threshold distance from each other), the user and the ground station should be
warned about the situation (collision warning should be displayed).

Maximal range The system should help the pilot to estimate the maximal range of a
glider in the given conditions (with a reserve for the landing operation). This
should be based on a range of parameters provided by a user, such as the glide
ratio, height at which to start the landing operation, etc. It would help the user
properly plan the flight, and properly react to changes in its conditions. This
should also allow to issue a warning when the calculated maximum distance is
shorter than the distance to the airfield.

Data logging Flight and pilot data should be logged and gathered for future analysis.
Since the glider may have limited data-space available, depending on the context,
selected information should be forwarded to be stored at the ground station. For
instance, in the case of training flights, battery life is not as important as gath-
ering “complete” data about the flight, whereas in the case of a long-distance
achievement flight, only selected data should be stored/transmitted, since battery
life is of key importance.

Team flying An auxiliary requirement for the system, is support of team flying. How-
ever, its completion, or lack thereof, does not directly influence the core function-
alities described above. The user should have the possibility to create or to join
a team of gliders. Creation should be based on specifying the name of the team.
All users knowing this name should be allowed to join the team. Users from the

same team should be marked on the system display.

The above requirements analysis is summarized in a use case diagram presented in

Figure 2; for an extended discussion of its content, see [14].
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1.2. Technical requirements analysis

Let us now describe the technical details of the GliderAgent system skeleton that we have
decided to implement in the first stage of the project. This includes defining the software,
the main classes of the system and their dependencies, the graphical user interfaces of
various parts of the system, as well as implementation assumptions and limitations.

1.2.1. Utilized software

Let us start from specifying the software used in the project. The GliderAgent system
consists of a number of agents that interact with each other to support functions described
in the previous section. In addition, other non-agent software is used in the system. Here,
we present the list of most important programs / environments used (we do not specify
development tools, like the Eclipse, etc., as this information is of no substantial technical
value).

» Software agents (except of agents working with sensors) have been implemented
using Java Agent DEvelopment framework (JADE, v4.0.1); see, also Chapter by
“JADE” G. Caire in this volume.

* MAPS (Mobile Agent Platform for Sun SPOT devices) is an agent oriented, Java-
based framework for wireless sensor networks, which are based on the Sun SPOT
technology; see, also Chapter “Wireless Sensor Networks and Software Agents”
by G. Fortino and M. Essaaidi in this volume. Here, we assume that in our Glid-
erAgent skeleton, MAPS agents and Sun SPOT sensors will represent “all possi-



ble sensing solutions.” In other words, in a production environment they can be
replaced by any technology with the needed functionalities.

Unfortunately, while both MAPS and JADE are Java-based, they use different
communication methods. Specifically, while JADE sends messages according to
the FIPA standards (using the ACL), MAPS creates its own messages based on
events. Therefore, a gateway (JADE-MAPS/ Gateway) had to be implemented to
facilitate message exchange between MAPS and JADE agents. However, this also
means that in the case that a different sensing technology is to be used, all that will
be needed is to develop another gateway between the sensor-originating messages
and the JADE-based part of the system.

* Java Virtual Machine (Java SE 1.6 update 22) was used to run both JADE and
MAPS agents. Note that, we made an assumption that there will be a possibility
to run the Standard Edition of the Java Virtual Machine (JAVA SE) on the pilot-
owned device. This assumption is a reasonable one, but is expected to be actually
fulfilled in the next generation of smart devices (e.g. devices with the Android 3
operating system).

e Sun SPOT SDK [?] (Sun SPOT SDK 6.0, with the Solarium emulator included)
is a set of libraries and tools provided by Sun Microsystems (currently Oracle), to
develop applications for Sun SPOT devices. It contains an emulator called Solar-
ium, which faciitates emulation of Sun SPOT devices for MAPS agents. The only
limitation of this approach is that the use of Solarium disables mobility of MAPS
agents, but this does not affect our project.

* The XCSoar [12] (version 6.0) is used and extended. Since this is an open-source
software, it is possible to augment it with extra capabilities (e.g. to display various
warnings). Note that, since the XCSoar is written in C++, while the JADE platform
is Java-based, a bridge between the two had to be implemented to allow for data
exchange.

* OpenStreetMaps [?] is a free map of the world. It consists primarily of road maps,
contributed by users from around the world. It contains also some basic geograph-
ical data (e.g. forests, water, etc.), but doesn’t contain more detailed information,
such as the elevation. Swingx-ws’s JXMapKit dynamically loads data from the
OpenStreetMaps server. This means that it requires an Internet connection to func-
tion.

* Swingx-ws [?] (version 1.0) is a library of (open-source) add-on Swing features
developed by the Swing Labs. It is primarily used to display a map including
locations of gliders as seen by the ground station. The map is loaded from the
OpenStreetMaps.

1.2.2. System structure

The system structure is depicted in the component diagram in Figure 3. It should be
viewed together with the use case diagram (in Figure 2).
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The component diagram shows components of a Glider Agent (GA), software agent
residing on a single glider. The correctness of the decision making process of the GA
depends on information obtained from a set of MAPS agents via a radio transmitter and
the XCSoar, or directly from the GPS antenna. The radio transmitter connected to the
GA allows it to exchange information with other JADE and MAPS agents. Due to this,
the GA is able to use the radio transmitter (via a gateway) and obtain information from
other gliders (e.g. position, messages, air stream data) and from its own set of sensors. As
mentioned above, since JADE and MAPS use different communication protocols (FIPA
and Events), the JADE/MAPS gateway (J/M)G is needed to translate messages between
these two agent platforms.

Since the GA is written in JAVA, while the XCSoar is written in C++, a common
communication interface is required. Therefore, a JAVA server and a C++ server are
introduced. Both servers are based on a local socket connection. The XCSoar program
gathers and displays messages generated in the decision making process of the GA and
the data concerning nearby air traffic, which is obtained through communication within
the system (i.e. messages containing positions of other gliders). The XCSoar uses our
extended rendering classes to fulfill the display requests. In return, it sends information
about the glider to the GA (GPS position, etc.) In case of any failure in the communica-
tion with the XCSoar, there is a special back-up connection from the GA to the GPS. It
allows the GA to determine the error and, if possible, provide critical functionality such
as collision detection, communication within the system, etc.



Due to the lack of space, we present only the core information regarding the system.
Therefore, for the ground station and the proxy station component diagrams, refer to [?]

1.2.3. Graphical user interface

Let us now outline the key information abut the GUIs implemented in the GliderAgent
system.

* Glider agent does not have its own GUI. However, the modified XCSoar display
is used to display important information to the pilot. First, the standard XCsoar
information is displayed, such as:

% glider position and state
% nearby area (using map)
% vertical streams

However, the display is extended to show the position of others gliders and mes-
sages concerning current emergencies and warnings, as well as other messages
from the GA.

Ground Station. The graphical user interface of the ground station is meant to
allow the ground staff to monitor the current flight data concerning gliders in the
air. For this purpose, the GUI provides the user with a list of Glider Agents visible
to the given Ground Station Agent. The GUI provides a map of the area with
gliders highlighted on it. The map is implemented via a 3rd party API (Swingx-
ws). The ground station GUI delivers detailed information concerning a selected
GliderAgent’s data. This data includes:

Geographical coordinates (latitude, longitude)
Altitude

Velocity

Heading

Bank

Pitch

Battery voltage and temperature

Pilot temperature

* Oxygen pressure

* Warning messages

L I

*

Note that, in the GliderAgent system, we assume that communication between
the pilot and the instructor is also conducted using medium other than the agent
software (for example, the classical voice-over-radio transmission).

Proxy Station. The proxy station serves only to relay messages between Agents,
so it does not require any special user interface beyond the default JADE display
of visible agents.

1.2.4. Initial GliderAgent skeleton development—assumptions and limitations

The GliderAgent system is meant for live usage (we plan to deploy a demonstrator in
real-life settings of the Jesenik Aero Club (CZ), or the Nowy Targ Aero Club (PL); both
Aero Clubs located close to Carpathian Mountains). But during the development, it was
necessary to utilize a special emulator environment allowing us to check basic function-



alities. Here, we had to make a number of assumptions concerning the development of
such emulator. It should be noted that some of the assumed technologies (listed next)
are in early stages of development themselves, so some of our assumptions are based
on observed trends related to the technological development of PDAs and transmission
technologies. Let us also specify, which parts of the skeleton were selected to be devel-
oped at this stage of the project. Finally, let us list certain arbitrary criteria set for testing
purposes.

Radio technology with a minimum 20-40 km range. It is assumed that long range
radio technology with 20-40 km range is installed on every glider. It is not known
if such technology is currently available. However we assume that we will be able
to acquire such technology in the future. For example, the XBee-PRO XSC or the
XTend RF technologies are very promising one (see [?]). This will allow to fully
utilize functionality of the GliderAgent system.

PDA/Netbook. 1t is assumed that the PDA / smartphone device is represented by
one personal computer connected to the Internet. The device should be capable of
properly running all software used in the system.

Sensors/Solarium. Since it is unclear what sensing technology will be used in the
actual deployment of the system, we have decided to emulate sensing using the
Solarium emulator (provided with the Sun SPOT SDK), which allows us to run
MAPS agents.

Communication between system elements. We assume that each element has to
setup its unique, global ID such that it can be easily detected, and connected to
other elements.

Average pilot health. Assumption concerning average pilot health state have been
made on the basis of the literature (see [?]). These basic assumptions allow us to
determine when there is something wrong with the pilot.

Exemplary glider SZD-50-3 Puchacz. Due to a variety glider models, it is assumed
that characteristics of a Polish glider SZD-50-3 known as Puchacz will be used [?].
Note that this assumption does not impact results of our work, but it allows us to
specify some realistic parameters and thus make tests of the system more reliable.

Maximal glider range assumptions. When estimating the maximal range of a glider
in current situation we need to take various factors into consideration. The user
of a GA will have to provide some of them, while the remaining ones will be
calculated from the user input.

Assumed atmosphere and environment model. The International Standard Atmo-
sphere (ISA) model will be used. It is characterized by two important features: (1)
below 36 000 feet, the standard temperature lapse rate is 2°C (3.5°F) per 1 000
feet of altitude change; and (2) pressure does not decrease linearly with altitude,
but for the first 10 000 feet, 1 in.Hg. for each I 000 feet approximates the rate of
pressure change.

2. System implementation

Let us now describe in some detail various issues concerning implementation of the
GliderAgent system skeleton. Let us start from the details of the emulation environment.
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Figure 4. Simulation component diagram

In Figure 4, we can see the component diagram of the Glider Agent implemented for
our simulation. The GliderAgent System Simulation, which is run on the JADE agent
platform, is composed of the Glider Agent GA, the GPS server and the sensor data
server. The GA depends on radio messages from the the radio server (which is a part
of the GliderEmulator presented in chapter 2.1.2), information from the XCSoar, and
the GPS feeds from the GPS antenna (in the simulation represented by the GPS server).
The GA component contains the code of the JADE agent. Radio messages are sent and
received via a socket connected to the radio server, opened by the GliderEmulator.

The GPS server and the sensor data server depend on the data received from the
scenario server (another part of the GliderEmulator application). They provide a special
interface to resend these feeds among its clients. The Glider Agent, is always the first
client of these servers, and thus it always gets the data. In this particular case, the GPS
server provides the GPS feeds to the GA (its owner) and to the XCSoar (a registered
external client).

In the same manner, the sensor data server sends the data to all MAPS agents.
However, for the simulation purposes, we do not handle the sensor data in the GA. MAPS
agents receive the sensor data about the voltage of the battery, battery temperature, pilot
temperature (sensor placed near legs of the pilot), blood saturation and oxygen pressure.
Each MAPS agent is responsible for only one type of message (one MAPS agents per
sensor approach, which may be modified in the future).

The gateway agent provides an interface to enable communication between JADE
and MAPS platforms. The gateway agent depends on Requests sent by the GA and Events
sent by the MAPS agents (for more details, see Section 2.1.2). The XCSoar components
depend on the GPS feeds (provided by the GPS server) and information provided by con-
nected agents in UniversalMessage(s). The XCSoar application is a “glider computer,”
which visualizes other gliders and messages on the screen. In reply to the GA, the XC-



Soar sends detailed information obtained through its internal data processing (i.e. bank
and pitch angle data).

2.1.1. Ground agent and proxy agent emulation details

The ground agent connects to the emulator via two sockets—one for the scenario server,
and one for the radio server. The radio socket uses the host and port specified, while the
scenario socket uses the same host, but with the port + I. The scenario server receives
and stores weather data as a replacement for an actual source of weather data. The radio
server is used to simulate sending and receiving messages to and from other JADE agents
within the simulated radio range.

The proxy agent works similarly, except that it only makes use of the radio server
and, as intended, it only forwards massages to other agents within its radio range. To
overcome problems concerning “infinite” forwarding messages between agents, we in-
troduced in each message a maximal number of hops (initially equal to 2). The proxy
agent briefly looks at the message’s number of hops and decreases it by 1 before sending.
If the proxy agent receives a message with a number of hop equal to 0, then the message
is discarded. Obviously, this parameter may be changed if needed.

2.1.2. Environment emulation (GliderEmulator)

Both aforementioned components rely on a feed from the environment simulator—the
GliderEmulator GE. The GE is a GUI application written in Java allowing users to di-
rectly prepare the route of the glider(s) and set the crucial points (scenario waypoints)
which describe the state of glider in these points and in between.

The application is composed of a main class and two servers:

* Radio server—emulating the radio communication (range of communication).
* Scenario server—providing GPS routes, sensor data for glider and weather data
for ground stations.

The GE uses OpenStreetMaps allowing user to have a fairly accurate view of the
environment in which s/he plans to emulate the GliderAgent system operation. To calcu-
late distances, the GE uses an implementations of Tadeusz Szpila’s “Vincenty’s formu-
las” [?], which are a two related iterative methods used to calculate distance between two
points on spheroid, and finds the destination point knowing the starting point, distance
and bearing. Also, the GE provides a set of GPS message constructors, simulating a real
feed from Garmin-type GPS receivers.

2.2. JADE-MAPS Gateway

The JADE-MAPS gateway (or simply the gateway) is a software agent, which allows
exchanging messages between JADE and MAPS agents. In Figure 5 we present its Use
Case diagram.

The gateway contains the gateway agent which is a JADE agent. Without loss of
generality, in the diagram we represent only a single other JADE agent (which represents
all JADE agents that may need to communicate with the MAPS agents). This external
agent performs actions, which affect the gateway’s behavior. Precisely, it can register or
deregister itself at the gateway, ask for a list of MAPS agents, and request sending of a
message to a specified MAPS agent. It is assumed that only registered agents can send
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Figure 5. JADE-MAPS Gateway use case diagram

and receive messages via the gateway. Furthermore, the gateway can publish itself in
the MAPS wireless sensor network, and in the JADE-based system (using the DF agent,
which manages descriptions of services). As a result, the gateway becomes visible for
both JADE and MAPS agents.

The main function of the gateway is the translation of messages. Here, we have to
consider two translations: translation from messages used within JADE to events used
within MAPS, and vice-versa.

The radio antenna is a part of the Sun SPOT system, which allows sending and
receiving data via the wireless sensor network of Sun SPOT devices. The gateway uses
this radio antenna to communicate with MAPS agents.

2.2.1. Implementation details

The GatewayAgent is the main class of the gateway project, which extends the Agent
class from the JADE library. In Figure 6, we can see the relation between the Gate-
wayAgent class and other classes responsible for agent management and communication
within both JADE and MAPS platforms.

The gateway has to utilize both JADE and MAPS source code. Therefore the gate-
way is a JADE agent which contains also MAPS code, responsible for the radio com-
munication within the MAPS. Specifically, the gateway uses directly the MobileExecu-
tionEngine class from the MAPS. Since the mobile execution engines are responsible
for routing messages, running and maintaining MAPS agents on the Sun SPOT devices,
writing the gateway in such a way helps to achieve a better integration of both agent plat-
forms. The gateway becomes visible for the MAPS side as the mobile execution engine,
while remaining visible within the JADE platform (as a JADE agent). In this way, JADE
agents can be seen as the MAPS agents to “real” MAPS agents.

Since we develop the gateway agent as the MAPS execution engine, the important
parameter describing the gateway is its IEEE address. The IEEE address is directly taken
from the Sun SPOT SDK (the Sun SPOT SDK provides support for host applications
that have access to a connected Sun SPOT Base Station consisting of a processor and a
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radio antenna). This address is unique and it is precisely this address that allows other
execution engines on the Sun SPOT devices to communicate with our gateway agent.

The GatewayAgent class also contains two lists, the local JADE agents ArrayList and
the local MAPS agents ArrayList. There is a bijection between JADE agent ID’s stored in
the localJADEagents and their MAPS agent ID’s stored in the localMAPSagents. During
the registration of a JADE agent at the gateway, a new MAPS ID is created, published
among other execution engines and assigned to this agent. MAPS ID’s of JADE agents
are used in addressing messages within the wireless sensor network. However, an ID
is not usable by its owner, only the gateway agent can refer to it during the translation
process. For user-friendliness, there is a possibility to specify a suffix, which may be used
in the process of generation of MAPS IDs. If a suffix is not specified, then it becomes a
randomly generated number.

Since the gateway is also a JADE agent, it has to obey the one thread per agent
policy. To satisfy this requirement, to run MAPS within a JADE agent, most of MAPS
classes were rewritten as agent behaviours, which are run one by one within the agent and
perform quick, simple tasks. Thanks to this, the gateway is written as a single-threaded
agent with only a few unavoidable exceptions (for example, receiving data from the radio
connection). Here, the JADE threaded behaviour was utilized. A threaded behaviour runs
as a normal JADE agent behaviour, but in a separate thread and does not block an agent
by waiting, or performing complex operations.

As presented in the class diagram (Figure 6), the gateway agent owns an instance
of the MobileAgentNaming class. The MobileAgentNaming was taken from the MAPS’
source code, and only slightly modified. The main purpose of this class is to store in-
formation about remote execution engines and their agents. This class allows to acquire
the required address(es) based, for example, on the name of a MAPS agent, and save
current data based on radio feed from another execution engine. It is worth noting that



MAPS agents do not have their own IEEE address. The IEEE address of a MAPS agent
is always the IEEE address of the execution engine in which this agent is present.

Two other important classes are: CommunicationChannelReceiverBehaviour, and
CommunicationChannelSenderBehaviour. These two behaviours are responsible for ac-
cessing the radio communication channel provided by the radio antenna. In Figure 6,
we can see that the gateway agent has only one receiver behaviour, and may have zero
or many sender behaviours. The CommunicationChannelSenderBehaviour is run within
a separate thread as a threaded behaviour. Otherwise, the gateway wouldn’t be able to
check availability of data in the communication channel and would block the execution
of other behaviours, which could be performed during this time. Data received by the
communication channel receiver behaviour is translated into an event and forwarded to
the execution engine (in this case the gateway), which routes it to the proper local agent,
or to another execution engine. If an event is addressed to a local MAPS agent then the
translation mechanism is initialized and the message is translated to an ACLMessage.
This ACLMessage is sent by the JADE to the proper, registered agent. The Communi-
cationChannelSenderBehaviour extends the OneShotBehaviour class. This behaviour is
registered for a different event, each time the gateway would like to send some data.
There can be many such behaviours registered concurrently. Each of them is run one by
one (due to the one thread per agent requirement).

The SendMessageBehaviour and the SendReceivedMessageBehaviour are one-shot
behaviours, which are part of the translation mechanism within the gateway. Similarly
to the communication channel sender behaviour, there can be zero or many such be-
haviours, registered for different messages. With respect to the purpose of the message, a
proper class extends one of the following classes: HandleRequestBehaviour and Trans-
lateEventBehaviour. It is worth to remember that a JADE agent requests are send as
ACLMessages, hence a translation from an ACLMessage to an Event is a part of the Han-
dleRequestBehaviour. Proceeding in the opposite direction, translation from an Event to
an ACLMessage has to be handled automatically when a message contains a local MAPS
agent ID (connected to a JADE agent); since MAPS agents cannot specify an addressee
of the request directly.
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Figure 7. Event and Message class diagram

In Figure 7, we can see the Class diagram of the Event and Message classes. These
two classes represent the basic communication formats used in MAPS and JADE re-



spectively. Despite the differences in the structures of these classes, they are based on
a very similar idea of sending data. Each of them has fields responsible for describing
the sender, receiver, message name and type. The message name and type are used only
within the MAPS sensor network and describe the topic of the message (for example,
current temperature, exceeded threshold, etc.), and the time (now, first occurrence, per-
manent). By default, in JADE, these fields are set to the topic called MSG (message)
and the type NOW. The content of a message is stored as a sequence of keys and values,
which may be represented as follows: key1->valuel->key2->value2-> . ... The receiver
of a message may get a value by providing a specified key, or by adding a new one.

Due to the simplicity of the radio communication channel, the Event is translated
into a String and sent over the air. The main purpose of the gateway is to translate sim-
ple Strings (Events) to more complex structures (Messages) (and vice-versa). Thanks to
the similarities described above, the basic translation is performed almost immediately
by copying data. The gateway takes care of filling all fields correctly and changing the
sourcelD or the targetID into a proper one.

3. Test scenarios and experimental validation

The GA is expected to support the pilot in different flight situations. The main function-
ality of the agent is to track the flight state, which includes monitoring air traffic in the
nearby area, monitoring critical elements within the glider (i.e. the state of the battery),
as well as the state of the pilot (e.g. the oxygen level in the blood). To illustrate some of
the already implemented functionalities, and to test basic features of the system, we have
selected two scenarios.

3.1. Proximity and battery warning generation

The first scenario illustrates the ability of the GA to notify the pilot about potential colli-
sion (proximity warning), and about a drop of battery power (critical battery level warn-
ing).

This scenario requires one GliderEmulator, two glider agents (agents A and B), and
one ground agent. At the beginning, glider A is on the ground, while glider B is in the
air. When the scenario starts, both gliders begin to change their positions. Because it is
assumed that the radio range of a glider is equal to approximately 40 km, they directly
communicate with each other and with the ground agent (representing the ground station)
by sending messages containing their current positions. Based on this information, each
GA and the ground agent display the nearby air traffic.
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At some point in time, gliders A and B start to be too close to each other. This dan-
gerous situation is presented in figure 8, which contains a window of the the GliderEm-
ulator and a display of the XCSoar program used by one of the glider agents (agent A).
Both gliders, based on obtained information about position of nearby gliders, warn their
pilots by displaying a “Proximity warning.” In the scenario, gliders avoid collision and
the warnings disappears as soon as they reach a safe distance.
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Figure 9. Ground agent GUI and XCSoar display of glider A - Low battery level warning

After a while, the glider agent A receives (from the MAP agent assigned to sense
the battery power) information concerning low voltage level in the battery. In the next
few seconds, the voltage level reaches a critical state and the remaining battery power
is equal to 0%. The GA warns the pilot of the glider by displaying the “Critical battery
level” message. Figure 9 illustrates this situation. On the left hand side, we can see the
display of the XCSoar program with the notification concerning the state of the battery.
The window on the right hand side shows the GroundStation GUI which is also made
aware (via a message sent an autonomously by the GA of the glider A) of the incident
on the glider A, caused by voltage level equal to 0%. Since the assumed reason for the
sudden drop in battery level was cabling problem, it is assumed that pilot of glider A
managed to reconnect the battery and made the warning disappeared. Completing the
scenario, glider A lands back on its airfield.



3.2. Oxygen level monitoring and MAPS-JADE communication

The second scenario concerns ability of the system to monitor the state of the pilot and
alert her/him about dangerous events which may influence the safety of the flight. Here,
we assume that the GA monitors the selected biological parameters of the pilot, by com-
municating with a set of MAPS agents. The following scenario tests the ability of the GA
to notify the pilot about possible danger caused by low oxygen level, and communication
between MAPS-JADE agents.

In this scenario, we consider two types of warnings: (1) low oxygen level generated
at 9842.52 ft (3000 m above the sea level), and (2) critical oxygen level generated at
13123.36 ft (4000 m above the sea level).

At the beginning of the scenario, the glider stays on the ground at the altitude of O m
(above ground level). The position of the glider and its altitude start to change when the
scenario is executed. It is assumed that the glider is conducting lee-wave flying, and its
altitude is increasing fast.

Due to limited amount of resources (in this case the battery), MAPS agents send
their information to the GA within specified time intervals. In case of the oxygen level,
this time interval is initially set to 30 seconds. However, MAPS agents communicate
among themselves, and with the GA, and based on the received information they modify
the interval in order to adapt to the situation. Due to this, at the altitude 2000 m, the
oxygen MAPS agent modifies the measuring interval from 30 s to 10 s. Similar changes
can be observed after every next 500 m above this level, until the interval is set to 1 s at
the altitude 4000 m (considered the critical level).
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Figure 10. XCSoar display showing “Critical oxygen level” warning

In figure 10, we can see the output window from the running sensors and MAPS
agents, and the display of the XCSoar program. The oxygen MAPS agent acts as ex-
pected. It modifies its measuring interval from 30 to 10 seconds as soon as it gets an
information from the GA that the altitude of the glider exceeds 2000 m (6561.68 ft).
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Figure 11. Output window of virtual Sun SPOT and XCSoar display of glider

Figure 11 presents the situation when the glider reaches the altitude of 4000 m.
We can see the display of the XCSoar program which contains the altitude greater than
13123.36 ft, and the warning “Critical oxygen level.”

Therefore, on the basis of both scenarios, we can say that MAPS and JADE agents
efficiently communicate between each other. Furthermore, the GA, based on its position
and information received from sensors, is able to warn the pilot of a glider about a dan-
gerous situation by displaying a proper message on the display of the XCSoar program.

4. Concluding remarks

In this chapter we have described issues concerning development of the initial skeleton
of an agent system used in decision support of glider pilots. First, we have provided and
overview of glider flying and summarized reasons for developing a glider pilot support
system. Next, we have presented the requirements analysis for the GliderAgent system
and discussed main issues concerning its implementation. Particular attention was paid
to the development of the JADE-MAPS gateway, which allows two agent systems, based
on somewhat different design philosophy to interact with each other. Finally, two test
scenarios were used to illustrate the implemented functionalities. As we move along, the
next step of the project will be to add decision making capabilities to the GliderAgent, by
infusing it with flight-context recognition, to be used in on-board resource management.
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